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Abstract. In universal composability frameworks, adversaries (or environments) and protocols/ideal
functionalities often have to exchange meta-information on the network interface, such as algorithms,
keys, signatures, ciphertexts, signaling information, corruption-related messages. For these purely
modeling-related messages, which do not reflect actual network communication, it would often be very
reasonable and natural to expect that adversaries/environments provide the requested information
immediately or give control back to the protocol/functionality immediately after having received some
information. However, in none of the existing models for universal composability this is guaranteed. We
call this the non-responsiveness problem. As discussed in the paper, while formally non-responsiveness
does not invalidate any of the universal composability models, it has many disadvantages, such as
unnecessarily complex specifications and less expressivity. Also, this problem has often been ignored in
the literature, leading to ill-defined and flawed specifications. Protocol designers really should not have
to care about this problem at all, but currently they have to: giving the adversary/environment the
option to not respond immediately to modeling-related requests does not translate to any real attack
scenario.
This paper solves the non-responsiveness problem and its negative consequences completely, by avoiding
this artificial modeling problem altogether. We propose the new concepts of responsive environments
and adversaries. Such environments and adversaries must provide a valid response to modeling-related
requests before any other protocol/functionality is activated. Hence, protocol designers do not have
to worry any longer about artifacts resulting from such requests not being answered promptly. Our
concepts apply to all existing models for universal composability, as exemplified for the UC, GNUC, and
IITM models, with full definitions and proofs (simulation relations, transitivity, equivalence of various
simulation notions, composition theorems) provided for the IITM model.
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1 Introduction

One of the most demanding tasks when designing a cryptographic protocol is to define its intended
security guarantees, and to then prove that it indeed satisfies them. In the best case, these proofs
should guarantee the security of the protocol in arbitrary contexts, i.e., also when composed with
other, potentially insecure, protocols. This would allow one to split complex protocols into smaller
components, which can then be separately analyzed one by one and once and for all, thus allowing
for a modular security analysis. Over the last two decades, many models to achieve this goal have
been proposed [Can01,PW00,Küs06,HS11,KT13,Mau11,MR11,CDPW07,BPW07,CCK+06], with
Canetti’s UC model being one of the first and most prominent ones.

All these models have in common that the designer first needs to specify an ideal functionality
F defining the intended security and functional properties of the protocol. Informally, a real protocol
realizes F if no efficient distinguisher (the environment) can decide whether it is interacting with
the ideal functionality and a simulator, or with the real world protocol and an adversary.

Urgent requests/messages. In the specifications of such real protocols and ideal functionalities,
it is often required for the adversary (and the environment) to provide to the protocol or the
functionality some meta-information via the network interface, such as cryptographic algorithms,
cryptographic values of signatures, ciphertexts, and keys, or corruption-related messages, and
conversely, protocols/functionalities often have to provide the adversary with meta-information, for
example, signaling information (e.g., the existence of machines) or again corruption-related messages.
Such meta-information does not correspond to any real network messages, but is merely used for
modeling purposes. Typically, giving the adversary/environment the option to not respond immedi-
ately to such modeling-specific messages does not translate to any real attack scenario. Hence, often
it is natural for protocol designers to expect that the adversary/environment (answers and) returns
control back to the protocol/functionality immediately when the adversary is requested to provide
meta-information or when the adversary receives meta-information from the protocol/functionality.
In the following, we call such messages from protocols/ideal functionalities on the network interface
urgent messages or urgent requests.

Urgent requests occur in many functionalities and protocols from the literature, see, e.g., [ZZQF14,
LN08, KF08, CSV14, Can01, CDHK15, AO09, DMO+11, MM05, CHK05, BH04, CKN03, DHKT08].
This is not surprising since the exchange of meta-information between the adversary/environment
and the protocols/functionalities is an important mechanism for protocol designs in any UC-like
model. For example, one can in a natural manner specify the behaviour of cryptographic values or
algorithms by an ideal functionality without having to worry about how these values are generated
or the parameters for the algorithms are setup, e.g., using a CRS etc. Also, protocols should be
able to provide the adversary with meta-information in situations where it is not intended to give
control to the adversary, such as certain information leaks (e.g, honest-but-curious corruption) or
signaling messages. In general, it seems impossible to dispense with urgent requests altogether, and
certainly, such requests are very convenient and widely used in the literature (see also §3).

The non-responsiveness problem. In the existing universal composability models it currently is
not guaranteed that urgent requests are answered immediately by the adversary: when receiving an
urgent request on the network interface, adversaries and environments can freely activate protocols
and ideal functionalities in between, on network and I/O interfaces, without answering the request.
In what follows, we refer to this problem as the problem of non-responsive adversaries/environments
or the non-responsiveness problem.
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This problem formally does not invalidate any of the UC-style models. It, however, often makes
the specification of protocols and functionalities much harder and the models less expressive (see
below). Most disturbingly, as mentioned, the non-responsiveness problem is really an artificial
problem: urgent requests do not correspond to any real messages and the adversary not responding
promptly to such requests does not reflect any real attack scenario. Hence, non-responsiveness forces
protocol designers to take care of artificial adversarial behavior that was unintended in the first
place and is merely a modeling artifact.

In particular, protocol designers currently have to deal with various delicate problems: i) While
waiting for a response to an urgent request, a protocol/ideal functionality might receive other
requests, and hence, protocol designers have to take care of interleaving and dangling requests. ii)
While a protocol/ideal functionality is waiting for an answer from the adversary to an urgent request
other parties and parts of the protocol/ideal functionality can be activated in the meantime (via
the network or the I/O interface), which might change their state, even their corruption status, and
which in turn might lead to race conditions (see §3 for examples from the literature).

This, as further discussed in the paper, makes it difficult to deal with the non-responsiveness
problem and results in unnecessarily complex and artificial specifications of protocols and ideal
functionalities, which, in addition, are then hard to re-use. In some cases, one might not even be
able to express certain desired properties. As explained in §3, there is no generic and generally
applicable way to deal with the non-responsiveness problem, and hence, one has to resort to solutions
specifically tailored to the protocols at hand.

Importantly, the non-responsiveness problem propagates to higher-level protocols as they might
not get responses from their subprotocols as expected. The security proofs become more complex
too because one, again, has to deal with runs with various dangling and interleaving requests as
well as unexpected and unintuitive state changes, which do not translate to anything in the real
world, but are just an artifact of the modeling.

Clearly, in the context of actual network messages one has to deal with many of the above
problems in the specifications of protocols and ideal functionalities too, but, in contrast to the
non-responsiveness problem, dealing with the asynchronous nature of networks has a real counterpart
and these two types of interactions with the adversary should not be confused.

Looking at the literature, urgent requests and the non-responsiveness problem occur in many
protocols and functionalities. Nevertheless, protocol designers frequently ignore this problem (see,
e.g., [AO09,BH04,CSV14,KF08,LN08,MM05,HV15,ZZQF14,CL06,CDHK15,TP14]), i.e., they
seem to implicitly assume that urgent request are answered immediately, probably, at least as far
as ideal functionalities are concerned, because their simulators promptly respond to these kinds of
requests. As a result, protocols and ideal functionalities are underspecified and/or expose unexpected
behavior, and thus, are not usable in other (hybrid) protocols or security proofs of hybrid protocols
are flawed (see §3).

Our contribution. In this paper, we propose a universal composability framework with the new
concept of responsive environments and adversaries, which should be applicable to all existing
UC-style models (see below). This framework completely avoids and, by this, solves the non-
responsiveness problem as it guarantees that urgent requests are answered immediately. This
really is the most obvious and most natural solution to the problem: there is no reason that
protocol designers should have to take care of the non-responsiveness problem and its many negative
consequences.
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More specifically, the main idea behind our framework is as follows. When a protocol/ideal
functionality sends what we call a restricting message to the adversary/environment on the network
interface, then the adversary/environment is forced to be responsive, i.e., reply with a valid response
before sending any other message to the protocol. This requires careful definitions and non-trivial
proofs in order to make sure that all properties and features that are expected in models for universal
composition are lifted to the setting with responsive environments and adversaries.

By using our framework and concepts, protocols and ideal functionalities can be modeled in a very
natural way: protocol designers can simply declare urgent requests to be restricting messages, which
hence, have to be answered immediately. This elegantly and completely solves the non-responsiveness
problem. In particular, protocol designers do not have to worry about this problem any longer
and specifications of protocols and ideal functionalities are greatly simplified, as one can dispense
with artificial solutions. In fact, as illustrated in §6, with our concepts we can easily fix existing
specifications from the literature where the non-responsiveness problem has not properly been dealt
with or has simply been ignored as protocol designers often implicitly assumed responsiveness for
urgent messages. In some cases, we can now even express certain functionalities in a natural and
elegant way which could not be expressed before (see §3.2.2 and §6). Of course, with simplified
and more natural functionalities and protocols, security proofs become easier as well because the
protocol designer does not have to consider irrelevant and unrealistic adversarial behavior and
execution orders.

We emphasize that protocol designers must exercise discretion when employing restricting
messages: such messages should be employed for meta-information used for modeling purposes only,
not for real network traffic, where immediate answers cannot be guaranteed in reality.

