
Concepts and Languages for Privacy-Preserving
Attribute-Based AuthenticationI,II

Jan Camenischa,∗, Maria Dubovitskayaa,b, Robert R. Enderleina,b,∗∗, Anja Lehmanna,
Gregory Nevena, Christian Paquinc, Franz-Stefan Preissa

aIBM Research – Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
bDepartment of Computer Science, ETH Zürich, CH-8092 Zürich, Switzerland

cMicrosoft Research Redmond, One Microsoft Way, Redmond, WA 98052, United States

Abstract

Existing cryptographic realizations of privacy-friendly authentication mechanisms such
as anonymous credentials, minimal disclosure tokens, self-blindable credentials, and
group signatures vary largely in the features they offer and in how these features are
realized. Some features such as revocation or de-anonymization even require the com-
bination of several cryptographic protocols. The variety and complexity of the cryp-
tographic protocols hinder the understanding and hence the adoption of these mech-
anisms in practical applications. They also make it almost impossible to change the
underlying cryptographic algorithms once the application has been designed. In this
paper, we aim to overcome these issues and simplify both the design and deployment
of privacy-friendly authentication mechanisms. We define and unify the concepts and
features of privacy-preserving attribute-based credentials (Privacy-ABCs), provide a
language framework in XML schema, and present the API of a Privacy-ABC system
that supports all the features we describe. Our language framework and API enable
application developers to use Privacy-ABCs with all their features without having to
consider the specifics of the underlying cryptographic algorithms—similar to as they
do today for digital signatures, where they do not need to worry about the particulars
of the RSA and DSA algorithms either.

Keywords: Authentication, privacy, data-minimization, anonymous credentials,
digital credentials

IThis is an accepted author manuscript posted for scholarly purposes. The final version is available at
http://dx.doi.org/10.1016/j.jisa.2014.03.004.

IIThis is an extended version of a paper that appeared at the 3rd IFIP WG 11.6 Working Conference on
Policies and Research in Identity Management (IFIP IDMAN 2013). The original publication is available at
link.springer.com.

∗Authors sorted alphabetically, all authors contributed equally.
∗∗Corresponding author.

Email addresses: jca at zurich dot ibm dot com (Jan Camenisch), mdu at zurich
dot ibm dot com (Maria Dubovitskaya), enr at zurich dot ibm dot com
(Robert R. Enderlein), anj at zurich dot ibm dot com (Anja Lehmann), nev at zurich
dot ibm dot com (Gregory Neven), cpaquin at microsoft dot com (Christian Paquin),
frp at zurich dot ibm dot com (Franz-Stefan Preiss)

Preprint submitted to Elsevier May 4, 2015

1. Introduction

More and more transactions in our daily life are performed electronically and the
security of these transactions is an important concern. Strong authentication and ac-
cording authorization based on certified attributes of the requester is paramount for
protecting critical information and infrastructures online.

Most existing techniques for transferring trusted user attributes cause privacy con-
cerns. In systems where an online identity provider creates access tokens on demand,
such as SAML, OpenID, or WS-Federation, the identity provider can impersonate its
users and can track a user’s moves online. Systems with offline token creation, such as
X.509 certificates and some WS-Trust profiles, force the user to reveal more attributes
than strictly needed (as otherwise the issuer’s signature cannot be verified) and make
her online transactions linkable across different websites.

These drawbacks can be overcome with privacy-preserving authentication mech-
anisms based on advanced cryptographic primitives such as anonymous credentials,
minimal disclosure tokens, self-blindable credentials, or group signatures [19, 12,
24, 28, 7, 58]. In these schemes, users obtain certified credentials for their attributes
from trusted issuers and later derive, without further assistance from any issuer, un-
linkable tokens that reveal only the required attribute information yet remain verifiable
under the issuer’s public key. Well-known examples include Brands’ scheme [12] and
Camenisch-Lysyanskaya’s scheme [27], which have been implemented in Microsoft’s
U-Prove [57] and IBM’s Identity Mixer [40], respectively. Both implementations are
freely available and efficient enough for practical use, yet the real-world adoption is
slower than one may hope.

The various schemes described in the literature offer a large variety of features.
Similar features are often referred to by different names or are realized with different
cryptographic mechanisms. Many of the features such as credential revocation, effi-
cient attribute encoding, or anonymity lifting even require a combination of several
cryptographic protocols. This makes these technologies very difficult to understand,
compare, and use.

We overcome these difficulties by providing unified definitions of the concepts and
features of the different privacy-preserving authentication mechanisms. We will refer
to this unification as privacy-preserving attribute-based credentials or Privacy-ABCs.
Our definitions abstract away from the concrete cryptographic realizations but are care-
fully crafted so that they can be instantiated with different cryptographic protocols—or
a combination of them. To enable the use and integration of Privacy-ABCs in authenti-
cation and authorization systems, we further present a cryptography-agnostic language
framework and application programming interface (API) with well-documented data
formats for credentials, policies, and claims. All languages are specified in XML
schema and separate the abstract functionality expected from the underlying crypto-
graphic mechanisms from the opaque containers for the cryptographic data itself. The
API is based on the reference implementation of the ABC4Trust project and enables
an easy integration of a Privacy-ABC system into existing applications. Our languages
and API allow application developers to employ Privacy-ABCs without having to think

2

about their cryptographic realization, similarly to how common cryptographic primi-
tives such as encryption and signatures are used today: the application layer calls out
to the cryptography through standardized interfaces; the concrete chosen algorithm is
at most an initialization parameter.

The language described in this paper has been implemented in the ABC4Trust
project [1] and will be made available as part of a reference implementation of a
Privacy-ABC system which will include a number of cryptographic solutions. The
full language description and schema are available as a project deliverable [16, 17].

2. Related work

Our work builds on the credential-based authentication requirements language
(CARL) recently proposed by Camenisch et al. [30]. CARL allows a service provider
(verifier) to specify which attributes a user needs to present, and by which issuer these
attributes need to be certified, in order to get access. Compared to our work, CARL
defines only a small part of a Privacy-ABC system, namely the presentation policy, but
does not consider how these attributes are transmitted nor how credentials are issued or
revoked. Bichsel et al. [8] have extended CARL to cover the transmission of certified
attributes. The current version of the U-Prove protocol [57] natively provides a subset
of features of our framework; the other features need to be added through extension
points.

Privacy-ABCs can be used to realize a privacy-respecting form of attribute-based
access control. Traditional attribute-based access control [9, 61, 59], however, does not
see attributes as grouped together in a credential or token. Thus our framework allows
one to realize more specific and more precise access control policies. Also, role-based
access control [36, 54] (RBAC) can be seen as a special case of our attribute-based set-
ting by encoding the user’s roles as attributes. Recent work [43] extended RBAC with
privacy-preserving authentication for the particular case of role and location attributes.

Bonatti and Samarati [9] also propose a language for specifying access control rules
based on “credentials”. The language focuses on credential ownership and does not al-
low for more advanced requirements such as for example revealing of attributes, sign-
ing statements, or inspection. The same is true for the languages proposed by Ardagna
et al. [3] and by Winsborough et al. [60]. However, the latter allows one to impose
attribute properties on credentials and its extension by Li et al. [46] supports revealing
of attributes. The Auth-SL language [53] focuses on multi-factor authentication and
enables the policy author to specify restrictions on the properties of the authentication
mechanisms themselves, but not on attributes of individual users.

The language by Ardagna et al. [2] can also be considered as a predecessor to our
language in the sense that it focuses on anonymous credential systems and some of
the advanced features. However, it considers only the presentation phase and is less
expressive than ours, for instance, it cannot express statements involving attributes
from different credentials.

VeryIDX [50] is a system to prevent identity theft by permitting the use of certain
identity attributes only in combination with other identity attributes. So-called verifi-
cation policies specify which attributes have to be presented together. However, these

3

policies are introduced only conceptually without any details on exact expressivity,
syntax, or semantics.

Several logic-based and technology-neutral approaches to distributed access con-
trol have been proposed [4, 6, 38, 45]. However, none of these have been designed
with Privacy-ABCs in mind. In particular, they do not support selective disclosure of
attributes, proving predicates over attributes, or attribute inspection.

Summarized, our language framework is the first that covers the whole life-cycle
of Privacy-ABCs and also the first one unifying the full spectrum of their features.

3. Example Scenario

In this section we describe a scenario using Privacy-ABCs. We will refer back to
this scenario when we describe the concepts and features of Privacy-ABCs in Section 4,
when we describe the language framework in Section 5, and the API in Section 6.

To illustrate the usage of Privacy-ABCs we consider the following scenario. The
Republic of Utopia issues electronic identity cards to all of its citizens, containing their
name, date of birth, and the state in which they reside. These electronic identities are
used for many applications, such as interactions with government and businesses. It is
therefore crucial that any card that is reported lost or stolen will be quickly revoked.

All citizens of Utopia may sign up for one free digital membership card to the
library of their state. To obtain a library card, the applicant must present her valid
identity card and reveal her state of residence, but otherwise remains anonymous during
the issuance of the library card.

The state library has a privacy-friendly online interface for borrowing both digital
and paper books. Readers can log in to the library website to anonymously browse and
borrow books using their library card based on Privacy-ABCs. Hardcopy books will be
delivered in anonymous numbered mailboxes at the post office; digital books are sim-
ply delivered electronically. If paper books are returned late or damaged, however, the
library must be able to identify the reader to impose an appropriate fine. Repeated neg-
ligence can even lead to exclusion from borrowing further paper books—but borrowing
digital books always remains possible. Moreover, the library occasionally offers spe-
cial conditions to readers of targeted age groups, e.g., longer rental periods for readers
under the age of twenty-six.

4. Concepts and Features

Figure 1 gives an overview of the entities involved in Privacy-ABC systems and
the interactions between them. The interactions are named according to their purpose.
Depending on the technical realizations, these interactions will be realized differently
and might occur multiple times using different protocols (we consider sending a single
message also a protocol). These entities are users, issuers, verifiers, inspectors and
revocation authorities.

In our scenario, the users are the citizens of Utopia. The government of the Repub-
lic of Utopia acts as an issuer for the digital identity cards, while the state libraries act
as issuers for the library cards. Both the government and the library act as their own

4

Figure 1: Entities and the interactions between them.

revocation authorities. (In fact, the roles of issuer and revocation authority can often
be assumed by the same entity.) The online book-borrowing service is the verifier. A
set of trusted arbitrators is appointed to confirm when books are brought back late or
damaged and, if this is the case, to reveal the identity of the negligent reader.

Each issuer generates a secret issuance key and publishes the issuer parameters
that include the corresponding public verification key. Similarly, each inspector gener-
ates a private decryption key and publishes the inspector parameters that include the
corresponding public encryption key, and each revocation authority generates and pub-
lishes its revocation authority parameters. We assume that all entities have means to
retrieve the parameters of the issuers, revocation authorities, and inspectors. Users get
issued credentials by issuers via the credential issuance protocol. A credential con-
tains attributes that its issuer vouches for with respect to the user. A credential can
also specify one or more revocation authorities who are able to revoke the credential if
necessary for some reason (e.g., loss or theft). To issue a credential that is revocable,
the user and/or the issuer might need to interact with the revocation authority prior to
or during the issuance protocol. Using her credentials, a user can form a presentation
token that contains a subset of the certified attributes, provided that the corresponding
credentials have not been revoked. This process might require the user to retrieve in-
formation from the revocation authority. Additionally, some of the attributes can be
encoded in the presentation token so that they can only be retrieved by an inspector.
The user can attach inspection grounds specifying under which conditions the inspec-
tor should reveal these attributes. Receiving a presentation token from a user, a verifier
checks whether the presentation token is valid with respect to the relevant issuer param-
eters and inspector parameters and the latest revocation information (thus, the verifier
will interact with the revocation authority). If the verification succeeds, the verifier will
be convinced that the attributes contained in the presentation token are vouched for by
the corresponding issuers. Finally, if a presentation token contains attributes that can

5

only be retrieved by an inspector and the inspection grounds are met, the verifier can
interact with the inspector to learn these attributes.

Informally, a secure realization of a Privacy-ABC system guarantees that (1) users
can only generate a valid presentation token if they were indeed issued the correspond-
ing credentials that have not been revoked, (2) that attributes encoded in the presenta-
tion token for an inspector can indeed be retrieved by that inspector, and (3) that the
presentation tokens do not reveal any further information about the users other than the
attributes contained in them.

We now provide a brief explanation of the main features supported by Privacy-
ABCs, with a focus on the ones that were not modeled so far in existing identity frame-
works. See also Table 1 for an overview of these features.

Feature Description
Regular
pseudonym

A “public key” derived from a user’s secret key, but so that a user can
generate many unlinkable regular pseudonyms from a given secret key.

Scope-exclusive
pseudonym

A pseudonym that is unique for a given scope string and secret key,
so that one user secret can only be used to generate a single scope-
exclusive pseudonym for each scope string.

Credential A list of attribute/value pairs certified by an issuer.
+ Carried-over
attributes

Attributes in a credential that are copied from other credentials during
issuance, and that the issuer certifies without seeing their values.

+ Key binding Including a user secret key as an attribute in a credential. Pseudonyms
are always bound to a user secret key.

+ Issuer-driven
revocation

Allows for credentials to be revoked globally.

Presentation Proving the possession of pseudonyms or credentials while revealing
only a subset of the attributes in the proof. It is also possible to perform
proofs of equality among attributes and user secret keys.

+ Key binding Prove that credentials used in the presentation are bound to the same
user secret key.

+ Predicate Prove that an attribute is smaller, not equal, or greater than a constant
or another attribute.

+ Inspection During a presentation, additionally encrypt an attribute under the pub-
lic key of an inspector and prove that the correct attribute was en-
crypted. The inspector is trusted to decrypt the ciphertext only under
specific, mutually agreed circumstances.

+ Verifier-driven
revocation

Allows for revoking a specific combination of attributes for certain
transactions.

Table 1: Glossary of the main features supported by Privacy-ABCs.

4.1. Pseudonyms

Each user can generate a secret key. However, unlike traditional public-key authen-
tication schemes, there is no single public key corresponding to the secret key. Rather,
the user can generate as many public keys as she wishes. These public keys are called
pseudonyms in Privacy-ABCs. Pseudonyms [19, 47] are cryptographically unlinkable,

6

meaning that given two different pseudonyms, one cannot tell whether they were gener-
ated from the same or from different secret keys. By generating a different pseudonym
for every verifier, users can thus be known under different unlinkable pseudonyms to
different sites, yet use the same secret key to authenticate to all of them.

While it is sufficient for users to generate a single secret key, they can also have
multiple secret keys. A secret key can be generated by a piece of trusted hardware
(e.g., a smart card) that stores the key and uses it in computations (e.g., to generate
pseudonyms), but that never reveals the key. The key is thereby bound to the hardware,
in the sense that it can only be used in combination with the hardware.

There are situations, however, where the possibility to generate an unlimited num-
ber of unlinkable pseudonyms is undesirable. For example, in an online opinion poll,
users should not be able to bias the result by entering multiple votes under different
pseudonyms. In such situations, the verifier can request a special pseudonym called
a scope-exclusive pseudonym, which is unique for a given user secret key and a given
scope string [39]. Scope-exclusive pseudonyms for different scope strings remain un-
linkable. By using the URL of the opinion poll as the scope string, for example, the
verifier can ensure that each user can only register a single pseudonym to vote, but users
remain unlinkable across different polls. In our example scenario, scope-exclusive
pseudonyms can be used to ensure that each citizen of Utopia can only obtain a single
library card for the library of his own state.

4.2. Credentials and Key Binding
A credential is a certified container of attributes issued by an issuer to a user. For-

mally, an attribute is described by the attribute type that determines the semantics of
the attribute (e.g., first name) and the attribute value that determines its contents (e.g.,
“John”). By issuing a credential, the issuer vouches for the correctness of the contained
attributes with respect to the user. The credential specification lists the attribute types
that are encoded in a credential. A credential specification can be created by the issuer,
or by an external authority so that multiple issuers can issue credentials according to
the same specification. The credential specification must be published and distributed
over a trusted channel. How exactly this is done goes beyond the scope of our language
framework; the specification could for example be digitally signed by its creator.

Optionally, a credential can be bound to a user’s secret key, i.e., it cannot be used
without knowing the secret key [47]. We call this option key binding. It is some-
what analogous to traditional public-key certificates, where the certificate contains the
CA’s signature on the user’s public key, but unlike traditional public-key certificates, a
Privacy-ABC is not bound to a unique public key: it is only bound to a unique secret
key. A user can derive as many pseudonyms as she wishes from this secret key and
(optionally) show that they were derived from the same secret key that underlies the
credential. In our scenario, both the identity and the library card are credentials with
key binding.

4.3. Presentation
To authenticate to a verifier, the user first obtains the presentation policy that de-

scribes which credentials the user must present and which information from these cre-
dentials she must reveal. If the user possesses the necessary credentials, she can derive

7

from these credentials a presentation token that satisfies the presentation policy. The
presentation token can be verified using the issuer parameters of all credentials under-
lying the presentation token.

Presentation tokens derived from Privacy-ABCs only reveal the attributes that were
explicitly requested by the presentation policy – all the other attributes contained in
the credentials remain hidden. Moreover, presentation tokens are cryptographically
unlinkable (meaning no collusion of issuers and verifiers can tell whether two presen-
tation tokens were generated by the same user or by different users) and untraceable
(meaning that no such collusion can correlate a presentation token to the issuance of
the underlying credentials). This is exactly what is required in our scenario when cit-
izens want to borrow books. Of course, presentation tokens are only as unlinkable as
the information they intentionally reveal.

Rather than requesting and revealing full attribute values, presentation policies and
tokens can also request and reveal predicates over one or more issued attributes. For
example, a token could reveal that the name on the user’s credit card matches that on her
driver’s license, without revealing the name. In our scenario, a presentation token can
reveal that the borrower’s date of birth is before April 1st, 1988 (making her eligible as
a reader under twenty-six), without revealing her exact date of birth. Finally, the policy
can also request that certain credentials and pseudonyms are bound to the same user
secret key.

4.4. Issuance
In the simplest setting, an issuer knows all attribute values to be issued and simply

embeds them into a credential.
Privacy-ABCs also support advanced issuance features where attributes are blindly

“carried over” from existing credentials, without the issuer becoming privy to their
values. Similarly, the issuer can blindly issue self-claimed attribute values (i.e., not
certified by an existing credential), carry over the secret key to which a credential is
bound, or assign a uniformly random value to an attribute such that the issuer cannot
see it and the user cannot bias it [12, 27]. In our scenario, identity cards and library
cards must be issued with advanced issuance: the identity card must include the secret
key of the user; and the library card must carry over the full name and secret key of the
requestor from the identity card.

Advanced issuance is an interactive protocol between the user and the issuer. In
the first move, the issuer provides the user with an issuance policy that consists of a
presentation policy specifying which pseudonyms and/or existing credentials the user
must present, and of a credential template specifying which attributes or secret keys of
the newly issued credential will be generated at random or carried over from creden-
tials or pseudonyms in the presentation policy. In response, the user sends an issuance
token containing a presentation token that satisfies the issuance policy. Then the (pos-
sibly multi-round) cryptographic issuance protocol ensues, at the end of which the user
obtains the new credential.

4.5. Inspection
Absolute user anonymity in online services easily leads to abuses such as spam,

harassment, or fraud. Privacy-ABCs provide the option to add accountability for mis-

8

behaving users through a feature called inspection [13, 31]. Here, a presentation to-
ken contains one or more credential attributes that are encrypted under the public key
of a trusted inspector. The verifier can check that the correct attribute values were
encrypted, but cannot see their actual values. The inspection grounds describe the
circumstances under which the verifier may call upon the inspector to recover the ac-
tual attribute values. The inspector is trusted to collaborate only when the inspection
grounds have been met; verifiers cannot change the inspection grounds after receiving
a presentation token, as the grounds are cryptographically tied to the token.

The presentation policy specifies which attributes from which credentials have to
be encrypted under which inspector parameters and which inspection grounds. In our
library example, the library website includes as part of the presentation policy for bor-
rowing paper books that the full name as stated on the library card must be encrypted
to one of the trusted arbitrators, with as inspection grounds the late or damaged return
of the book. In case this happens, the library hands the presentation token as well as
any the evidence of the abuse to the arbitrator, who will then decrypt the reader’s name.

4.6. Revocation

Credentials may need to be revoked for several reasons: the credential and the
related user secrets may have been compromised, the user may have lost her right to
carry a credential, or some of her attribute values may have changed. In such cases,
credentials need to be revoked globally and we call this issuer-driven revocation. The
Utopian identity cards fall under this category.

Sometimes credentials may be revoked only for specific contexts. For example, a
hooligan may see his digital identity card revoked for accessing sport stadiums, but
may still use it for all other purposes; or the Utopian state library may wish to deny
lending paper book to borrowers who fail to properly return their books. We call this
verifier-driven revocation.

Revocation for Privacy-ABCs is cryptographically more complicated than for clas-
sical certificates, but many mechanisms with varying efficiency [44] exist [26, 49, 11,
21, 48]. Bar a few exceptions, all of them can be used for both issuer-driven and
verifier-driven revocation.

We describe revocation in a generic mechanism-agnostic way and consider creden-
tials to be revoked by dedicated revocation authorities. They are separate entities in
general, but may be under the control of the issuer or verifier in particular settings. The
revocation authority publishes static revocation authority parameters and periodically
publishes the most recent revocation information. When creating presentation tokens,
users prove that their credentials have not been revoked, possibly using non-revocation
evidence that they fetch and update from the revocation authority. The revocation au-
thority to be used is specified in the issuer parameters for issuer-driven revocation and
in the presentation policy for verifier-driven revocation. When a credential is subject
to issuer-driven revocation, a presentation token related to this credential must always
contain a proof that the presented credential has not been revoked. Issuer-driven re-
vocation is performed based on the revocation handle, which is a dedicated unique
attribute embedded in a credential. Verifier-driven revocation can be performed based
on any combination of attribute values, possibly even from different credentials. This

9

allows the revocation authority for example to exclude certain combinations of first
names and last names to be used in a presentation token.