We illustrate that our framework and concepts apply to existing models for universal com-
posability. This is exemplified for three prominent models: UC [Can01], GNUC [HS11], and
IITM [Küs06, KT13]. In the appendix, we provide full proofs for the IITM model. In particu-
lar, we define all common notions of simulatability, including UC, dummy UC, strong simulatability,
and blackbox simulatability with respect to responsive environments and adversaries, and show that
all of these notions are equivalent. This result can be seen as a sanity check of our concepts, as it
has been a challenge in previous models (see, e.g., discussions in [KT13,HUMQ13]). We also prove
in detail that all composition theorems from the original IITM model carry over to the IITM model
with our concepts.

Related work. The concept of responsive adversary and environments is new and has not been
considered before.

In [BDHK08], composition for restricted classes of environments is studied, motivated by impos-
sibility results in UC frameworks and to weaken requirements on realizations of ideal functionalities.
In this setting, environments are restricted in that they may send only certain sequences of messages
to the I/O interfaces of protocols and functionalities. These restrictions cannot express that urgent
requests are answered immediately and also these restrictions do not restrict adversaries in any way.
Hence, this approach cannot be used to solve the non-responsiveness problem, which anyway was
not the intention of the work in [BDHK08].

In the first version of his seminal work [Can01], Canetti introduced immediate functionalities.
According to the definition (cf. page 35 of the 2001 version), an immediate functionality uses an
immediate adversary to guarantee that messages are delivered immediately between the functionality
and its dummy. To be more precise, an immediate functionality may force an immediate adversary to
deliver a message to a specific dummy party within a single activation. This construct was necessary
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since in the initial version of Canetti’s model, the ideal functionality could not directly pass an
output to its dummy but had to rely on the adversary instead. In current versions of UC, the
problem addressed by immediate adversaries has vanished completely because ideal functionalities
can directly communicate with their dummies. Clearly, immediate adversaries do not address, let
alone solve, the non/responsiveness problem, which is about immediate answers for certain request
to the adversary on the network interface, rather than between a functionality and its dummies.

Outline. In §2, we briefly recall basic terminology and notation. We observe in §3 that the non-
responsiveness problem affects many protocols from the literature, with many papers ignoring the
problem altogether, resulting in underspecified and ill-specified protocols and functionalities, which,
thus, are hard to re-use. Furthermore, that section shows that properly taking this problem into
consideration is quite difficult and does not have a simple and generally applicable solution. Our
universal composability framework with responsive environment and adversary is then presented
in §4. This section is kept quite model independent in order to highlight the main new concepts
and the fact that these concepts are not restricted to specific models. §5 then illustrates how our
concepts can be implemented in the UC, GNUC, and IITM models. §6 shows how the problems
with non-responsive environment and adversaries discussed in §3 can be avoided elegantly with our
restricting messages and responsive environments/adversaries. We conclude in §7. Further details can
be found in the appendix. In particular, as mentioned before, for the IITM model with responsive
environments and adversaries we provide full details in the appendix.

2 Preliminaries

In this section, we briefly recap the basic concepts of universal composability and fix some notation
and terminology. The description is independent of the model being used and can easily be mapped
to any concrete model, such as UC, GNUC, or IITM. We, for now, ignore runtime issues as they are
handled differently in the models and only implicitly assume that all systems run in polynomial
time in the security parameter and the length of the external input (if any). Runtime issues are
discussed in detail in §5.

Universal composability models use machines to model programs. Each machine may have I/O
and network tapes/interfaces. These machines are then used as blueprints to create instances which
execute the machine code while having their own local state. Machines can be combined to a system
S. In a run of S, multiple instances of machines may be generated and different instances can
communicate by sending messages via I/O or network interfaces. Given two systems R and Q, we
define the system {R,Q} which contains all machines from R and Q.

There are three different kinds of entities, which can themselves be considered as systems, and
which can be combined to one system: protocols, adversaries, and environments. One distinguishes
real and ideal protocols, where ideal protocols are often called ideal functionalities. An ideal protocol
can be thought of as the specification of a task, while a real protocol models an actual protocol
that is supposed to realize the ideal protocol (cf. Definition 2.1). These protocols have an I/O
interface to communicate with the environment and a network interface to communicate with the
adversary. An adversary controls the network communication of protocols and can also interact with
the environment. Environments connect to the I/O interface of protocols and may communicate
with the adversary, cf. Figure 1 for an illustration of how environments, adversaries, and protocols
are connected.
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Environments try to distinguish whether they run with a real protocol and an adversary or an
ideal protocol and an adversary (then often called a simulator or ideal adversary). An environment
may get some external input to start a run. It is expected to end the run by outputting a single bit.

Given an environment E , an adversary A, and a protocol P, we denote both the combined
system and the output distribution of the environment by {E ,A,P}. We use the binary operator ≡
to denote two output distributions that are negligibly close in the security parameter η (and the
external input, if any).

Now, in models for universal composability the realization of an ideal protocol by a real protocol
is defined as follows.

Definition 2.1 (Realization Relation). Let P and F be protocols, the real and ideal protocol,
respectively. Then, P realizes F (P ≤ F) if for every adversary A, there exists an ideal adversary S
such that {E ,A,P} ≡ {E ,S,F} for every environment E.

We note that, in the definition above and in all reasonable models, instead of quantifying over
all adversaries, it suffices to consider the dummy adversary AD only which forwards all network
messages between P and E . Intuitively, this is true because A can be subsumed by E . Hence, we
have that P ≤ F iff there exists an ideal adversary S such that {E ,AD,P} ≡ {E ,S,F} for every
environment E .

The main result in any universal composability model is a composition theorem. Informally, once
a protocol P has been proven to realize an ideal protocol F , one can securely replace (all instances
of) F by P in arbitrary higher-level systems without affecting the security of the higher-level system.

3 The Non-Responsiveness Problem and its Consequences: Examples from the
Literature

We have already introduced and discussed the non-responsiveness problem and sketched its conse-
quences in §1. In this section, we illustrate this problem and its consequence by examples from the
literature. We also point to concrete cases where this problem has been ignored (i.e., immediate
answers to urgent requests were assumed implicitly) and where this let to ill-defined protocols and
functionalities as well as invalid proofs and statements.

≈

E

AD FP

E

S∃S : ∀E :

Fig. 1: A real protocol P realizing an ideal functionality F ; AD denotes the dummy adversary who
just forwards messages to and from the environment E .

3.1 Underspecified and Ill-Defined Protocols and Functionalities
In many papers, the non-responsiveness problem is ignored, both in the specifications of ideal
functionalities and (higher-level) protocols (see, e.g., [AO09,BH04,CSV14,KF08,LN08,MM05,HV15,
ZZQF14,CL06,CDHK15,TP14]). We discuss a number of typical cases in the following.
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≈

E

AD
F

P ′

E

S′ F ′
∃S′ : ∀E :

Fig. 2: An F-hybrid protocol P ′ realizing some ideal functionality F ′.

≈

E

AD

F

Pjs

E

Sjs
F∃Sjs : ∀E :

Fig. 3: Joint state realization.

Ideal functionalities. An example of a statement that one often finds in specifications of ideal
functionalities is one like the following (see, e.g., [AO09,BH04,CSV14,KF08,LN08,MM05,HV15]):

“send <some message> to the adversary;
upon receiving <some answer> from the adversary do <something>”, (1)

where the message sent to the adversary, in our terminology, is an urgent request, i.e., as explained
in §1, some meta-information provided to the adversary or a request for some meta-information the
adversary is supposed to provide. For example, ideal functionalities might ask for cryptographic
material (cryptographic algorithms and keys, ciphertexts, or signatures), ask whether the adversary
wants to corrupt a party, or simply signal their existence.

In specifications containing formulations as in (1) it is not specified what happens if the adversary
does not respond immediately, but, for example, other requests on the I/O interface are received;
intermediate state changes in other parts might occur as well, which might require different actions.
There does not seem to exist a generic solution to handle such problems (see §3.2.1 and §3.2.3). It
rather seems to be necessary to find solutions tailored to the specific protocol and ideal functionality
at hand, making it even more important to precisely specify the behavior in case the adversary does
not respond immediately to urgent requests.

Many research papers on universal composability focus on proposing new functionalities and
realizations thereof, including proofs that a realization actually realizes a functionality; to a lesser
extent the functionalities are then used in higher-level protocols. In realization proofs, one might
not notice that formulations as the one in (1) are problematic because for such proofs an ideal
functionality F runs alongside a (friendly) simulator and this simulator might provide answers
to urgent requests immediately (see also Figure 1). However, if used in a hybrid protocol (see
Figure 2), an ideal functionality F runs alongside a (hostile) adversary/environment. In this case, it
is important that specifications capture the case that urgent requests are not answered immediately.
If this is ignored or not handled correctly, this yields i) underspecified protocols, with the problem
that they cannot be re-used in hybrid protocols, which in turn defeats the purpose of universal
composability frameworks, and ii) possibly false statements.
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Upon receiving a value (Setup, sid) from any party P , verify that sid = (ML, sid ′) for some sid ′. If not, then
ignore the request. Else, if this is the first time that (Setup, sid) was received, hand (Setup, sid) to the adversary;
upon receiving (Algorithms, sid,Verify, Sign, Simsign,Extract) from the adversary, where Sign, Simsign, Extract
are descriptions of PPT TMs, and Verify is a description of a deterministic polytime TM, store these algorithms.
Output the stored (Algorithms, sid, Sign,Verify) to P .