4.7. Cryptographic Realization

At the core of a Privacy-ABC system is a signature scheme with efficient protocols
to interactively sign a set of messages and to prove possession of signatures. The signa-
tures can then act as Privacy-ABC credentials, with the attributes making up the set of
messages. The protocols are needed for a number of reasons. First, users cannot simply
reveal the signature to a verifier as part of a presentation token, because then different
presentations become linkable. Instead, the user will perform a zero-knowledge proof
of knowledge of a valid signature so that the privacy properties of a Privacy-ABC sys-
tem can be achieved. Second, a signature scheme needs to support the signing of a set
of messages so that attributes can be selective disclosed in presentation tokens. Third,
features such as key binding can be realized by including users’ secret keys as an at-
tribute into the credentials. To prevent the issuer from learning the user secret during
issuance, however, the issuer must be able to sign messages without learning some of
them.

While interactive issuance protocols and zero-knowledge proofs can be built for
any signature scheme using generic techniques, this approach is not efficient and would
hardly lead to practically useful Privacy-ABC systems. Fortunately, there exist a few
signature schemes that allow for efficient issuance and prove protocols. These include
the Camenisch-Lysyanskaya [27] and the Brands [12] signature schemes, on which
Identity Mixer and U-Prove are built on, respectively, and some schemes that employ
bilinear maps [28, 5]. Thus, an issued credential is realized as a signature on the user’s
attributes.

Ordinary pseudonyms can be realized with cryptographic commitments [51, 33]
to a user’s secret key; scope-exclusive pseudonyms can be realized as the output of
a verifiable random function [34, 20] applied to the secret key as seed and the scope
string as input. As mentioned above, key binding can be realized by designating one
attribute as a user secret key (which of course must never be revealed). Inspection can
be obtained through verifiable encryption [31] of the inspectable attributes. Revocation
of Privacy-ABCs can be done through signed revocation lists [48], through dynamic
accumulators [26, 49, 21], or through efficient updates of short-lived credentials [22].
The “glue” binding all primitives together in a presentation token is provided by zero-
knowledge proofs of knowledge of discrete logarithms [52, 23] made non-interactive
through the Fiat-Shamir transform [37]. These proofs are also used for equality predi-
cates over attributes; inequality predicates are proved with range proofs [10, 14].

ABC4Trust provides an implementation [17] that combines all these cryptographic
building blocks and thus supports all the concepts presented in this section. The
ABC4Trust implementation is an extension of IBM’s Identity Mixer [40] that also inte-
grates U-Prove [57] signatures. U-Prove [57] natively supports a subset of the features
of the ABC4Trust framework; the other features need to be added through extension
points.

There are a few other cryptographic primitives that realize some of the concepts dis-
cussed in this paper. For instance group signatures [13] and identity escrow schemes [42]

10

can be seen as attribute-less credentials with inspection and key binding. Similarly, di-
rect anonymous attestation [18] can also be seen as attribute-less credentials with key-
binding and revocation. Anonymous attribute tokens [29] are credentials that support
attributes.

5. Language Framework

Given the multitude of distributed entities involved in a full-fledged Privacy-ABC
system, the communication formats that are used between these entities must be spec-
ified and standardized.

None of the existing format standards for identity management protocols such as
SAML, WS-Trust, or OpenID support all Privacy-ABCs’ features. Although most of
them can be extended to support a subset of these features, we define for the sake
of simplicity and completeness a dedicated language framework which addresses all
unique Privacy-ABC features. Our languages can be integrated into existing identity
management systems.

In this section we introduce our framework covering the full life-cycle of Privacy-
ABCs, including setup, issuance, presentation, revocation, and inspection. As the main
purpose of our data artifacts is to be processed and generated by automated policy
and credential handling mechanisms, we define all artifacts in XML schema notation,
although one could also create a profile using a different encoding such as Abstract
Syntax Notation One (ASN.1) [41] or JavaScript Object Notation (JSON) [32].

The XML artifacts formally describe and orchestrate the underlying cryptographic
mechanisms and provide opaque containers for carrying the cryptographic data. When-
ever appropriate, our formats also support user-friendly textual names or descriptions
which allow to show a descriptive version of the XML artifacts to a user and to involve
her in the issuance or presentation process if necessary.

For didactic purposes we describe the different artifacts realizing the concepts from
Section 4 by means of examples for our scenario from Section 3. For the sake of space
and readability, these examples do not illustrate all features described in the previous
section; we refer the reader to [16, 17] for the full specification. In what follows, we
explicitly distinguish between user attributes (as contained in a credential) and XML
attributes (as defined by XML schema) whenever they could be confused.

5.1. Credential Specification
Recall that the credential specification describes the common structure and possi-

ble features of credentials. Remember that the Republic of Utopia issues electronic
identity cards to its citizens containing their full name, state, and date of birth. Note
that libraries and other verifiers may target different age groups in different policies, so
hard-coding dedicated “over twenty-six” attributes would not be very sensible. Utopia
may issue Privacy-ABCs according to the credential specification shown in Figure 2.

The XML attribute KeyBinding indicates whether credentials adhering to this speci-
fication must be bound to a secret key. The XML attribute Revocable being set to “true”
indicates that the credentials will be subject to issuer-driven revocation and hence must
contain a special revocation handle attribute. The assigned revocation authority is spec-
ified in the issuer parameters.

11

1 <CredentialSpecification KeyBinding="true" Revocable="true">
2 <SpecificationUID> urn:creds:id </SpecificationUID>
3 <AttributeDescriptions MaxLength="256">
4 <AttributeDescription Type="urn:creds:id:name" DataType="xs:string" Encoding="xenc:sha256">
5 <FriendlyAttributeName lang="EN"> Full Name </FriendlyAttributeName>
6 </AttributeDescription>
7 <AttributeDescription Type="urn:creds:id:state" DataType="xs:string" Encoding="xenc:sha256"/>
8 <AttributeDescription Type="urn:creds:id:bdate" DataType="xs:date" Encoding="date:unix:signed"/>
9 <AttributeDescription Type="urn:revocationhandle" DataType="xs:integer" Encoding="integer:unsigned" />

10 </AttributeDescriptions>
11 </CredentialSpecification>

Figure 2: Credential specification of the identity card.

To encode user attribute values in a Privacy-ABC, they must be mapped to integers
of a limited length. The maximal length depends on the security parameter (basically,
it is the bit length of exponents in the group) and is indicated by the MaxLength XML
attribute (Line 3), here 256 bits. In our example, electronic identity cards contain a
person’s full name, state, and date of birth. The XML attributes Type, DataType, and
Encoding respectively contain the unique identifier for the user attribute type, for the
data type, and for the encoding algorithm that specifies how the value is to be mapped
to an integer of the correct size (Lines 4,7,8,9). Attributes that may have values longer
than MaxLength have to be hashed, as is done here for the name using SHA-256. The
specification can also define human-readable names for the user attributes in different
languages (Line 5).

5.2. Issuer, Revocation, and System Parameters

The government of Utopia acts as issuer and revocation authority for the iden-
tity cards. It generates an issuance key pair and publishes the issuer parameters, and
generates and publishes the revocation authority parameters, which are illustrated in
Figure 3.

The ParametersUID element assigns unique identifiers for the issuer and revocation
authority parameters. The issuer parameters additionally specify the chosen crypto-
graphic Privacy-ABC and hash algorithm, the maximal number of attributes that cre-
dentials issued under these issuer parameters may have, the parameter identifier of the
system parameters that shall be used, and the parameters identifier of the revocation
authority that will manage the issuer-driven revocation. The CryptoParams contain
cryptographic algorithm-specific information about the public key.

The revocation authority parameters can be used for both issuer- and verifier-driven
revocation. They specify a unique identifier for the parameters, the cryptographic re-
vocation mechanisms, and references to the network endpoints where the most recent
revocation information and non-revocation evidence can be fetched.

The system parameters fix some cryptographic parameters that are needed by the
Privacy-ABC system as a whole, such as the overall security level and the groups that
are to be used with the pseudonyms. Every party in the Privacy-ABC system must use
the same system parameters to ensure compatibility. Any trusted issuer can create fresh
system parameters, but ideally system parameters should be standardized.

12

1 <IssuerParameters>
2 <ParametersUID> urn:utopia:id:issuer </ParametersUID>
3 <AlgorithmID> urn:com:microsoft:uprove </AlgorithmID>
4 <SystemParametersUID> urn:utopia:id:system </SystemParametersUID>
5 <MaximalNumberOfAttributes> 4 </MaximalNumberOfAttributes>
6 <HashAlgorithm> xenc:sha256 </HashAlgorithm>
7 <CryptoParams> ... </CryptoParams>
8 <RevocationParametersUID> urn:utopia:id:ra </RevocationParametersUID>
9 </IssuerParameters>

1 <RevocationAuthorityParameters>
2 <ParametersUID> urn:utopia:id:ra </ParametersUID>
3 <RevocationMechanism> urn:privacy−abc:accumulators:cl </RevocationMechanism>
4 <RevocationInfoReference ReferenceType="url"> https:utopia.gov/id/revauth/revinfo
5 </RevocationInfoReference>
6 <NonRevocationEvidenceReference ReferenceType="url"> https:utopia.gov/id/revauth/nrevevidence
7 </NonRevocationEvidenceReference>
8 <CryptoParams> ... </CryptoParams>
9 </RevocationAuthorityParameters>

1 <SystemParameters>
2 <ParametersUID> urn:utopia:id:system </ParametersUID>
3 <CryptoParams> ... </CryptoParams>
4 </SystemParameters>

Figure 3: Issuer, revocation authority, and system parameters.

5.3. Presentation Policy with Basic Features

Assume that a user already possesses an identity card from the Republic of Utopia
issued according to the credential specification depicted in Figure 2. To get her free
library card the user must present her valid identity card and reveal (only) the state at-
tribute certified by the card. This results in the presentation policy depicted in Figure 4.

1 <PresentationPolicy PolicyUID="libcard">
2 <Message>
3 <Nonce> bkQydHBQWDR4TUZzbXJKYUM= </Nonce>
4 </Message>
5 <Pseudonym Alias="nym" Scope="urn:library:issuance" Exclusive="true"/>
6 <Credential Alias="id" SameKeyBindingAs="nym">
7 <CredentialSpecAlternatives>
8 <CredentialSpecUID> urn:creds:id </CredentialSpecUID>
9 </CredentialSpecAlternatives>

10 <IssuerAlternatives>
11 <IssuerParametersUID> urn:utopia:id:issuer </IssuerParametersUID>
12 </IssuerAlternatives>
13 <DisclosedAttribute AttributeType= "urn:creds:id:state"/>
14 </Credential>
15 </PresentationPolicy>

Figure 4: Presentation policy for an identity card.

We now go through the preceding presentation policy and describe how the differ-
ent features of Privacy-ABCs can be realized with our language. We first focus on the
basic features and describe extended concepts such as inspection and revocation in our
second example.

13

Signing Messages. A presentation token can optionally sign a message. The message
to be signed is specified in the policy (Figure 4, Lines 2–4). It can include a nonce, any
application-specific message, and a human-readable name and/or description of the
policy. The nonce will be used to prevent replay attacks, i.e. to ensure freshness of the
presentation token, and for cryptographic evidence generation. Thus, when making use
of the nonce, the presentation policy is not static anymore, but needs to be completed
with a fresh nonce element for every request.

Pseudonyms. The optional Pseudonym element (Figure 4, Line 5) indicates that the
presentation token must contain a pseudonym. A pseudonym can be presented by itself
or in relation with a credential if key binding is used (which we discuss later).

The associated XML attribute Exclusive indicates that a scope-exclusive pseudonym
must be created, with the scope string given by the XML attribute Scope. This ensures
that each user can create only a single pseudonym satisfying this policy, so that the
registration service can prevent the same user from obtaining multiple library cards.
Setting Exclusive to “false” would allow an ordinary pseudonym to be presented. The
Pseudonym element has an optional boolean XML attribute Established, not illustrated
in the example, which, when set to “true”, requires the user to re-authenticate un-
der a previously established pseudonym. The presentation policy can request multiple
pseudonyms, e.g., to verify that different pseudonyms actually belong to the same user.

Credentials and Selective Disclosure. For each credential that the user is requested to
present, the policy contains a Credential element (Figure 4, Lines 6–14), which de-
scribes the credential to present in detail. In particular, disjunctive lists of the accepted
credential specifications and issuer parameters can be specified via CredentialSpecAl-
ternatives and IssuerAlternatives elements, respectively (Figure 4, Lines 7-9 and 10–
12). The credential element also indicates all attributes that must be disclosed by the
user via DisclosedAttribute elements (Figure 4, Line 13). The XML attribute Alias as-
signs the credential an alias so that it can be referred to from other places in the policy,
e.g., from the attribute predicates.

Key Binding. If present, the SameKeyBindingAs attribute of a Credential or Pseudonym
element (Figure 4, Line 6), contains an alias referring either to another Pseudonym
element within this policy, or to a Credential element for a credential with key binding.
This indicates that the current pseudonym or credential and the referred pseudonym
or credential have to be bound to the same key. In our preceding example, the policy
requests that the identity card and the presented pseudonym must belong to the same
secret key.

Issuance Policy. To support the advanced features described in Section 4, we propose a
dedicated issuance policy. A library card contains the applicant’s name and is bound to
the same secret key as the identity card. So the identity card must not only be presented,
but also used as a source to carry over the name and the secret key to the library card.
The library shouldn’t learn either of these during the issuance process. Altogether, to
issue library cards the state library creates the issuance policy depicted in Figure 5.
It contains the presentation policy from Figure 4 and the credential template that is
described in detail below.

14

1 <IssuancePolicy>
2 <PresentationPolicy PolicyUID="libcard"> ... </PresentationPolicy>
3 <CredentialTemplate SameKeyBindingAs="id">
4 <CredentialSpecUID> urn:utopia:lib </CredentialSpecUID>
5 <IssuerParametersUID> urn:utopia:lib:issuer </IssuerParametersUID>
6 <UnknownAttributes>
7 <CarriedOverAttribute TargetAttributeType= "urn:utopia:lib:name">
8 <SourceCredentialInfo Alias="id" AttributeType="urn:creds:id:name"/>
9 </CarriedOverAttribute>

10 </UnknownAttributes>
11 </CredentialTemplate>
12 </IssuancePolicy>

Figure 5: Issuance policy for a library card. The presentation policy on Line 2 is depicted in Figure 4.

Credential Template. A credential template describes the relation of the new credential
to the existing credentials that were requested in the presentation policy. The credential
template (Figure 5, Lines 3–11) must first state the unique identifier of the credential
specification and issuer parameters of the newly issued credential (notice that here
those are different than the identifiers of the credential specification and issuer parame-
ters of the credential that is presented). The optional XML attribute SameKeyBindingAs
further specifies that the new credential will be bound to the same secret key as a cre-
dential or pseudonym in the presentation policy, in this case the identity card.

Within the UnknownAttributes element (Figure 5, Lines 6–10) it is specified which
user attributes of the new credential will be carried over from existing credentials in
the presentation token. The SourceCredentialInfo element (Figure 5, Line 8) indicates
the credential and the user attribute of which the value will be carried over.

Although this is not illustrated in our example, an attribute value can also be spec-
ified to be chosen jointly at random by the issuer and the user. This is achieved by
setting the optional XML attribute JointlyRandom to “true”.

5.4. Presentation and Issuance Token.

A presentation token consists of the presentation token description, containing the
mechanism-agnostic description of the revealed information, and the cryptographic
evidence, containing opaque values from the specific cryptography that “implements”
the token description. The presentation token description roughly uses the same syntax
as a presentation policy. An issuance token is a special presentation token that satisfies
the stated presentation policy, but that contains additional cryptographic information
required by the credential template.

The main difference to the presentation and issuance policy is that in the returned
token a Pseudonym (if requested in the policy) now also contains a PseudonymValue
(Figure 6, Line 6). Similarly, the DisclosedAttribute elements (Figure 6, Lines 10–12)
in a token now also contain the actual user attribute values. Finally, all data from
the cryptographic implementation of the presentation token and the advanced issuance
features are grouped together in the CryptoEvidence element (Figure 6, Line 17). This
data includes, e.g., proof that the contained identity card is not revoked by the issuer
and that it is bound bound to the same secret key as the pseudonym.

15

1 <IssuanceToken>
2 <IssuanceTokenDescription>
3 <PresentationTokenDescription PolicyUID ="libcard" >
4 <Message> ... </Message>
5 <Pseudonym Alias="nym" Scope="urn:library:issuance" Exclusive="true" />
6 <PseudonymValue> MER2VXISHI=</PseudonymValue>
7 </Pseudonym>
8 <Credential Alias="id" SameKeyBindingAs="nym" >
9 ...

10 <DisclosedAttribute AttributeType="urn:creds:id:state" >
11 <AttributeValue> Nirvana </AttributeValue>
12 </DisclosedAttribute>
13 </Credential>
14 </PresentationTokenDescription>
15 <CredentialTemplate SameKeyBindingAs="id" > ... </CredentialTemplate>
16 </IssuanceTokenDescription>
17 <CryptoEvidence> ... </CryptoEvidence>
18 </IssuanceToken>

Figure 6: Issuance token for obtaining the library card.

5.5. Presentation Policy with Extended Features

Recall that the state library has a privacy-friendly online interface for borrowing
books, but that it wants to identify readers who don’t properly return their books and
potentially ban them for borrowing more paper books. Also recall that the library has a
special program for young readers. Altogether, for borrowing books under the “young-
reader”-conditions, users have to satisfy the presentation policy depicted in Figure 7.

A presentation policy that is used for plain presentation (i.e., not within an issuance
policy) can consist of multiple policy alternatives, each wrapped in a separate Presenta-
tionPolicy element (Figure 7, Lines 2–34 and 35–63). The returned presentation token
must satisfy (at least) one of the specified policies.

The example presentation policy requires two Credential elements, for the library
and for the identity card, which must belong to the same secret key as indicated by the
XML attribute SameKeyBindingAs.

Attribute Predicates. No user attributes of the identity card have to be revealed, but
the AttributePredicate element (Figure 7, Lines 30–33) specifies that the date of birth
must be after April 1st, 1988, i.e., that the reader is younger than twenty-six. Sup-
ported predicate functions include equality, inequality, greater-than and less-than tests
for most basic data types, as well as membership of a list of values. The arguments of
the predicate function may be credential attributes (referred to by the credential alias
and the attribute type) or constant values. See [16, 17] for an exhaustive list of sup-
ported predicates and data types and note that an attribute’s encoding as defined in the
credential specification has implications on which predicates can be used for it and
whether it is inspectable [16, Sec. 4.2.1].

Inspection. To be able to nevertheless reveal the name of an anonymous borrower and
to impose a fine when a book is returned late or damaged, the library can make use
of inspection. The DisclosedAttribute element for the user attribute “...:name” contains

16

1 <PresentationPolicyAlternatives>
2 <PresentationPolicy PolicyUID= "young−reader" >
3 <Message> ... </Message>
4 <Credential Alias="libcard" SameKeyBindingAs="id" >
5 <CredentialSpecAlternatives>
6 <CredentialSpecUID> urn:utopia:lib </CredentialSpecUID>
7 </CredentialSpecAlternatives>
8 <IssuerAlternatives>
9 <IssuerParametersUID> urn:utopia:lib:issuer </IssuerParametersUID>

10 </IssuerAlternatives>
11 <DisclosedAttribute AttributeType= "urn:utopia:lib:name" >
12 <InspectorAlternatives>
13 <InspectorParametersUID> urn:lib:arbitrator </InspectorParametersUID>
14 </InspectorAlternatives>
15 <InspectionGrounds> Late return or damage. </InspectionGrounds>
16 </DisclosedAttribute>
17 </Credential>
18 <Credential Alias="id" >
19 <CredentialSpecAlternatives>
20 <CredentialSpecUID> urn:creds:id </CredentialSpecUID>
21 </CredentialSpecAlternatives>
22 <IssuerAlternatives>
23 <IssuerParametersUID> urn:utopia:id:issuer </IssuerParametersUID>
24 </IssuerAlternatives>
25 </Credential>
26 <VerifierDrivenRevocation>
27 <RevocationParametersUID> urn:lib:blacklist </RevocationParametersUID>
28 <Attribute CredentialAlias ="libcard" AttributeType="urn:utopia:lib:name" />
29 </VerifierDrivenRevocation>
30 <AttributePredicate Function= "...:date−greater−than" >
31 <Attribute CredentialAlias ="id" AttributeType= "urn:creds:id:bdate" />
32 <ConstantValue> 1988−04−01 </ConstantValue>
33 </AttributePredicate>
34 </PresentationPolicy>
35 <PresentationPolicy PolicyUID= "regular−reader" >

Lines 36–62 are identical to lines 3–29 (i.e., without the AttributePredicate element).
63 </PresentationPolicy>
64 </PresentationPolicyAlternatives>

Figure 7: Presentation policy for borrowing books.

17

InspectorParametersUID and InspectionGrounds child elements, indicating that the at-
tribute value must not be disclosed to the verifier, but to the specified inspector with the
specified inspection grounds. The former child element specifies the inspector’s public
key under which the value must be encrypted, in this case belonging to a designated
arbiter within the library. The latter element specifies the circumstances under which
the attribute value may be revealed by the arbiter. Our language also provides a data
artifact for inspector parameters, which we omit here for space reasons.

Issuer-Driven Revocation. When the presentation policy requests a credential that is
subject to issuer-driven revocation (as defined in the credential specification), the cre-
dential must be proved to be valid with respect to the most recent revocation infor-
mation. However, a policy can also require the use of a particular past version of the
revocation information. In the latter case, the element IssuerParametersUID has an ex-
tra XML attribute RevocationInformationUID specifying the identifier of the specific
revocation information. The specification of the referenced RevocationInformation is
given in [16]. Presentation tokens can accordingly state the validity of credentials with
respect to a particular version by using a RevocationInformationUID XML element in
the corresponding Credential element.

Verifier-Driven Revocation. If customers return borrowed books late or damaged, they
are excluded from borrowing further paper books, but they are still allowed to use the
library’s online services. In our example, this is handled by a VerifierDrivenRevocation
element (Figure 7, Lines 26–29), which specifies that the user attribute “...:name” of
the library card must be checked against the most recent revocation information from
the revocation authority “urn:lib:blacklist”. Revocation can also be based on a combi-
nation of user attributes from different credentials, in which case there will be multiple
Attribute child elements per VerifierDrivenRevocation. The presentation policy can also
contain multiple VerifierDrivenRevocation elements for one or several credentials, the
returned presentation token must then prove its non-revoked status for all of them.