Fig. 4: The Setup instruction of Fsok(L) from [CL06].

To illustrate these points by a concrete example, we consider the “signature of knowledge”
functionality Fsok(L) proposed by Chase and Lysyanskaya [CL06]. This functionality contains a
Setup instruction (reproduced in Figure 4), where the adversary provides the keys and algorithms,
and signing and verification instructions that then use those keys and algorithms without requiring
interaction with the adversary; a very common mechanism in the literature (see, e.g., [CDHK15,
AO09,DMO+11,CKN03,DHKT08,TP14]). This functionality is explicitly intended to be used in a
hybrid setting to realize delegatable credentials.

If the adversary does not respond to the first (Setup, sid) request, all subsequent requests (e.g.,
a Setup request by a different party) will cause the functionality to use or output the undefined
Sign and Verify algorithms, which is a problem: Chase and Lysyanskaya provide a protocol in the
Fsok(L)-hybrid model that can be used for realizing delegated credentials, i.e., an ideal functionality
for signatures on a signature. They then prove that this protocol realizes the functionality. They,
however, missed the fact that Fsok(L) may interact with a non-responsive adversary in the hybrid
world. Such an adversary can force Fsok(L) to use undefined algorithms, and their simulator does
not handle that situation in the ideal world. It is thus easy to distinguish the real from the ideal
world. Hence, their proof is flawed, and it in fact seems that the statement cannot be proven.

(Higher-level) protocols. As already mentioned in the introduction, real protocols often also send
urgent requests to the adversary (e.g., signaling their existence or asking whether the adversary
wants to corrupt). In addition, one often finds protocol specifications containing formulations of the
following form in order to make requests to subprotocols (see, e.g., [ZZQF14,CL06,CDHK15,TP14]):

“send <some message> to F ;
upon receiving <some answer> from F do <something>.” (2)

Intuitively, F might indeed model some non-interactive functionality, such as signature functionalities.
However, due to the use of urgent requests such functionalities, even when completely uncorrupted,
F might not return answers right away. So, again, formulations as the one in (2) are greatly
underspecified. What happens if other requests are received at the network or I/O interface? Should
they be ignored? Or may be queued somehow? Also, the state and status (such as corruption) of
other parts of the protocol or subprotocols might change while waiting for answers from F . Again,
as illustrated in the following subsections, dealing with this is not easy and often requires solutions
tailored to the specific protocol and functionality at hand, making it particularly important to fully
specify the behavior.

3.2 Problems Resulting from Non-Responsiveness
We now discuss challenges resulting from the non-responsiveness problem (when actually taken into
account, rather than ignored) and illustrate them by examples from the literature.
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3.2.1 Unintended State Changes and Race Conditions
As mentioned before, a general problem one has to take care of when dealing with the non-
responsiveness problem is that while waiting for answers to urgent requests, the adversary might
cause changes in the state of other parts of the protocol/functionality and of subprotocols, which in
turn influences the behavior of the protocol. Keeping track of the actual current overall state might
be tricky and race conditions are possible.

The following is a simple example which illustrates that the problem can occur already locally
within a single functionality. It can often become even trickier in higher-level protocols which use
urgent requests themselves and where possibly several subroutines use urgent requests.

Upon receiving a value (Verify, sid,m, σ) from some party S′, hand (Verify, sid,m, σ) to the adversary. Upon
receiving (Verified, sid,m, φ) from the adversary, do:

1. If (m,σ, 1) is recorded then set f = 1.
2. Else, if the signer is not corrupted, and no entry (m,σ′, 1) for any σ′ is recorded, then set f = 0 and record the

entry (m,σ, 0).
3. Else, if there is an entry (m,σ, f ′) recorded, then set f = f ′.
4. Else, set f = φ, and record the entry (m,σ, φ).

Output (Verified, sid,m, f) to S′.

Fig. 5: The Verify instruction of FD-Cert from [ZZQF14].

We consider the dual-authentication certification functionality FD-Cert [ZZQF14]. In this func-
tionality, the adversary needs to be contacted when verifying a signature (a common mechanism to
verify cryptographic values that is also used in many other functionalities [Can04,CSV14,KF08] ).
Such requests are urgent as this is supposed to model local computations. However, the adversary
may not answer immediately.

More specifically, Figure 5 shows the Verify instruction of FD-Cert. Assume now that S′ has
received a message m and a signature σ for this message which supposedly was created by an honest
party P with SID sid. Now, if the signature actually was not created by P , the verification should
fail since P is not corrupted. However, as the adversary gets activated during this allegedly local
task, it could corrupt the signer during the verification process, return φ = 1, and therefore let the
functionality accept σ. This behavior is certainly unexpected and counterintuitive.

Such a functionality also considerably complicates the security analysis of any higher-level
application which uses FD-Cert as a subroutine, as one has to also consider the possiblity of a party
getting corrupted during the invocation of a subroutine modeling a local task, which, even worse, in
this case returns unexpected answers.

3.2.2 Problems Expressing the Desired Properties
The following is an example where the authors struggled with the non-responsiveness problem in
that it finally led to a functionality that, as the authors acknowledge, is not completely satisfying.
This functionality, denoted FNIKE, is supposed to model non-interactive key-exchange and was
proposed by Freire et al. [FHH14]. Figure 6 shows a central part of this functionality, namely, the
actual key exchange. A party Pi may ask for the key that is shared between the parties Pi and Pj .
If this session of Pi and Pj is considered corrupted, namely, because one of the parties is corrupted,
and no key has been recorded for this session yet, the adversary is allowed to freely choose the key
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that is shared between both parties. The functionality uses an urgent request to model this, i.e., it
directly sends a message to the adversary if he is allowed to choose a key.

Upon input (init, Pi, Pj) from Pi, if Pj 6∈ Λref, return (Pi, Pj ,⊥) to Pi. If Pj ∈ Λreg, we consider two cases:

– Corrupted session mode: if there exists an entry ({Pi, Pj},Ki,j) in Λkeys, set key = Ki,j . Else, send (init, Pi, Pj) to
the adversary. After receiving ({Pi, Pj},Ki,j) from the adversary, set key = Ki,j and add ({Pi, Pj},Ki,j)
to Λkeys.

– Honest session mode: if there exists an entry ({Pi, Pj},Ki,j) in Λkeys, set key = Ki,j , else choose key ← {0, 1}k
and add ({Pi, Pj},Ki,j) to Λkeys.

Return (Pi, Pj , key) to Pi.

Fig. 6: The init instruction of FNIKE from [FHH14].

As the authors state, they would have liked to also model “immediateness” of the functionality,
i.e., a higher-level protocol that requests a key should be able to expect an answer without the
adversary being able to interfere with the protocol in the meantime. This indeed would be expected
and natural because FNIKE models a non-interactive key exchange. However, this is in conflict with
allowing the adversary to choose the key of a corrupted session. The authors suggest that one option
to also model immediateness might be to let the adversary choose an algorithm upon setup, which
is then used to compute the keys for corrupt parties. They nevertheless chose the non-immediate
modeling because the other solution would lead to “technical complications”; it would also limit the
adaptiveness of the adversary and might add different problems. Indeed, code upload constructs
(see also §3.2.3), in general, do not solve the non-responsiveness problem.

As a consequence of the chosen formulation in FNIKE, the adversary can now, e.g., block requests,
which again needs to be also considered in any higher-level protocol using FNIKE as a subroutine,
even though in the real world the honest party would always obtain some key because of the
non-interactivity of the primitive.

More generally, ideal functionalities which use urgent messages (which in current models are not
answered immediately) might have weaker security guarantees than their realizations, in particular
when the functionality is supposed to model a non-interactive task, because the realization might
not give control to the adversary. So for hybrid protocols one might not be able to prove certain
properties when using an ideal functionality, while the same protocol using the realization of the
ideal functionality instead might enjoy such properties.

This stands in contrast to one of the goals of universal composability models, namely, reducing
the complexity of security analyses by being able to use conceptually simpler ideal functionalities as
subroutines.

3.2.3 The Reentrance Problem

As already mentioned in §1, a protocol designer has to specify the behavior of protocols and ideal
functionalities upon receiving another input (on the I/O interface) while still waiting for a response
to an urgent request on the network. In other words, protocols and ideal functionalities have to be
reentrant. Note that, as already pointed out before, a protocol has to be reentrant not only when it
uses urgent requests itself, but also if a subroutine uses such messages.
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As explained next, dealing with the reentrance problem can be difficult. Approaches to solve
this problem complicate the specifications of protocols and ideal functionalities and none of them is
sufficiently general to be applicable in every case.