5.6. Interaction with the User Interface

During a presentation, the user can potentially satisfy the presentation policy alter-
natives in many ways. In order to allow the user to choose which presentation policy
he wishes to satisfy, to choose how to satisfy the chosen policy (e.g., if he has mul-
tiple credentials of one type), and to check what he reveals by doing so, the Privacy-
ABC framework generates a UiPresentationArguments object and hands it over to the
application, which in turn will probably want to forward it to some sort of user in-
terface. The framework then expects an object of type UiPresentationReturn with the
user’s choice. There are similar objects UiIssuanceArguments and UiIssuanceReturn for
issuance. Standardizing the format of these objects is less critical than the other de-
scribed in the remained of this section as they remain confined to the user’s machine;
we show here one possible embodiment of these objects.

We designed the UiPresentationArguments object (Figure 8) such that the complex-
ity of the user interface is minimized: (1) it contains enough information so that the
application does not have to query additional data from the Privacy-ABC framework,
and (2) it contains some redundant information so that it does not need to do complex

18

1 <UiPresentationArguments>
2 <data>
3 <credentialSpecification id="urn:utopia:lib">...</credentialSpecification>
4 <credentialSpecification id="urn:creds:id">...</credentialSpecification>
5 <issuer id="urn:utopia:lib:issuer">...</issuer>
6 <issuer id="urn:utopia:id:issuer">...</issuer>
7 <inspector id="urn:lib:arbitrator">...</inspector>
8 <revocationAuthority id="urn:utopia:id:ra">...</revocationAuthority>
9 <credentialDescription id="urn:utopia:lib:74bddfb3−6886−43ac−83f8−ca3b72ad050d">...</credentialDescription>

10 <credentialDescription id="urn:creds:id:14f22b9d−06e0−4110−a8d9−b1a922462cd1">...</credentialDescription>
11 </data>
12 <tokenCandidatePerPolicy policyId="0">
13 <policy>...</policy>
14 <tokenCandidate candidateId="0">
15 <tokenDescription>...</tokenDescription>
16 <credential ref="urn:utopia:lib:74bddfb3−6886−43ac−83f8−ca3b72ad050d" />
17 <credential ref="urn:creds:id:14f22b9d−06e0−4110−a8d9−b1a922462cd1" />
18 <revealedFact>
19 <description lang="EN">You prove that urn:creds:id:bdate from credential urn:creds:id
20 is greater than 1988−04−01 (26 years ago).</description>
21 </revealedFact>
22 <revealedFact>
23 <description lang="EN">You prove that ‘Full Name’ from credential ‘Library Card’
24 is not revoked by the verifier urn:lib:blacklist.</description>
25 </revealedFact>
26 <revealedFact>
27 <description lang="EN">You prove that urn:creds:id is not revoked by urn:utopia:id:ra.</description>
28 </revealedFact>
29 <inspectableAttribute>
30 <credential ref="urn:utopia:lib:74bddfb3−6886−43ac−83f8−ca3b72ad050d" />
31 <attributeType>urn:utopia:lib:name</attributeType>
32 <inspectionGrounds>Late return or damage.</inspectionGrounds>
33 <inspectorAlternative ref="urn:lib:arbitrator" />
34 </inspectableAttribute>
35 </tokenCandidate>
36 </tokenCandidatePerPolicy>
37 <tokenCandidatePerPolicy policyId="1">...</tokenCandidatePerPolicy>
38 </UiPresentationArguments>

Figure 8: Message sent to the User Interface for Presentation.

1 <UiPresentationReturn>
2 <chosenPolicy>0</chosenPolicy>
3 <chosenPresentationToken>0</chosenPresentationToken>
4 <chosenInspectors>urn:lib:arbitrator</chosenInspectors>
5 </UiPresentationReturn>

Figure 9: Response from the User Interface for Presentation.

19

1 <UiIssuanceArguments>
2 <data>
3 ...
4 <pseudonym id="nym:urn:library:issuance:965999d1−25e9−49e5−8db6−ad8ae9705807">...</pseudonym>
5 ...
6 </data>
7 <tokenCandidate candidateId="0">
8 ...
9 <pseudonymCandidate candidateId="0">

10 <pseudonym ref="nym:urn:library:issuance:965999d1−25e9−49e5−8db6−ad8ae9705807" />
11 </pseudonymCandidate>
12 ...
13 </tokenCandidate>
14 <issuancePolicy>...</issuancePolicy>
15 </UiIssuanceArguments>

Figure 10: Message sent to the User Interface for Issuance.

1 <UiIssuanceReturn>
2 <chosenIssuanceToken>0</chosenIssuanceToken>
3 <chosenPseudonymList>0</chosenPseudonymList>
4 <metadataToChange>
5 <entry>
6 <key>nym:urn:library:issuance:965999d1−25e9−49e5−8db6−ad8ae9705807</key>
7 <value>I used this to obtain my library card.</value>
8 </entry>
9 </metadataToChange>

10 </UiIssuanceReturn>

Figure 11: Response from the User Interface for Issuance.

parsing of the policy to figure out what exactly is being revealed. It consists of two
parts: the first part is a data element, which lists all parameters and similar objects
that are referred to in the second part: a list of all credential specifications (Lines 3–4),
summaries of all issuer parameters (Lines 5–6), summaries of all inspector parame-
ters (Line 7), summaries of all revocation authorities (Line 8), credential descriptions
(Lines 9–10), and pseudonym descriptions (not shown for this example, but see Line 4
of Figure 10). The second part consists of a list of tokenCandidatePerPolicy elements,
which in turn comprise a presentation policy (Line 13) and a list of tokenCandidate
showing all possible alternatives to satisfy the policy. The latter consists of a partially
filled out presentation token description (Line 15); the list of credentials that will be
presented (Lines 16–17); all possible alternative lists of pseudonyms that are compati-
ble with the presented credentials and that satisfy the policy (not shown in this exam-
ple, but see Lines 9–11 in Figure 10), here the Privacy-ABC framework will tentatively
create new pseudonyms each time and include those in the list, these pseudonyms are
then only saved if the user actually selects them for inclusion in the presentation to-
ken; a list of facts that will be revealed as part of the presentation (Lines 18–28), such
as equality between attributes, predicates over the attributes, revocation checks—the
friendly names of credentials, attributes, and parameters are used whenever available;
the list of attributes that are revealed (not shown in this example), including attributes
that are proven to be equal to a revealed attribute; and the list of inspectable attributes
(Lines 29–34) with a choice of possible inspectors (Line 33).

20

The UiPresentationReturn object (Figure 9) indicates which policy (Line 2), which
presentation token within that policy (Line 3), and which inspector for each of the
inspectable attributes (Line 4) the user chose. Not shown in this example, but also part
of the UiPresentationReturn is the list of pseudonyms the user wishes to chose, and
whether the user wishes to change the metadata of any of the stored pseudonyms (we
show examples of those in Figure 11).

The UiIssuanceArguments object (Figure 10) is similar to the UiPresentationArgu-
ments element. Since there is only one issuance policy per issuance transaction, we
removed the tokenCandidatePerPolicy element; instead the tokenCandidate elements
(Line 7) and issuancePolicy element (Line 14) are direct children of the root element.

The UiIssuanceReturn object (Figure 11) is similar to the UiPresentationReturn ob-
ject. It indicates which presentation token within the policy (Line 2), which inspectors
(not shown in this example), and which list of pseudonyms (Line 3) were chosen. In
this example, the user has also chosen to associate new metadata to the pseudonym
(Lines 4–9).

6. API of a Privacy-ABC System

In this section, we present the architecture of a Privacy-ABC system and the ap-
plication programming interface (API) of the Privacy-ABC framework in that system.
The latter contains the methods that are minimally necessary to implement all the fea-
tures provided by the language framework described in the previous section. We illus-
trate the API with sample code that realize the library scenario from Section 3. In this
document we consider a discussion of an implementation out of scope.

The API is based on the reference implementation of a Privacy-ABC framework
that we created within the EU project ABC4Trust [16, 17, 1]; the source code of
that implementation is available at https://github.com/p2abcengine/p2abcengine.
However, with respect to the API of the reference implementation, we omitted some
convenience methods, simplified the error reporting mechanism, and adjusted the sig-
nature of some methods for didactic reasons. The API exposes technology-agnostic
methods for generating cryptographic parameters and keys, importing these parame-
ters, generating and verifying presentation tokens, issuing credentials, inspecting to-
kens, and revoking credentials or attributes. We provide a summary of the API in
Table 2.

6.1. Architecture of a Privacy-ABC system
For an easy integration of Privacy-ABCs in various applications, we consider a

Privacy-ABC framework consisting of a mechanism-independent Privacy-ABC engine
layer on top of the core cryptographic engine layer. This Privacy-ABC engine contains
all the mechanism-agnostic components of a Privacy-ABC system and processes the
data formats that we presented in Section 5. It is invoked by the application layer and
calls out to the cryptographic engine to obtain the mechanism-specific cryptographic
data. The Privacy-ABC framework also contains trusted storage containing public au-
thenticated data such as issuer parameters, credential specifications, inspector param-
eters, and revocation authority parameters, as well as secure storage containing secret
keys and users’ credentials.

21

User Verifier, Issuer, Inspector,
Revocation Authority

Browser / UI

Application

Privacy-ABC
Engine

Cryptographic Engine

Storage

API

Privacy-ABC Framework

Application

Privacy-ABC
Engine

Cryptographic Engine

API

Privacy-ABC Framework

Internet

Internet Storage

Figure 12: Architecture of a Privacy-ABC system.

22

Function name Input Output Who?*
Parameter generation
generateSystemParameters int securityLevel SystemParameters Is
generateIssuerParameters URI id, SystemParameters, URI technology, int maximal-

NumberOfAttributes, @Nullable URI rev.Auth.Id
IssuerParameters Is

generateInspectorParameters URI id, SystemParameters, URI technology InspectorParameters In
generateRev.Auth.Parameters URI id, SystemParameters, URI technology, URI revoca-

tionInfoLocation, URI nonRevocationEvidenceLoca-
tion, URI nonRevocationUpdateLocation

RevocationAuthorityParameters RA

generateUserSecretKey SystemParameters URI id U
Storage of parameters
storeCredentialSpecification CredentialSpecification boolean success U, V, Is
storeSystemParameters SystemParameters boolean success U, V, Is, In, RA
storeIssuerParameters IssuerParameters boolean success U, V, Is
storeInspectorParameters InspectorParameters boolean success U, V, Is, In
storeRev.Auth.Parameters RevocationAuthorityParameters boolean success U, V, Is, RA
Issuance
initIssuanceProtocol IssuancePolicy, List<Attribute> issuerSpecifiedAttributes IssuanceMessage, boolean isLastMessage Is
issuanceProtocolStep IssuanceMessage IssuanceMessage, boolean isLastMessage Is
extractIssuanceToken IssuanceMessage IssuanceToken Is
issuanceProtocolStep IssuanceMessage IssuanceMessage, CredentialDescription,

@Nullable UiIssuanceArguments
U

issuanceProtocolStep UiIssuanceReturn IssuanceMessage U
Presentation
createIdentitySelectorArguments PresentationPolicyAlternatives @Nullable UiPresentationArguments U
createPresentationToken UiPresentationReturn PresentationToken U
verifyTokenAgainstPolicy PresentationToken, PresentationPolicyAlternatives boolean V
Inspection and revocation
inspect PresentationToken, URI credentialAlias,

URI attributeType
Attribute In

inspect IssuanceToken, URI credentialAlias,URI attributeType Attribute In
revoke URI rev.Auth.Id, List<Attribute> toRevoke — RA

Table 2: Summary of the application programming interface (API) of our Privacy-ABC system. * U = user, V = verifier, Is = issuer, In = inspector, RA = revocation authority.

23

Programmers that wish to use our Privacy-ABC framework need to code the appli-
cation layer sitting on top of that framework. This application layer communicates with
the framework via the API described in this section. This application should also be
able to display some information to the end users via a dedicated user interface (which
can for example be a page displayed in a web browser): for example during identity se-
lection, the user must be asked to chose how to satisfy a given policy given all possible
alternatives (or to abort the protocol) and see what information he reveals in each case.
See Figure 12.

6.2. Setup

To equip all parties in a Privacy-ABC system with the necessary key material, the
API provides methods for generating public and/or private cryptographic parameters.
Additionally, there is a method that generates system parameters. The Privacy-ABC
framework stores the private parameters in the trusted storage of the corresponding
party. The generated public parameters must then be authentically sent to the other
parties in the system.

Each party in the system is responsible for keeping its key storage up-to-date. Once
it obtains a public parameter from a party and after it verified the authenticity of that
parameter, it must import the parameter in its key storage with the dedicated API meth-
ods. The framework may refuse to store parameters or credential specifications that
have the same UID as another object in the store, or it may decide to overwrite the old
object. The Privacy-ABC framework can retrieve the different parameters and creden-
tial specifications by their UID. The corresponding operations to retrieve the keys and
parameters from the key storage are used internally only, and are therefore not exposed
by the API described here.

See Figure 13 for the application layer setup code for our library scenario of Sec-
tion 3.

System parameters. When generating system parameters, a security level must be pro-
vided. Reasonable values for the security level are values between 80 and 256. System
parameters define security parameters (e.g., size of secrets, size of moduli, size of
group orders, prime probability), the range of values the attributes can take, and the
cryptographic parameters for the pseudonyms. The choice of parameters will be such
that the overall system has an equivalent security level as a symmetric cryptosystem
with securityLevel bits [56].

To ensure interoperability, every user, issuer, inspector, and revocation authority
in the system must use the same system parameters for generating their cryptographic
keys and parameters. To achieve this, for example, a trusted authority such as a stan-
dardization body (or in our scenario, the Utopian government) could generate and pub-
lish system parameters for various security levels, which are then used by all parties.

Issuer parameters. When generating issuer parameters, one must specify the maxi-
mal number of attributes that can appear in credential specifications that are used in
conjunction with these issuer parameters. That number is needed because it might
influence the length of the issuer parameters.

24

Utopia government (issuer and revocation authority):

1 int securityLevel = 128; // Security equivalent to 128−bit symmetric cipher.
2 SystemParameters sp = utopia.generateSystemParameters(securityLevel);
3

4 int maxNumAttributesUt = 4; // Identity card has 4 named attributes (plus the user’s secret key).
5 IssuerParameters utIp = utopia.generateIssuerParameters("urn:utopia:id:issuer", sp,
6 "urn:com:microsoft:uprove", maxNumAttributesUt, "urn:utopia:id:ra");
7

8 URI raLocationUt = "https://api.ra.id.utopia/";
9 RevocationAuthorityParameters utRap = utopia.generateRevocationAuthorityParameters("urn:utopia:id:ra",

10 sp, "urn:privacy−abe:accumulators:cl", raLocationUt + "rinfo", raLocationUt + "nre", raLocationUt + "nru");
11

12 CredentialSpecification utCs = "..."; // Specification of identity card. See Figure 2.
13 utopia.storeCredentialSpecification(utCs);
14

15 // Distribute sp, utRap, utIp, utCs to all other entities

Arbitrator for Library (inspector):

16 InspectorParameters arbInsp = arbitrator.generateInspectorParameters("urn:lib:arbitrator", sp,
17 "urn:inspection:CS03");
18

19 arbitrator.storeSystemParameters(sp);
20

21 // Distribute arbInsp to all other entities

Library (issuer, revocation authority, and verifier):

22 int maxNumAttributesLib = 1; // Library card has 1 named attribute (plus the user’s secret key).
23 IssuerParameters libIp = library.generateIssuerParameters("urn:utopia:lib:issuer", sp,
24 "urn:com:ibm:idemix", maxNumAttributesLib, null);
25

26 URI raLocationLib = "https://api.blacklist.lib.utopia/";
27 RevocationAuthorityParameters libRap = library.generateRevocationAuthorityParameters("urn:lib:blacklist",
28 sp, "urn:privacy−abe:NFHF09", raLocationLib + "rinfo", raLocationLib + "nre", raLocationLib + "nru");
29

30 CredentialSpecification libCs = "..."; // Specificaion of library card.
31 library.storeCredentialSpecification(libCs);
32

33 library.storeSystemParameters(sp);
34 library.storeIssuerParameters(utIp);
35 library.storeRevocationAuthorityParameters(utRap);
36 library.storeCredentialSpecification(utCs);
37 library.storeInspectorParameters(arbInsp);
38

39 // Distribute libIp, libRap to all other entities

User:

40 user.generateUserSecretKey(sp);
41

42 user.storeSystemParameters(sp);
43 user.storeIssuerParameters(utIp);
44 user.storeIssuerParameters(libIp);
45 user.storeRevocationAuthorityParameters(utRap);
46 user.storeRevocationAuthorityParameters(libRap);
47 user.storeCredentialSpecification(utCs);
48 user.storeCredentialSpecification(libCs);
49 user.storeInspectorParameters(arbInsp);

Figure 13: Application layer code for the setup phase of our library scenario.

25

Revocation authority parameters. When generating revocation authority parameters,
one must specify the location where the Privacy-ABC framework of the users and ver-
ifiers can obtain the latest revocation information, the location where the framework of
issuers can obtain the initial non-revocation evidence of newly issued credentials, and
the location where the framework of users can obtain updates to their non-revocation
evidence.

User secret keys. Our reference implementation also supports the storage of private
keys on external devices such as smartcards. However, for the sake of brevity, we do
not describe the corresponding API methods here. We note that a user may generate
multiple keys by calling this method multiple times.

6.3. Issuance

Generally speaking, issuance is an interactive multi-round protocol between a user
and an issuer, at the end of which the user obtains a credential. In fact, issuance can
be seen as a special case of a standard resource request, where the resource is a new
credential that the user wants to obtain. Thus, to handle such a credential request, the
Privacy-ABC framework might invoke the same components and procedures as in the
presentation scenario described later. However, depending on the scenario, the issuance
transaction involves additional components to handle the case where the user wishes to
(blindly) carry over her attributes or her secret key from one of her existing credentials
to the new credential.

To start an issuance transaction, the user first authenticates towards the issuer. The
exact details of such authentication are outside the scope of this document (for example,
it can be done using traditional means such as username and password). The user also
indicates the credential type she wishes to obtain. The issuer triggers the issuance of
a credential through the API only after having received that initial message from the
user. As described in Section 4.4, there are two variants of issuance: simple issuance
and advanced issuance, where the latter applies if attributes or a key need to be carried
over from existing credentials.

6.3.1. Simple issuance
In the simple issuance variant, an issuer issues the user a credential that is unrelated

to any existing credentials or pseudonyms already owned by the user. In such a setting,
the issuer first sends to the Privacy-ABC framework the set of attributes that shall be
certified in the new credential, and with an issuance policy that merely contains the
identifiers of the credential specification and the issuer parameters of the credential
that is to be issued (see Line 9 in Figure 14), thus initiating the cryptographic issuance
protocol. The framework outputs an issuance message containing cryptographic data
(the format of the data is specific to the technology of the credential to be issued) and a
reference that uniquely identifies the instance of the corresponding issuance protocol.
The returned issuance message is then sent by the issuer to the user.

Upon receiving an issuance message, both the user and subsequently the issuer pass
the message to their Privacy-ABC framework (Line 24 and Line 18). If the framework
outputs an issuance message (Line 25–27), that message is sent to the other party until

26

Issuer (Library):

1 IssuancePolicy issuancePolicy = "..."; // Policy containing only a credential template.
2 CredentialSpecification utCsNoKeyBinding = "..."; // Specification for non−key−bound identity card.
3 // See Figure 2, but with KeyBinding = false.
4 List<Attribute> issuerSetAttributes = new ArrayList<Attribute>();
5 isserSetAttributes.add(utCsNoKeyBinding.getAttribute("∗name").setValue("Arthur Dent"));
6 isserSetAttributes.add(utCsNoKeyBinding.getAttribute("∗state").setValue("Nirvana"));
7 isserSetAttributes.add(utCsNoKeyBinding.getAttribute("∗bdate").setValue("1992−10−01"));
8 isserSetAttributes.add(utCsNoKeyBinding.getAttribute("∗revocationhandle").setValue("47"));
9 Pair<IssuanceMessage, Boolean> ret = library.initIssuanceProtocol(issuancePolicy, issuerSetAttributes);

10 while(true) {
11 IssuanceMessage imToUser = ret.first /∗ issuanceMessage ∗/;
12 // Send imToUser to the user over a secure channel.
13 if (ret.second /∗ lastMessage ∗/ == true) {
14 break;
15 }
16 IssuanceMessage imFromUser;
17 // Receive the issuance message imFromUser from the user over a secure channel.
18 ret = library.issuanceProtocolStep(imFromUser);
19 }

User:

20 while(true) {
21 IssuanceMessage imFromIssuer, imToIssuer;
22 // Receive the issuanceMessage imFromIssuer from the issuer over a secure channel.
23 Triple<IssuanceMessage, CredentialDescription, UiIssuanceArguments> ret;
24 ret = user.issuanceProtocolStep(imFromIssuer);
25 imToIssuer = ret.first /∗ issuanceMessage ∗/;
26 if (imToIssuer != null) {
27 // Send imToIssuer to the issuer over a secure channel.
28 } else {
29 CredentialDescription descOfIssuedCredential = ret.second /∗ credentialDescription ∗/;
30 // The description of the issued credential is stored in descOfIssuedCredential:
31 // optionally display a success message to the user.
32 break;
33 }
34 }

Figure 14: Application layer code for the simple issuance protocol. Here we show how to issue an identity
card that is *not* bound to the user’s secret key. To properly realize the library scenario, advanced issuance
is required instead of simple issuance.