We now illustrate this by an example ideal functionality. However, similar issues occur in
specifications for real and hybrid protocols. Let F be any ideal functionality which sends an urgent
request to the adversary upon its first creation, say, to retrieve some modeling-related information.
This is a common situation. For example, ideal functionalities often require some cryptographic
material such as keys and algorithms from the adversary before they can continue their execution
(e.g., functionalities for digital signatures or public-key encryption). We also assume that F is
meant to be realized by a real protocol consisting of two independent parties/roles A and B (e.g.,
signer and verifier). We further assume that both of these parties also send an urgent request to
the adversary upon their first activation and expect an answer before they can continue with their
computation. Again, this is a common situation since, for example, real protocols often ask for their
corruption status or notify the adversary of their creation.5 While the above is only one illustrative
example, it already describes a large and common class of real and ideal protocols often encountered
in the literature.

We now present several approaches to make F reentrant in the above sense, i.e., to deal with
I/O requests while waiting for a response to an urgent request on the network. We show that the
obvious approaches cannot be used in general. In particular, with most of these approaches F cannot
even be realized by A and B in the setting outlined above. This in turn shows that solutions that
are tailored to the specific functionality at hand and even the envisioned realization are required,
which is very unsatisfactory, as this leads to more complex and yet less general functionalities and
protocols.

Ignore requests. After sending an urgent request to the adversary, the most straightforward approach
would be to ignore all incoming messages until a response from the adversary is received.6 This,
however, is not only an unexpected behavior in many cases—for example, why should a request
silently fail if the ideal functionality models a local computation?—but the ideal functionality in
fact might not even be realizable by some real protocols anymore:

If F , in our example functionality, would simply ignore incoming messages, an environment can
distinguish F (with a simulator) from the realization A and B (with the dummy adversary). It first
sends a message to A which, as we assume, then in turn sends an urgent request to the dummy
adversary and hence to the environment. Now the environment, which does not have to respond to
urgent requests immediately, sends a message to B which in turn also sends an urgent request to
the adversary and hence to the environment. Consider the behavior of the ideal world in this case:
After receiving the message for A, F will send an urgent request to the simulator. The simulator,
however, cannot answer this urgent request because he has to simulate A by sending an urgent
request to the environment. (This might be the case because the simulator has to first consult the
environment before answering the urgent request by F or because F does not return control to the
simulator after receiving an answer to the urgent request.) The environment then sends the second
message (for B) to F , which is ignored because F still waits for an answer to its urgent request.

5 The latter is, for example, required by the definition of “subroutine respecting protocols” in the 2013 version of
UC [Can01]. While prompt responses by the adversary are formally not required, they would be very convenient for
all of the reasons discussed in §3.2.

6 Alternatively, one could send error messages as response to intermediate requests. However, the exact same problems
discussed for the approach of ignoring requests occur.
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This behavior is different from the real world, and thus, the environment can distinguish the real
world from the ideal one.

This illustrates that an ideal functionality that simply blocks all requests while waiting for a
response to an urgent request can in general not be realized by two or more independent parties
that also send urgent requests to the adversary. Instead one needs to adjust the blocking approach
to the specific protocols at hand. For example, often it might be possible to block messages that are
processed by a single party in the real protocol, while messages for other parties are still processed.
But this would not work if, for instance, F cannot process messages for any party before receiving
a response to its urgent requests, e.g., because F first needs to receive cryptographic material
(algorithms, keys, etc.). Thus, in this case yet another workaround is required.

Queuing of intermediate requests. Another potential general approach to deal with the reentrance
problem is to store all incoming messages to process them later on. The simplest implementation of
this approach would be the following: Upon receiving another input while still waiting for a response
to an urgent request, the ideal functionality stores the input in a queue and then ends its activation.
After receiving a response from the adversary, the ideal functionality processes the messages stored
in the queue.

This approach is vulnerable to the same attack as the previous approaches: if the environment
executes this attack in the real world, it will eventually receive an urgent request from B. This,
however, cannot be simulated in the ideal world. The simulator does not get control when B is
activated since the ideal functionality simply ends its activation after queuing the input for B.

Another problem with this approach is that in all current universal composability models, a
machine is allowed to send only one message per activation. Hence, the ideal functionality will
never be able to catch up with the inputs that have been stored. Every time it is activated by
another input, it will have to process both the new input and several older inputs that are still
stored in the queue. But it can only answer one of these messages at a time. This observation leads
to another approach based on queuing of unanswered requests which we discuss in Appendix A.
This approach, which does not seem to have been used in the literature so far, is, however, very
complex and weakens the security of the ideal functionality to an extent which for some tasks is
unacceptable: it allows the adversary to determine the order in which requests are processed by an
ideal functionality.

Further approaches. In Appendix B, we discuss several alternative approaches, namely default
answers and code uploads, which, however, can merely help to reduce the use of urgent requests, but
do not solve the reentrance problem, let alone the general non-responsiveness problem.

3.2.4 Unnatural Specifications of Higher-Level Protocols

Higher-level protocols have to deal with the non-responsiveness problem for two reasons. First, they
might use urgent requests themselves. Second, subprotocols might use urgent requests and hence,
if requests are sent to subprotocols (even for those that intuitively should model non-interactive
primitives), the adversary might get control. In both cases, higher-level protocols have to deal with
the problem that while waiting for answers, the state of other parts of them and of any of their
subprotocols might change and new requests (from the network or I/O interface) might have to
be processed. This can lead to unnecessarily complex and often unnatural specifications, if the
non-responsiveness problem is actually taken into account, rather than being ignored (which in turn
would result in underspecified, and hence, unusable protocols).
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We illustrate this by a joint state realization, which represents one form of a higher-level
protocol: Consider a digital signature functionality Fsig. Let us assume that Fsig is specified in
such a way that at the beginning it asks the adversary for signing and verification algorithms and
keys before it answers other requests; as already mentioned before, this is a very common design
pattern. Because the adversary might not answer requests for the cryptographic material right away
(non-responsiveness), Fsig might receive further requests while waiting for the answer. Let us assume
that Fsig ignores/drops all such requests (this seems to be the option mostly used in the literature,
see, e.g., [KT08,BH04]).7

In a joint state realization of Fsig one instance of Fsig (per party) is used to realize all sessions of
Fsig (for one party) in the ideal world (see also Figure 3). The idea behind the joint state realization
is that if in session sid a message m is to be signed/verified, then instead one would sign/verify the
message (sid,m). This way, messages of different sessions cannot interfere. In the realization proof,
a simulator would provide an instance Fsig in session sid with a signing and verification algorithm
which exactly mimics the behavior of Fsig in session sid (i.e., signing/verifying prefixes messages
with sid). Unfortunately, due to the non-responsiveness problem, the joint state realization is more
complex than that, even if, for the purpose of the discussion, we ignore the handling of corruption.
To see this, assume that the environment sends a signing request for some message m in session
sid. The joint state realization would now invoke Fsig with (sid,m). Before Fsig can answer, Fsig
asks the adversary for the cryptographic material. Hence, the adversary/environment gets activated
again and the environment can send a new, say, signing request for message m′ in session sid ′. Since
Fsig is still waiting for the adversary to provide the cryptographic material, this latter request will
be ignored by Fsig and hence will never be answered. To mimic this behavior in the ideal world,
the simulator should not provide the cryptographic material to the instance of Fsig in session sid ′
(otherwise, Fsig in session sid ′ would return a signature for m′). But then, this instance of Fsig is
blocked completely. Hence, in turn the joint state realization also has to block all further requests
for session sid ′. That is, it has to store all SIDs for which it received requests while waiting for Fsig
to respond and all future requests for all such SIDs have to be dropped.

This is very unnatural and certainly would not correspond to anything one would do in actual
implementations: there one would simply prefix messages with SIDs, but one would never block
requests for certain SIDs. This is just an artifact of the non-responsiveness problem, i.e., the fact
that, in current models, urgent requests (in this case the request for cryptographic material by Fsig)
might not be answered immediately.

4 Universal Composability with Responsive Environments

The non-responsiveness problem and the resulting complications shown in §3 are artificial problems.
Since urgent requests only exist for modeling purposes but do not model any real network traffic, a
real adversary would not be able to use them to carry out attacks. Still, in all current universal
composability models the non-responsiveness of adversaries enables attacks that do not correspond
to anything in reality. If we could force the adversary to answer urgent requests immediately, which,
as already mentioned before, would be the natural and expected behavior, there would not be
any need for coming up with workarounds that try to solve the non-responsiveness problem in

7 As explained in §3.2.3, this approach, just as all other approaches discussed in §3.2.3, does not work in general, e.g.,
when the signer and verifier are independent and send urgent requests to the adversary upon first activation. It
really depends on details of Fsig and its realization.
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specifications of protocols and functionalities and one would not have to consider such artificial
attacks in security proofs.

In this section, we present our framework which extends universal composability models by
allowing protocol designers to specify messages that have to be answered immediately by (responsive)
environments and adversaries. We first give a brief overview of our approach, then define in more
detail responsive environments, responsive adversaries, the realization relation in this setting, and
finally prove that the composition theorems still hold for our extension. Since our framework and
concepts can be used by any universal composability model and in order to highlight the new
concepts, we keep this section independent from specific models. In particular, we mostly ignore
runtime considerations. In §5, we then discuss in detail how our framework can be adapted to
specific models.