27

Issuer (Library):

1 IssuancePolicy issuancePolicy = "..."; // Policy for issuing a library card based on an identity card. See Figure 5.
2 List<Attribute> issuerSetAttributes = Collections.emptyList();
3 Pair<IssuanceMessage, Boolean> ret = library.initIssuanceProtocol(issuancePolicy, issuerSetAttributes);
4 while(true) {
5 IssuanceMessage imToUser = ret.first /∗ issuanceMessage ∗/;
6 // Send imToUser to the user over a secure channel.
7 if (ret.second /∗ lastMessage ∗/ == true) {
8 break;
9 }

10 IssuanceMessage imFromUser;
11 // Receive the issuance message imFromUser from the user over a secure channel.
12 IssuanceToken it = library.extractIssuanceToken(imFromUser);
13 if(it != null) {
14 // Optionally, perform additional checks on the user’s issuance token:
15 // check that the pseudonym has never been seen before (and abort if a card was already issued to that pseudonym).
16 }
17 ret = library.issuanceProtocolStep(imFromUser);
18 }

User:

19 while(true) {
20 IssuanceMessage imFromIssuer, imToIssuer;
21 // Receive the issuanceMessage imFromIssuer from the issuer over a secure channel.
22 Triple<IssuanceMessage, CredentialDescription, UiIssuanceArguments> ret;
23 ret = user.issuanceProtocolStep(imFromIssuer);
24 if (ret.third /∗ uiIssuanceArguments ∗/ != null) {
25 UiIssuanceReturn uir;
26 // Ask the user to choose which credentials to use by invoking the user interface with
27 // ret.third /∗ uiIssuanceArguments ∗/ . The user’s choice is recorded in uir.
28 imToIssuer = user.issuanceProtocolStep(uir);
29 } else {
30 imToIssuer = ret.first /∗ issuanceMessage ∗/;
31 }
32 if (imToIssuer != null) {
33 // Send imToIssuer to the issuer over a secure channel.
34 } else {
35 CredentialDescription descOfIssuedCredential = ret.second /∗ credentialDescription ∗/;
36 // The description of the issued credential is stored in descOfIssuedCredential:
37 // optionally display a success message to the user.
38 break;
39 }
40 }

Figure 15: Application layer code for the advanced issuance protocol of an Utopian library card. Similar
code can be used for the issuance of the Utopian identity card.

28

the user’s framework finally outputs a credential (Line 28–29). At the end of a suc-
cessful issuance protocol, the user’s Privacy-ABC framework stores the new credential
in her local credential store and returns the description of the credential to the user
(Line 29–32).

In our library scenario, there is no simple issuance: both the identity card and the
library card need to carry over the secret key of the user (and the library card also
needs to carry over the full name of the user). In Figure 14 we show an application
layer code for simple issuance for a simple identity card that is not bound to the user’s
secret key—the credential specification for that simple identity card is almost the same
as for the regular identity card (see Figure 2), except that KeyBinding is set to false.

6.3.2. Advanced issuance
In the advanced issuance variant, the information embedded in the newly issued

credential can be blindly carried over from existing credentials and pseudonyms that
are already owned by the user. To this end, the issuance protocol is preceded by the
generation and verification of an issuance token, which is generated on the basis of
an issuance policy sent to the user. More precisely, the issuer triggers an advanced
issuance transaction by invoking the Privacy-ABC framework with an issuance policy
and the set of known user attributes that shall be certified in the new credential (see
Line 3 in Figure 15). The issuance policy must require the user to present at least one
credential or one pseudonym, otherwise simple issuance is performed. The framework
may simply wrap the issuance policy into an issuance message. The returned issuance
message must then be sent to the user (see Line 6).

The user in turn invokes his framework with the received message (see Line 23).
The user’s Privacy-ABC framework recognizes that this is an advanced issuance sce-
nario, and subsequently starts preparing an issuance token. This process is similar to
the generation of a presentation token described below in that the framework outputs an
object of type UiIssuanceArguments for the user to perform an identity selection, and
then records the user’s response in an object of type UiIssuanceReturn (see Lines 25–
27). Finally, based on the user’s choice, her Privacy-ABC framework generates an
issuance token (see Line 28), which includes additional cryptographic data needed for
the subsequent issuance protocol. The issuance token is wrapped in an issuance mes-
sage, which the user then forwards to the issuer (see Line 33).

If the issuer wants to perform additional checks on the contents of the issuance
token description before starting the actual issuance protocol—for example because
the issuer wants to check that the value of a scope-exclusive pseudonym was not yet
registered in a given database—he can ask the framework to unwrap the token from
the incoming message (see Line 12). As for simple issuance, the issuer then sends the
incoming issuance message from the user to the framework (see Line 17). The issuer’s
Privacy-ABC framework then verifies the issuance token contained in the message with
respect to the issuance policy (using similar methods as for the verification of a presen-
tation token described below). If the verification succeeds, the cryptographic issuance
protocol is started. The method outputs an issuance message containing cryptographic
data depending on the technology of the credential to issue. The issuer then sends the
returned issuance message to the user (see Line 6).

29

Whenever the user or the issuer receive an issuance message, they send it to their
framework (see Line 23 and Line 17). The framework then outputs either another
issuance message that must be sent to the other party, or an indication of the comple-
tion of the protocol. At the end of the protocol, the user’s Privacy-ABC framework
stores the obtained credential and returns a description of that credential to the user
(see Lines 34–38).

In Figure 15 we show the application layer code for the advanced issuance protocol
of the Utopian library card. Very similar code can be used for issuance of identity cards.
Finally, we note that this code also works for simple issuance, the only differences
being that the user will not be asked to do identity selection, the issuer won’t see any
issuance token, and the number of exchanged messages will be lower.

6.4. Presentation

Verifier (Library):

1 PresentationPolicyAlternatives ppa = "..."; // Policy for borrowing books. See Figure 7.
2 // Send the presentation policy alternatives ppa to the user.

User:

3 // Receive the presentation policy alternatives ppa from the verifier.
4 UiPresentationArguments upa = user.createIdentitySelectorArguments(ppa);
5 UiPresentationReturn upr;
6 // Ask user to choose which credentials to use by invoking the user
7 // interface with upa. The user’s choice is recorded in upr.
8 PresentationToken pt = user.createPresentationToken(upr);
9 // Send pt to the verifier over a secure channel.

Verifier (Library):

10 // Receive the presentation token pt from the user.
11 boolean ok = library.verifyTokenAgainstPolicy(pt, ppa);
12 if(ok == true) {
13 // Show page for borrowing books and store pt for future reference in case the book was not properly returned.
14 }

Figure 16: Application layer code for the presentation protocol for accessing the Utopian library catalogue.

The process of presentation is triggered when the application on the user’s side
contacts a verifier to request access to a resource. Having received the request, the
verifier responds with one or more presentation policies, which are aggregated in a
PresentationPolicyAlternatives object (see Line 1–2 in Figure 16). Recall that a pre-
sentation policy defines what information a user has to reveal to the verifier in order to
gain access to the requested resource. For example, it describes which credentials from
which trusted issuers are required, which attributes from those credentials have to be
revealed, or which predicates the attributes have to fulfill.

Upon receiving the policy, the application on the user’s side invokes the Privacy-
ABC framework with the received presentation policy alternatives (Line 4). The Privacy-
ABC framework then determines whether the user has the necessary credentials and
pseudonyms (recall that the Privacy-ABC framework stores all of the user’s credentials
and pseudonyms) to create one or more tokens that satisfies the policy. This method

30

returns an object of type UiPresentationArguments which describes all the possi-
ble combinations of the user’s credentials and pseudonyms that satisfy the policy, and
which we described in Section 5.6. The user’s application layer then performs an iden-
tity selection (see Lines 6–7), which allows the user to choose her preferred combi-
nation of credentials and pseudonyms (if there are several ways in which the policy
can be satisfied) and to obtain the user’s consent in revealing her personal data. The
user’s choice is recorded in an object of type UiPresentationReturn. This object is
then passed to the Privacy-ABC framework (see Line 8), which generates and returns
a presentation token according the user’s choice. Afterwards, the presentation token is
sent to the verifier.

After the verifier receives the presentation token from the user, he passes it to the
framework to verify whether the statements made in the presentation token satisfy the
corresponding presentation policy alternatives (Line 11). The token verification is done
in two steps. First, it is determined whether the statements made in the presentation
token description logically satisfy the required statements in the corresponding presen-
tation policy. Second, the validity of the cryptographic evidence for the given token
description is verified. If both checks succeed, the presentation token is stored in a
dedicated token store, which allows the verifier to recognize established pseudonyms.

6.5. Inspection

Inspector (Arbitrator):

1 PresentationToken pt = ...; // The token that was presented by the delinquent book borrower.
2 // Parse the token and check that the event specified in the inspection grounds has occurred.
3 Attribute a = arbitrator.inspect(pt, "libcard", "urn:utopia:lib:name");
4 // Send attribute a to the library.

Revocation authority (Library):

5 // Receive attribute a from the inspector.
6 library.revoke("urn:lib:blacklist", Collections.singletonList(a));
7 // The updated revocation information will be picked up by the users’ and verifiers’ Privacy−ABC framework.

Figure 17: Application layer code for inspection and verifier-driven revocation of the name of a delinquent
book borrower.

As described in Section 4.5, the anonymity that is usually provided by Privacy-
ABCs can be lifted through inspection if the policy allows it. In particular, if a policy
mandates attributes to be inspectable, the user prepares his presentation tokens in a
special way: the inspectable attributes are not revealed to the verifier, but are verifiably
encrypted in the token under the public key of a trusted inspector and inseparabely tied
to some inspection grounds.

In case the event specified in the inspection grounds occurs, the inspection requestor
(e.g., the verifier) contacts the inspector to request the de-anonymization of a presen-
tation or issuance token. To do that, it sends the token with the (non-cryptographic)
evidence that the inspection grounds are fulfilled to the inspector. If the latter deter-
mines by means of the evidence that these grounds are indeed fulfilled, he decrypts the
relevant attribute with the the Privacy-ABC framework (see Line 3 in Figure 17).

31

6.6. Revocation

As discussed in Section 4.6, credentials may need to be revoked either globally
(issuer-driven revocation) or for a specific context (verifier-driven revocation).

To revoke a credential globally, the revocation authority passes the credential’s
revocation handle to the Privacy-ABC framework. For verifier-driven revocation, a
conjunction of attribute values can be revoked (that is, all credentials that contain the
combination of attribute values specified in the list are revoked) by passing them to
the framework (see Line 6 in Figure 17). The revocation authority typically knows the
attribute values to revoke because they were either revealed in a former presentation
token, or were decrypted by an inspector.

Verifiers must obtain the latest revocation information from the revocation authority
in order to correctly detect revoked credentials. This update process must be handled
transparently by a verifier’s Privacy-ABC framework.

Issuers have to contact their revocation authority during issuance in order to obtain
a fresh revocation handle. This is also handled internally by the framework.

Similarly, users have to keep the non-revocation evidence of their credentials up-to-
date. The Privacy-ABC framework of a user should allow her to configure whether to
contact the revocation authority only shortly prior to presenting a credential, or whether
to perform proactive updates at regular intervals. The latter approach has the advantage
that presentation is faster and that the revocation authority is not involved each single
time a user wants to present her credential(s). Depending on the revocation technology,
these updates may even fully preserve the anonymity of the user.

7. Security Discussion

For our framework to be useful, the various parties need to be given security guar-
antees: a verifier wants to be sure that if a presentation token verifies then all the
statements made in it are indeed supported by the issuer and have not been revoked.
Furthermore, the verifier wants to be sure that inspection will succeed when needed.
The issuer wants to have similar guarantees with respect to issuance tokens. The user
wants assurance that her privacy is maintained, i.e., that no more information is leaked
than what she willingly released in a presentation token.