4.1 Overview
To avoid the non-responsiveness problem altogether, we introduce the concept of responsive environ-
ments and responsive adversaries. In a nutshell, when these environments and adversaries receive
specific messages from the network, we call these messages restricting, then they have to respond
to these messages immediately, i.e., without activating other parts of the protocol before sending
an answer. Furthermore, depending on the restricting message, they may send an answer from a
specific set of messages only. Restricting messages and the possible answers can be specified by the
protocol designer, they are not hardwired into the framework. More specifically, restricting messages
and the possible responses are specified by a binary relation R ⊆ {0, 1}+ × {0, 1}+ over non-empty
messages, called a restriction. If (m,m′) ∈ R, then m is a restricting message and m′ a possible
answer to m. That is, if an environment/adversary receives m on its network interface, then it has
to answer immediately with some m′ such that (m,m′) ∈ R.

This allows a protocol designer to specify all urgent requests as restricting messages by defining
a restriction R appropriately; such requests are then not only answered immediately but also with
an expected answer. Therefore the adversary can no longer interfere with the protocol run in an
unintended way by activating other parts of the protocol or sending other inputs before answering
an urgent request.

Note that this concept is very powerful and needs to be handled with care: While, as motivated
above, it does not weaken security results if one models urgent requests as restricting messages, one
must not use such messages when modeling real network traffic, as real network messages are not
guaranteed to be answered immediately in reality.

4.2 Defining Responsiveness
To define responsive environments and responsive adversaries, we first precisely define the notion of
a restriction. As mentioned before, restrictions are used to define both restricting messages, which
have to be answered immediately by the environment/adversary, and possible answers to each
restricting message.

Definition 4.1. A restriction R is a set of pairs of non-empty messages, i.e., R ⊆ {0, 1}+×{0, 1}+,
such that, given a pair of messages (m,m′), it is efficiently decidable whether R allows m′ as an
answer to m. We define R[0] := {m|∃m′ : (m,m′) ∈ R}. A message m ∈ R[0] is called a restricting
message.

The idea is that if an environment/adversary receives m on the network interface, then there are
two cases: If m is not a restricting message, i.e., m 6∈ R[0], then the environment/adversary is
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not restricted in any way. Otherwise, if m ∈ R[0], then the first message (if any) sent back to the
protocol (both on the network and I/O interface of the protocol) has to be some message m′ with
(m,m′) ∈ R. This message has to be sent on the network interface of the same machine that issued
the request m without sending any other message to another machine of the protocol (see also
Definition 4.2).

By requiring efficient decidability we ensure that environments are able to check whether some
answer is allowed by the restriction; this is necessary, e.g., for Lemma 4.4. We refer to §5 for the
exact definitions of “efficiently decidable”, which depend on the runtime definitions of the underlying
models.

As mentioned in §4.1, only urgent requests should be defined as restricting messages via a
restriction. For example, upon creation of a new instance by receiving a message m, instances of
protocols are often expected to first ask the adversary whether they are corrupted before they
process the message m. An adversary can be forced to answer such a request immediately by the
following restriction:

R := {(m,m′)|m = AmICorrupted?,m′ = (Corruption, b), b ∈ {false, true}}.
We now formalize the responsiveness property of environments and adversaries.

Definition 4.2 (Responsive Environments). An environment E is called responsive for a
system of machines Q with respect to a restriction R if in an overwhelming set of runs of {E ,Q}
every restricting message from Q on the network is answered correctly, i.e., for any restricting
message m ∈ R[0] sent by Q on the network, the first message m′ that Q receives afterwards (be it
on the network interface or the I/O interface of Q), if any, is sent by E on the network interface of
Q to the same machine of Q that sent m and m′ satisfies (m,m′) ∈ R. By EnvR(Q) we denote the
set of responsive environments for Q.

In the above definition, “same machine” typically means the same instance of a machine. So if an
instance of a machine of Q sent a restricting message m on the network interface to the environment,
the first message m′ received by any instance of Q (on the network or I/O interface), including all
currently running instances of Q and an instance that might be created as a result of m′, has to be
sent back on the network interface to the same instance of Q which sent m and m′ has to satisfy
(m,m′) ∈ R. The exact definition of “same machine” depends on the model under consideration
(see §5).

The system Q usually is either {AD,P}, where P is a real protocol and AD is the dummy
adversary, or {S,F}, where S is an ideal adversary and F is an ideal protocol.

Responsive adversaries have to provide the same guarantees as responsive environments, however,
they have to do so only when running in combination with a responsive environment. In other words,
they can use the responsiveness property of the environment to ensure their own responsiveness
property.

Definition 4.3 (Responsive Adversaries). Let Q be a system and let A be an adversary that
controls the network interface of Q. Then, A is called a responsive adversary if, for all E ∈
EnvR({A,Q}), in an overwhelming set of runs of {E ,A,Q} every restricting message from Q on
the network is immediately answered (in the sense of Definition 4.2). We denote the set of all such
adversaries for a protocol Q by AdvR(Q).

We note that the dummy adversary AD is responsive.
Also note that both the definitions of responsive environments and responsive adversaries depend

on a specific system, i.e., an environment which is responsive for a system Q is not necessarily
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responsive for a system Q′. If we required environments to be responsive for every system, we would
also have to require this from simulators (ideal adversaries). This in turn would needlessly complicate
security proofs. Let us elaborate on this. Many theorems and lemmas in UC-like models, such as
transitivity of the realization relation (cf. Lemma 4.7) and the composition theorems (cf. Theorem 4.8
and Theorem 4.9), are proven by simulating (some instances of) adversaries/simulators and protocols
within the environment. In such proofs, we need to make sure that if an environment is responsive,
then it is still responsive if we move a simulator (ideal adversary) into the environment, i.e., run the
simulator within the environment. Now, if we require strong responsiveness (i.e., responsiveness for
all systems), then moving a simulator into a responsive environment might result in an environment
that is not responsive anymore (in the strong sense), unless we require from the simulator that it is
responsive in the strong sense as well. However, imposing such a strong requirement on simulators
seems unreasonable. Simulators are constructed in security proofs to work with exactly one protocol.
So a protocol designer should only have to care about runs with this specific protocol, not with
arbitrary systems that might try to actively violate the responsiveness property of the simulator.
This is why we require responsiveness for specific systems only and this indeed is sufficient.

In fact, for security proofs there are two important properties that should be fulfilled and for
which we now show that they are. The first says that if an environment is responsive for one system,
then it is also responsive for any system indistinguishable from that system. The second property
says that a responsive environment can internally simulate a responsive adversary/simulator without
losing its responsiveness property. In other words, we can move a responsive adversary/simulator
into a responsive environment without losing the responsiveness property of the environment. As
mentioned before, this is necessary, for example, for the transitivity of the realization relation and
the composition theorems.

Lemma 4.4. Let R be a restriction. Let Q and Q′ be two systems of machines such that {E ,Q} ≡
{E ,Q′} for all E ∈ EnvR(Q). Then, EnvR(Q) = EnvR(Q′).

Proof. We argue that EnvR(Q) ⊆ EnvR(Q′), the other inclusion follows analogously. Let E ∈ EnvR(Q)
and suppose that E 6∈ EnvR(Q′). In other words, unlike the system {E ,Q′}, there is only a negligible
set of runs of {E ,Q} where restricting messages on the network from Q are answered incorrectly
(i.e., not immediately or with an unexpected answer). We can use this to construct a responsive
environment E ′ that distinguishes Q from Q′, in contradiction to the assumption.

The environment E ′ internally simulates E but checks, as soon as E wants to send a message to
Q/Q′, whether this message violates the responsiveness property. If it does, E ′ aborts with output
1 instead of sending the message; if the run is ended by E without violating the responsiveness
property, E ′ outputs 0. This check is possible since restrictions require this problem to be efficiently
decidable. Clearly, we have that {E ′,Q} 6≡ {E ′,Q′} and that E ′ is responsive for Q, since E ′ always
aborts before sending an incorrect answer. This contradicts the assumption that Q and Q′ are
indistinguishable for all responsive environments for Q. ut

Lemma 4.5. Let R be a restriction. Let Q be a system, A ∈ AdvR(Q) be a responsive adversary,
and E ∈ EnvR({A,Q}) be a responsive environment. Let E ′ denote the environment which internally
simulates the system {E ,A}. Then, E ′ ∈ EnvR(Q).

For the proof of this lemma, we refer the reader to Appendix C.1.
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4.3 Realization Relation for Responsive Environments
We can now define the realization relation for responsive environments. The definition is analogous
to the one for general environments and adversaries (see Definition 2.1), but restricts these entities
to being responsive.

Definition 4.6 (Realizing Protocols with Responsive Environments). Let P and F be
protocols, the real and ideal protocol, respectively, and R be a restriction. Then, P realizes F with
respect to responsive environments (P ≤R F) if for every responsive adversary A ∈ AdvR(P),
there exists an (ideal) responsive adversary S ∈ AdvR(F) such that {E ,A,P} ≡ {E ,S,F} for every
environment E ∈ EnvR({A,P}).

Just as in the case of Definition 2.1, we have that instead of quantifying over all responsive adversaries,
it suffices to consider the dummy adversary AD only, which forwards all network messages between
P and E (cf. Theorem E.28). As already mentioned, AD is always responsive. This means that in
security proofs, one has to construct one responsive simulator S for AD only.

As already mentioned above Lemma 4.5, the responsiveness of S is necessary for the transitivity
of ≤R. While the responsiveness of S is a property a protocol designer has to make sure, this
property is easy to check and guarantee: upon receiving a restricting message from the protocol,
it either answers immediately and correctly or sends only restricting messages to the environment
until it can provide a correct answer to the original restricting message from the protocol. In such
a situation, the simulator should not send a non-restricting message to the environment because
then the simulator cannot make sure that it gets back an answer immediately from the environment
and that the environment does not invoke the protocol in between. In Appendix E.4, we make this
precise and provide a formal proof of this intuition.

We also note that Definition 4.6 is a generalization of Definition 2.1: with R := ∅ we obtain
Definition 2.1.

We now prove that the realization relation with responsive environments is reflexive and transitive.
This is crucial for the modular and step-wise design of protocols: once we have proven P ≤R P ′ and
P ′ ≤R P ′′, we want to immediately conclude that P ≤R P ′′.

Lemma 4.7. The ≤R relation is reflexive and transitive.

For the proof of this lemma, we refer the reader to Appendix C.2.

4.4 Composition Theorems
The core of every universal composability model are the composition theorems. We now present a
first composition theorem that handles concurrent composition of any (fixed) number of potentially
different protocols.

Theorem 4.8. Let R be a restriction. Let k ≥ 1, Q be a protocol, and P1, . . . ,Pk, F1, . . . ,Fk be
protocols such that for all j ≤ k it holds true that Pj ≤R Fj.
Then, {Q,P1, . . .,Pk} ≤R {Q,F1, . . .,Fk}.

Proof. In what follows, we take the (equivalent) formulation of ≤R with the dummy adversary AD.
It suffices to prove the theorem for the case k = 1. The argument can then be iterated to

obtain the theorem for k > 1 using transitivity of the ≤R relation. Let S ∈ AdvR(F1) be the
simulator from the definition of P1 ≤R F1. Define the simulator S ′ to forward messages between
the environment and Q, while internally simulating S for messages between the environment and
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F1. Now let E ∈ EnvR({AD,Q,P1}). For convenience, in what follows we split AD into AQD and
AP1
D where AQD forwards all communication betweeen E and Q and AP1

D forwards all communication
betweeen E and P1.

We first prove that {E ,AD,Q,P1} ≡ {E ,S ′,Q,F1}. Suppose that this is not the case. Then we can
define a new environment E ′ that distinguishes {AP1

D ,P1} from {S,F1}. The environment E ′ internally
simulates {E ,AQD,Q}, and hence, distinguishes with the same probability as E . Now observe that E ′
is responsive for {AP1

D ,P1}: All network messages from {AP1
D ,P1} in {E ,AD,Q,P1} are handled by

E only, not by Q. Moreover, since E is responsive for {AD,Q,P1}, we have that these messages are
answered correctly (in the sense of Definition 4.2), implying the responsiveness of E ′ for {AP1

D ,P1}.
This contradicts the assumption that P1 ≤R F1, and hence, {E ,AD,Q,P1} ≡ {E ,S ′,Q,F1} must
be true.

We still have to show the responsiveness property of S ′, that is, S ′ ∈ AdvR({Q,F1}). Let
E ∈ EnvR({S ′,Q,F1}). We have to show that all restricting network messages from Q and F1
to E and S ′ are answered correctly (in the sense of Definition 4.2). Suppose that there is a non-
negligible set of runs of {E ,S ′,Q,F1} where a restricting network message from {Q,F1} is not
answered correctly. Since S ′ only forwards network messages from Q to the environment and
the environment is responsive for {S ′,Q,F1}, we have that with overwhelming probability these
messages are answered correctly. Hence, there must be a non-negligible set of runs where network
messages from F1 are not answered correctly. Now consider E ′ from above. Then there also is a
non-negligible set of runs of {E ′,S,F1} where restricting messages on the network from F1 are
answered incorrectly because, by construction of E ′, the behavior of the system {E ′,S,F1} coincides
with {E ,S ′,Q,F1}. We already know that E ′ ∈ EnvR({AP1

D ,P1}) from above. Also, by assumption,
we have that {E ′′,AP1

D ,P1} ≡ {E ′′,S,F1} for all E ′′ ∈ EnvR({AP1
D ,P1}). Now, by Lemma 4.4 it

follows that EnvR({AD,P1}) = EnvR({S,F1}), and hence, E ′ ∈ EnvR({S,F1}). This contradicts the
responsiveness property of S. ut

The following composition theorem guarantees the secure composition of an unbounded number of
instances of the same protocol system. To state this theorem, we consider single-session (responsive)
environments, i.e., environments that invoke a single session of a protocol only. In universal
composability models instances of protocol machines have IDs consisting of party IDs and session
IDs. Instances with the same session ID form a session. Instances from different sessions may not
directly interact with each other. A single-session environment may invoke machines with the same
session ID only. We denote the set of single-session environments for a system Q by EnvR,single(Q).
We say that P single-session realizes F (P ≤R,single F) if there exists a simulator S ∈ AdvR(F)
such that {E ,AD,P} ≡ {E ,S,F} for all E ∈ EnvR,single({AD,P}). Now, the composition theorem
states that if a single session of a real protocol P realizes a single session of an ideal protocol F ,
then multiple sessions of P realize multiple sessions of F .

Theorem 4.9. Let R be a restriction and let P and F be protocols. Then, P ≤R,single F implies
P ≤R F .

Proof. Let S be the simulator for P ≤R,single F . A new simulator S ′ for arbitrary responsive
environments can be constructed just as in the original (non-responsive) composition theorem, i.e.,
S ′ internally keeps one copy of S per session and uses these copies to answer messages from/to the
corresponding sessions.
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The proof consists of two main steps: The first step shows indistinguishability of {AD,P}
and {S ′,F} for every responsive environment E ∈ EnvR({AD,P}). The second step shows the
responsiveness property of the simulator.

The first part uses a hybrid argument where one builds a series of single-session environments
Ei, i ≥ 1, which internally simulate E such that all messages to the first i− 1 sessions are sent to
internally simulated instances of {S,F}, messages to the i-th session are sent to the (external)
system {AD,P} or {S,F}, respectively, and the remaining messages are sent to internally simulated
instances of {AD,P}. Since different sessions of a protocol do not directly interact with each other,
it is easy to see that {E1,AD,P} behaves just as {E ,AD,P} (*), and {En,S,F} behaves just as
{E ,S ′,F}, where n ∈ N is an upper bound of the number of sessions created by E (note that n is a
polynomial in the security parameter and the length of the external input given to the environment,
if any). Hence, the distinguishing advantage of E is bounded by the sum of the advantages of
E1, . . . , En, i.e., it is sufficient to show that the advantages of E1, . . . , En are bounded by the same
negligible function8 to show that E cannot distinguish {AD,P} from {S ′,F}. In what follows, to
show the existence of a single negligible function, we consider environments with external input
because the argument is simpler in this case. Nevertheless, using sampling of runs, the argument
also works without external input, i.e., in the uniform case, as discussed in Appendix E.7.

To show that such a bound exists, it is first necessary to prove that there is a (single) negligible
function f that, for every i ≤ n, bounds the probability of Ei of violating the responsiveness
property in runs of {AD,P} or {S,F}, respectively. Let Ĉ {AD,P}i be the event that in runs of
{Ei,AD,P} the environment E , which is internally simulated by Ei, answers a restricting message of
the external system {AD,P} or one of the internally simulated instances of {AD,P} and {S,F}
incorrectly; Ĉ {S,F}i is defined analogously. Because E ∈ EnvR({AD,P}) and because of (*), we have
that Ĉ {AD,P}1 is negligible. It also holds true that (**) there exists a single negligible function that
bounds |Pr

[
Ĉ
{AD,P}
i

]
− Pr

[
Ĉ
{S,F}
i

]
| for all i ≥ 1. This is because one can define a single session

responsive environment E ′ that gets i as external input and then simulates Ei; E ′ aborts and outputs
1 as soon as a restricting message is about to be answered incorrectly, while it outputs 0 otherwise.
Note that because the restriction R can be decided efficiently, E ′ can perform the described task.
Also, by construction, E ′ is a single-session environment (it invokes a single external session only)
and it is responsive (it stops the execution before the responsiveness requirement would be violated).
Since E ′ distinguishes {AD,P} and {S,F} only based on the events Ĉ {AD,P}i and Ĉ {S,F}i , and both
systems are indistinguishable for every single session responsive environment, statement (**) holds
true. Finally observe that, for all i ≥ 2, the systems {Ei−1,S,F} and {Ei,AD,P} behave exactly the
same, and hence, Pr

[
Ĉ
{AD,P}
i

]
= Pr

[
Ĉ
{S,F}
i−1

]
. This implies that there is a single negligible function

that bounds Pr
[
Ĉ
{AD,P}
i

]
for all 1 ≤ i ≤ n (here we need that n is polynomially bounded).9 In

particular, we have that the probability that Ei is not responsive for the system {AD,P} is bounded
by a single negligible function independently of i ≤ n.