Formally proving that such guarantees are fulfilled, provided the underlying cryp-
tography is sound, is far beyond the scope of this paper and is the topic of future work.
Likewise, we do not go into detail here on the complex trust relations between the
different participants in a Privacy-ABC system, or on which particular privacy or se-
curity threats can arise when some of these participants collude. Since presentation
policies can always ask to reveal much more information than strictly necessary, one
could also consider adding yet another authority to the system to approve “reasonable”
policies. Finally, in order to deploy a Privacy-ABC system, one also needs a public-key
infrastructure (PKI) to certify issuer parameters, revocation authority parameters, and
inspectors’ public keys.

For the individual cryptographic building blocks, security proofs are given in the
cryptographic literature, and Camenisch and Lysyanskaya give a proof for their cre-
dential system [24]. Thus, the first step in proving security of our language framework

32

is to provide precise security notions that capture the high-level security properties
stated above and to prove that the composition of the cryptographic building blocks
as imposed by our languages achieves those. Next, one would have to show that the
mapping of our languages to the concrete cryptographic realizations is sound. Only
then one could attempt to formally prove that the security guarantees as stated above
are fulfilled.

8. Conclusion
We presented a language framework enabling a unified deployment of Privacy-

ABC technologies, in particular, of U-Prove and Identity Mixer. Our framework im-
proves upon the state of the art [57, 30] by covering the entire life-cycle of Privacy-
ABCs, including issuance, presentation, inspection, and revocation, and by supporting
advanced features such as pseudonyms and key binding. The framework offers a set of
abstract concepts that make it possible for application developers to set up a Privacy-
ABC infrastructure and to author policies without having to deal with the intricacies of
the underlying cryptography.

In an upcoming companion paper, we demonstrate the soundness of our languages
by providing a formal semantics that specifies the effects of issuing, presenting, ver-
ifying, inspecting, and revoking credentials on the user’s credential portfolio and on
the knowledge states of the involved parties. A complete description of our framework
including the language description as well as the formal semantics is available as a
technical report [15].

The proposed language framework has been implemented as part of the ABC4Trust
project, where it will be rolled out in two pilot projects. Preliminary tests indicate that
our language framework adds a noticeable but reasonable overhead to the cryptographic
routines, comparable to the overhead incurred by, for example, XML Signature [55]
with respect to the underlying signing algorithm.

Our language framework supports a number of different authentication mechanisms
including the mentioned privacy-preserving ones but also standard mechanisms such
as X.509. However, most of them will not support the full set of features but we are
currently working on a protocol framework that allows the combination of different
cryptographic mechanisms to address this.

Acknowledgements
The authors thank Bart De Decker, Lan Nguyen, and the anonymous referees of

the conference and journal papers for their valuable comments. The research lead-
ing to these results was supported by the European Commission under Grant Agree-
ment 257782 ABC4Trust.

References
[1] Attribute-based Credentials for Trust (ABC4Trust) EU project. https://

abc4trust.eu/

[2] C. A. Ardagna, J. Camenisch, M. Kohlweiss, R. Leenes, G. Neven, B. Priem,
P. Samarati, D. Sommer, and M. Verdicchio. Exploiting cryptography for privacy-
enhanced access control. J. of Comput. Secur., 18(1), 2010.

33

[3] C. A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and P. Samarati. A
privacy-aware access control system. J. Comput. Secur., 16(4), 2008.

[4] A. W. Appel and E. W. Felten. Proof-carrying authentication. ACM CCS 1999.

[5] M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA. In SCN 2006,
vol. 4116 of LNCS.

[6] K. D. Bowers, L. Bauer, D. Garg, F. Pfenning, and M. K. Reiter. Consumable
credentials in linear-logic-based access-control systems. NDSS 2007.

[7] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and
H. Shacham. Randomizable proofs and delegatable anonymous credentials. In
CRYPTO 2009, vol. 5677 of LNCS.

[8] P. Bichsel, J. Camenisch, and F.-S. Preiss. A comprehensive framework enabling
data-minimizing authentication. In ACM DIM 2011.

[9] P. Bonatti and P. Samarati. A unified framework for regulating access and infor-
mation release on the web. J. Comput. Secur., 10(3), 2002.

[10] F. Boudot. Efficient proofs that a committed number lies in an interval. In EU-
ROCRYPT 2000, vol. 1807 of LNCS.

[11] S. Brands, L. Demuynck, and B. De Decker. A practical system for globally
revoking the unlinkable pseudonyms of unknown users. In ACISP 07, vol. 4586
of LNCS.

[12] S. Brands. Rethinking Public Key Infrastructures and Digital Certificates; Build-
ing in Privacy. MIT Press, 2000.

[13] D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT ’91, vol. 547 of
LNCS.

[14] J. Camenisch, R. Chaabouni, and A. Shelat. Efficient protocols for set member-
ship and range proofs. In ASIACRYPT 2008, vol. 5350 of LNCS.

[15] J. Camenisch, M. Dubovitskaya, A. Lehmann, G. Neven, C. Paquin, and F.-
S. Preiss. A language framework for privacy-preserving attribute-based authenti-
cation. Technical Report RZ3818, IBM, 2012.

[16] J. Camenisch, I. Krontiris, A. Lehmann, G. Neven, C. Paquin, K. Rannenberg, and
H. Zwingelberg. H2.1 – ABC4Trust Architecture for Developers. ABC4Trust
heartbeat H2.1, 2011.

[17] P. Bichsel, J. Camenisch, M. Dubovitskaya, R. R. Enderlein, I. Krontiris,
A. Lehmann, G. Neven, J. Nielsen, C. Paquin, F.-S. Preiss, K. Rannenberg,
M. Stausholm, and H. Zwingelberg. H2.2 – ABC4Trust Architecture for De-
velopers. ABC4Trust heartbeat H2.2, 2013.

34

[18] E.F. Brickell, J. Camenisch, L. Chen. Direct anonymous attestation. In ACM CCS
2004, ACM press.

[19] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Comm. of the ACM, 24(2):84–88, 1981.

[20] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Balancing accountability
and privacy using e-cash. In SCN 06, vol. 4116 of LNCS.

[21] J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based on bilinear
maps and efficient revocation for anonymous credentials. In PKC 2009, vol. 5443
of LNCS.

[22] J. Camenisch, M. Kohlweiss, and C. Soriente. Solving revocation with efficient
update of anonymous credentials. In SCN 10, vol. 6280 of LNCS.

[23] J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized Schnorr
proofs. In Antoine Joux, editor, EUROCRYPT 2009, vol. 5479 of LNCS.

[24] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In EURO-
CRYPT 2001, vol. 2045 of LNCS.

[25] J. Camenisch and A. Lysyanskaya. An identity escrow scheme with appointed
verifiers. In CRYPTO 2001, vol. 2139 of LNCS.

[26] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In CRYPTO 2002, vol. 2442 of
LNCS.

[27] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols.
In SCN 02, vol. 2576 of LNCS.

[28] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In CRYPTO 2004, vol. 3152 of LNCS.

[29] J. Camenisch, G. Neven, and M. Rückert. Fully anonymous attribute tokens from
lattices. In SCN 2012, vol. 7485 of LNCS, Springer Verlag.

[30] J. Camenisch, S. Mödersheim, G. Neven, F.-S. Preiss, and D. Sommer. A
card requirements language enabling privacy-preserving access control. In SAC-
MAT 2010.

[31] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In CRYPTO 2003, vol. 2729 of LNCS.

[32] D. Crockford. The application/json media type for JavaScript Object Notation
(JSON). Internet Engineering Taskforce (IETF) RFC 4627, 2006.

[33] I. Damgård and E. Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. In ASIACRYPT 2002, vol. 2501 of LNCS.

35

[34] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and
keys. In PKC 2005, vol. 3386 of LNCS.

[35] J. R. Douceur. The Sybil attack. In IPTPS 2002, vol. 2429 of LNCS.

[36] D. Ferraiolo and R. Kuhn. Role-based access control. NIST-NCSC 1992.

[37] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO’86, vol. 263 of LNCS.

[38] D. Garg, L. Bauer, K. D. Bowers, F. Pfenning, and M. K. Reiter. A linear logic of
authorization and knowledge. ESORICS 2006.

[39] IBM Research Zurich Security Team. Specification of the identity mixer crypto-
graphic library. Technical Report RZ3730, IBM, 2010.

[40] Identity Mixer. http://idemix.wordpress.com/.

[41] International Telecommunication Union. Abstract syntax notation one (ASN.1).
ITU-T recommendation X.680, 2008.

[42] J. Killian and E. Petrank. Identity Escrow. In CRYPTO 1998, vol. 1462 of LNCS,
Springer Verlag.

[43] M. Kirkpatrick, G. Ghinita, and E. Bertino. Privacy-preserving enforcement of
spatially aware RBAC. In IEEE Trans. on Dependable and Secure Computing,
99(PrePrints), 2011.

[44] J. Lapon, M. Kohlweiss, B. De Decker, and V. Naessens. Analysis of Revocation
Strategies for Anonymous Idemix Credentials. IFIP CMS 2011.

[45] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A logic-based ap-
proach to distributed authorization. ACM TISSEC, 6(1), 2003.

[46] J. Li, N. Li, and W. Winsborough. Automated trust negotiation using crypto-
graphic credentials. ACM CCS 2005.

[47] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In
SAC 1999, vol. 1758 of LNCS.

[48] T. Nakanishi, H. Fujii, Y. Hira, and N. Funabiki. Revocable group signature
schemes with constant costs for signing and verifying. In PKC 2009, vol. 5443
of LNCS.

[49] L. Nguyen. Accumulators from bilinear pairings and applications. In CT-
RSA 2005, vol. 3376 of LNCS.

[50] F. Paci, N. Shang, K. Steuer Jr., R. Fernando, E. Bertino. VeryIDX - A privacy
preserving digital identity management system for mobile devices. Mobile Data
Management 2009.

36

[51] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In CRYPTO’91, vol. 576 of LNCS.

[52] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptol-
ogy, 4(3):161–174, 1991.

[53] A. Squicciarini, A. Bhargav-Spantzel, E. Bertino, and A. Czeksis. Auth-SL –
A system for the specification and enforcement of quality-based authentication
policies. In ICICS 2007.

[54] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Comput., 29(2), 1996.

[55] S. Shirasuna, A. Slominski, L. Fang, and D. Gannon. Performance comparison
of security mechanisms for grid services. GRID 2004.

[56] N. Smart. ECRYPT II yearly report on algorithms and keysizes, revision 1.0.
http://www.ecrypt.eu.org/documents/D.SPA.20.pdf, 2012.

[57] Microsoft U-Prove. http://www.microsoft.com/uprove.

[58] E. R. Verheul. Self-Blindable Credential Certificates from the Weil Pairing. ASI-
ACRYPT 2001.

[59] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework for attribute
based access control. ACM FMSE 2004.

[60] W. Winsborough, K. Seamons, and V. Jones. Automated trust negotiation. DIS-
CEX 2000.

[61] OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0,
2005.

37