We can now conclude the indistinguishability argument by showing that the advantages of Ei,
1 ≤ i ≤ n, in distinguishing {AD,P} from {S,F} are bounded by the same negligible function. For

8 It is not sufficient to show that the advantage of every environment Ei is bounded by a negligible function fi, which
is actually rather easy to show. The negligible functions fi might be different and then their sum f1 + · · ·+ fn
might not be negligible.

9 Note that it also follows that Pr
[
Ĉ
{S,F}
i

]
is bounded for all 1 ≤ i ≤ n. We, however, do not need this result in the

following.
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this, we construct another single session responsive environment E ′′ analogously to E ′. The system E ′′
expects 1 ≤ i ≤ n as external input (and otherwise stops) and then exactly simulates Ei. Importantly,
E ′′ is responsive for {AD,P} because we have shown that every Ei violates responsiveness with at
most the same negligible probability, i.e., the same bound also holds for E ′′ for every input. Since
E ′′ is a single session responsive environment, its distinguishing advantage for the systems {AD,P}
or {S,F} is negligible for every possible input. Moreover, with external input i its distinguishing
advantage is the same as the one for Ei. Hence, the same negligible function that bounds the
advantage of E ′′ also bounds all advantages of Ei, i ≤ n. As mentioned at the beginning of the
proof, this implies that indistinguishability of {AD,P} and {S ′,F} for every responsive environment
E ∈ EnvR({AD,P}).

Having proved indistinguishability, it remains to show that S ′ is responsive, i.e., S ′ ∈ AdvR(F).
Let E ∈ EnvR({S ′,F}). We have to show that the probability that all restricted messages from F
in runs of {E ,S ′,F} are answered correctly (in the sense of Definition 4.2) is overwhelming. For
this, consider the following single session environment E ′ that is meant to run with {S,F}: The
system E ′ first flips r ≤ n, with n as above, and then internally simulates E and several sessions
of {S,F} such that messages from E to the r-th session are sent to the external session, while all
other messages are processed by the internally simulated sessions. Note that {E ′,S,F} behaves
just as {E ,S ′,F}, and hence, since E ∈ EnvR({S ′,F}), by Lemma 4.4 we have that E ′ is responsive
for {S,F}. Because S is a responsive adversary, this implies that there is only a negligible set of
runs of {E ′,S,F} where a restricting message of F is answered incorrectly (by E ′ or S). Hence, the
probability for this to happen is bounded by some negligible function f . From this and the fact that
there are only polynomial many sessions, it follows that the probability that a restricting message
from some session of F is answered incorrectly is negligible. Hence, S ′ is a responsive adversary. ut

We note that Theorems 4.8 and 4.9 can be combined to obtain more and more complex protocols.
For example, one can first show that a single session of a real protocol P realizes a single session of
an ideal protocol F . Using the two theorems it, for example, then follows that a protocol Q using
multiple sessions of P realizes Q using multiple sessions of F .

To conclude this section, we note that all of our lemmas and theorems have been proven using a
single restriction R. Hence, formally, a protocol designer would have to use the same restriction in
all of her security proofs in order to be able to use our results. However, as we show in Appendix D,
this is actually not the case since it is very easy to extend and combine different restrictions while
still retaining all security results. Also, as discussed in §6, there in fact is one generic restriction
that would suffice for all purposes.

5 Responsive Environments in Concrete Models
In the previous section, we have presented our universal composability framework with responsive
environments in a rather model independent way. In this section, we outline how to implement this
framework in the prominent UC, GNUC, and IITM models, respectively, to exemplify that our
framework and concepts are sufficiently general to be applicable to any universal composability
model. While these three models follow the same general idea, they differ in several details which
affect the concrete implementation of our concepts in these models (see, e.g., [KT13,HS11] for a
discussion of these differences). The main differences and details to be considered concern runtime
definitions and mechanism for addressing (instances of) machines.

To instantiate our universal composability framework with responsive environments for the
mentioned models, we mainly have to concretize the definitions in §4.2 for these models, that is, the
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definitions of restrictions as well as responsive environments and adversaries. For some models we
also have to adjust their runtime notions a bit. Before presenting the details for the specific models,
in what follows we briefly explain the central points to be taken care of:

Runtime. In the GNUC and IITM models, the runtime of systems/protocols is required to be
polynomially bounded only for a certain class of environments. Since we now want to consider
responsive environments, we should restrict the class of environments considered in the GNUC
and IITM models to those that are responsive. This also has some technical advantages. To
see this, let R and R′ be two systems/protocols. For example, R and R′ could be the systems
{E ,AD,Q,P} and {E ,S,Q, I} as considered in the composition theorem (Theorem 4.8) when
we want to prove that {Q,P} realizes {Q, I}. We often face the situation that we know that
say R satisfies the model’s runtime bound for all environments in a certain class and that R
and R′ are indistinguishable for every responsive environment E (in this class). This implies
that R′ has to satisfy the runtime notion as well but only for all responsive environments of the
class. Hence, one cannot necessarily use R′, with any environment, in another system as it does
not satisfy the model’s runtime notion (for non-responsive environments E the runtime of R′
might not be polynomial). Hence, also from a technical point of view, it makes sense to relax
the runtime notions in these models in that the runtime of systems/protocols should be required
to be polynomially bounded for responsive environments only.

Definition of restrictions. According to Definition 4.1, we require that restrictions are “efficiently
decidable”. As mentioned, the exact definition depends on the model at hand. The important
property this definition should satisfy is the following. An environment E ′ which internally
simulates another environment E should be able to decide that when the internal environment E
gets a restricting message as input whether the output it produces is a correct answer (according
to the restriction). We often use such simulations in proofs. Depending on the model under
consideration, we might not yet (at this point of the proof) have guarantees about the length
of the restricting message sent to E . A model dependent definition of an efficiently decidable
restriction should take this into account.

Definition of responsive environments. In the definition of responsive environments (Definition 4.2),
we require that an answer to a restricting message is sent back to the same machine and we
already explained that “same machine” typically means the same instance from which the
restricting message has been received from. This has to be made precise for the different models.

Definition of responsive adversaries. Depending on the restriction R considered, in some models,
in particular UC and GNUC, Definition 4.3 can be too restrictive, and for example, the dummy
adversary in these models might not satisfy the definition. The dummy adversary in these models
is required to perform multiplexing. When it receives a message from an instance of the protocol
and forwards this message to the environment, it has to prefix the message with the ID of that
instance in order tell the environment where the message came from. This alters the message
and the resulting message might no longer be restricting, depending on the definition of the
restriction R. Hence, the environment would not be obliged anymore to answer directly, and
thus, the (dummy) adversary would not be responsive. One way to fix this is to require a certain
closure property of restrictions, namely adding IDs at the beginning of restricting messages
still yields restricting messages and these message permit the same answers. But this is quite
cumbersome. For example, by recursively applying this constraint one would have to require
that R is closed under arbitrarily long prefixes of sequences of IDs. A more elegant solution that
would still allow for simple and natural restrictions would redefine what it means for a message
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from an adversary to the environment to be restricting. This is what we suggest for the UC and
GNUC models (see below).

In what follows, we sketch how to adjust and concretize the runtime notions and the mentioned
definitions for the UC, GNUC, and IITM models. As already mentioned in the introduction, for the
IITM model we have carried out the implementation of responsive environments in this model in
full detail.

5.1 UC
For the UC model, we do not have to change the runtime definition since the runtime of a protocol
is not defined w.r.t. a class of environments but simply bounded by a fixed polynomial (see also
below).

Definition of restrictions. For UC we require both R and R[0] to be decidable in polynomial time
in the length of the input. Due to UC’s strict runtime definition, this is sufficient to satisfy the
requirement mentioned above, namely, that an environment E ′ simulating another environment
E can check whether a restricting message received by E is answered correctly by E . To see this,
recall that every machine in UC is required to be parameterized with a polynomial. At every point
in the run, the runtime of every instance of a machine is bounded by this polynomial, where the
polynomial is in n := nI − nO, with nI being the number of bits received so far on the I/O interface
from higher-level machines and nO being the number of bits sent on the I/O interface to lower level
machines. Environment machines have to satisfy this condition as well, where nI is the number of
bits of the external input (which contains the security parameter η). Hence, since protocols will
receive only a polynomial number of input bits from the environment, they can send messages of
polynomial length in the length of the external input plus η only. Hence, given some message m
that was received by an environment and a response m′ to this message, the message pair (m,m′)
has at most polynomial length in the external input plus η, and therefore an environment is able to
decide within its runtime bound whether m′ is a correct answer to m, if we use the above definition
of effectively decidable restrictions.

Definition of responsive environments. We require that a response to a restricting message is sent
back to the instance of the machine that sent the restricting message. This is possible since every
instance in UC is assigned a globally unique ID, which is then used to specify sender and recipient
of a message.

Definition of responsive adversaries. As already explained above, messages from the adversary to the
environment and vice versa may contain a prefix (typically an ID). For reasons already explained
above, in UC we say that such a prefix is ignored for the sake of checking whether a message is
restricting and whether the answer is correct. To be more specific, a message m = (pre, m̄) from the
adversary to the environment is restricting iff m̄ ∈ R[0]. Also, if m is restricting (in this sense), an
answer m′ = (pre′, m̄′) from the environment is allowed if (m̄, m̄′) ∈ R. Using this definition, it is
easy to see that the dummy adversary in UC, which adds some prefix to messages from a protocol
to the environment and strips off a prefix from messages from the environment to a protocol, is
responsive.

5.2 GNUC
The changes necessary for the GNUC model are similar to those for the UC model. However, the
runtime notion has to be modified as explained.
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Runtime. Let us first recall the relevant parts of the runtime definition of GNUC.10 In this model,
the runtime definition depends on the entity considered. For an environment E , there has to exist a
polynomial p that bounds the runtime of the environment in runs with every system, where p gets
as input the number of bits of all messages that have been received by the environment during the
run, including the external input, plus the security parameter η. For a protocol P there has to exist
a polynomial q such that the runtime of P is bounded by q in runs with any environment and the
dummy adversary, where q gets as input the number of bits that are output by the environment (to
both the adversary and the protocol). As motivated at the beginning of this section, this definition
has to be changed such that the runtime of a protocol needs to be bounded only for all environments
(in the sense of GNUC) that in addition are responsive.

Definition of restrictions. Analogously to UC, we require R and R[0] to be decidable in polynomial
time in the length of the input. This is sufficient to satisfy the described requirement (E ′ simulating
E) since the runtime of environments in GNUC depends on the number of bits received from a
protocol. Hence, an environment is always able to read a potentially restricting message m entirely,
while the length of an answer m′ is bounded by the runtime bound of the environment.

Definition of responsive environments. Just as for UC, we require that responses to restricting
messages are sent to the same instance of a machine. This is possible in GNUC since, again, all
machines have globally unique IDs to address instances.

Definition of responsive adversaries. Since, just as for UC, the adversary in GNUC might (have to)
add IDs as prefixes or remove such prefixes, these prefixes are ignored in the definition of responsive
adversaries.

5.3 IITM
Just as for the other models, we now outline how to adjust and concretize the runtime notion and
the definitions from §4 for the IITM model. As already mentioned, in Appendix E we provide full
details for the IITM model with responsive environments, with a brief summary of the results
presented at the end of this subsection.

Runtime. In the IITM model, the runtime depends on the type of entity. For an environment E it
is required that there exists a polynomial p (in the length of the external input, if any, plus the
security parameter) such that for every system running with E the runtime of E with this system
is bounded by p. For a protocol P it is merely required that it is environmentally bounded, i.e.,
for every environment E there is a polynomial q (again, in the length of the external input plus
the security parameter) that bounds the overall runtime of runs of {E ,P} (except for at most a
negligible set of runs).11 Given a protocol P, for an adversary A for P it is required only that
{A,P} is environmentally bounded. (Clearly, the dummy adversary is environmentally bounded.)
To adjust the runtime notions for the setting with responsive environments, in the definition of
environmentally bounded protocols/adversaries, instead of quantifying over all environments, one
should now quantify over responsive environments only, as motivated at the beginning of §5.

Definition of restrictions. We require that a restriction R is efficiently decidable in the second
component, i.e., there is an algorithm A which expects pairs (m,m′) of messages as input and which
10 Note that there are several additional requirements, such as bounds on the number of bits that are sent by the

environment as well as so-called invited messages. These details, however, are not relevant here.
11 Here E may directly connect to P’s network interface. Equivalently one could have E communicate with P on the

network interface via a dummy adversary.
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runs in polynomial time in |m′| in order to decide whether m′ is a correct answer to m according to
R (cf. Definition E.13). This stronger definition is necessary to obtain the described property, namely
that an environment E ′ internally simulating another environment E can check that answers of E
to restricting messages are correct. Due to the very liberal runtime notion for protocols employed
in the IITM model, in proofs (e.g., of the composition theorem) we sometimes have to establish
that a system is environmentally bounded. Therefore, we do not know a prior that the length of
the message m is polynomially bounded. Hence, the environment might not be able to read m
completely. Conversely, the length of m′ is guaranteed to be polynomially bounded as it is output
by the environment E , which, by definition, is polynomially bounded. With R being efficiently
decidable in the second component, E ′ can then efficiently decide whether m′ is a correct answer to
m. Compared to the definition of restrictions for the UC and GNUC model presented above, this
formally is more restricted. It is, however, sufficient for all practical purposed, as discussed in §6, as
one has to consider one generic restriction only and this restriction is efficiently decidable in the
second component.

Definition of responsive environments. Unlike the UC and GNUC model, the IITM model does
not hardwire a specific addressing mechanism for instances of machines and specific IDs for such
instances into the model. It rather supports a flexible addressing mechanism which allows a protocol
designer to specify how machine instances are addressed and what they consider to be their ID.
More specifically, the IITM model allows a protocol designer to specify an algorithm run by machine
instances that decides whether the message received is accepted by the instance or not. Therefore,
in the IITM model we can require only that responses to restricting messages are sent to the same
machine, but not necessarily the same machine instance. This, however, is indeed sufficient. A
protocol designer, as typically done in the IITM model, can specify that a (protocol) machine accepts
a message iff it is prefixed by a certain ID (the one seen in the first activation of the instance).
This ID can then be considered to be the ID of this machine instance, and messages output by this
machine would also be prefixed by this ID. Now, a protocol designer can use restrictions to manually
enforce that the same instance receives a response. Such a restriction would contain message pairs
of the form ((id,m), (id,m′)). By this it is guaranteed that if a restricting message was sent by a
protocol machine instance with ID id, then the response is returned to this instance, as the response
is prefixed with id. Appendix E.2 shows an example of such a restriction.

Definition of responsive adversaries. For the IITM model, we do not have to change the definition
of responsive adversaries. Adversaries in the IITM model do not have to add prefixes to messages,
and hence, do not have to modify restricting messages. In particular, the dummy adversary simply
forwards messages between the environment and the protocol without changing messages (see also
the definition of dummy adversaries in Appendix E.5).

Detailed Results for the IITM Model. In Appendix E we provide full details of the IITM model with
responsive environments. That is, we adjust the runtime notion of the IITM model accordingly,
provide full definitions of restrictions, responsive environments and adversaries. Based on these
definitions we define the various security notions for realization relations considered in the literature
(now with responsive environments), namely, (dummy) UC, black-box simulatability, strong simu-
latability, and reactive simulatability. These new and adjusted notions have been carefully developed
in order to be general and preserve central properties. In particular, we show that all the mentioned
notions for realization relations are equivalent (for reactive simulatability this requires environments
with external input). We also prove that these relations are reflexive and transitive. We finally prove
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the composition theorems for responsive environments. As should be clear from the proof sketches
in §4, the proofs are more involved than those without responsive environments since one always
has to make sure that the constructed environments and simulators are responsive. The full proofs
in Appendix E are even more intricate and non-trivial because they take all model specific details,
such as the liberal runtime notions, into account. We note, however, that this is a once and for all
effort. Protocol designers do not have to perform such proofs anymore. They can simply use the
results. That is, responsive environments do not put any burden on the protocol designer. On the
contrary, they, as explained, greatly simply the specification and analysis of protocols.

6 Applying Our Concepts to the Literature
Our new concepts of restricting messages and responsive environments and adversaries allow protocol
designers to avoid the non-responsiveness problem elegantly and completely. As mentioned before,
urgent requests can simply be declared to be restricting messages, causing the adversary/environment
to reply with a valid response before sending any other message to the protocol. This indeed seems
to be the most reasonable and natural solution to the non-responsiveness problem. We now show
that our approach indeed easily solves all the problems mentioned in §1 and §3.

The very often encountered formulations of the form (1) mentioned in §3.1 can now actually be
used without causing confusion and flawed specifications, if the message sent to the adversary is
declared to be restricting: there will now in fact be an immediate answer to this message. Similarly,
ideal functionalities which are intended to be non-interactive can now be made non-interactive (at
least if uncorrupted, but, if desired and realistic, also in the corrupted case), just as their realizations,
which solves the problems discussed in §3.2.2 (lack of expressivity), and also makes it possible to use
the again often encountered specifications of the form (2): if such ideal functionalities have to send
urgent requests to the adversary, such requests can be made restricting, and hence, prompt replies
are guaranteed, i.e., if the (responsive) adversary/environment contacts the protocol at all again, he
has to first answer the request. Clearly, the other problems caused by urgent requests not being
answered immediately discussed in §3.2, namely unintended state changes and race conditions, the
reentrance problem, and unnatural specifications of higher-level protocols, vanish as well, again,
because urgent request now are answered immediately.

Two ways of defining restrictions. We note that there are two approaches of defining restrictions
R.

Tailored restrictions. One approach is to define restrictions tailored to specific protocols and
functionalities. For example, for FD-Cert the restriction could be defined as follows:{(

(Verify, sid,m, σ), (Verified, sid,m, φ)
)

: sid,m, σ ∈ {0, 1}∗, φ ∈ {0, 1}
}

Now, whenever the adversary is asked to verify some σ, the next message sent to the ideal functionality
is guaranteed to be the expected response. This directly resolves the issues discussed in §3.2.1; and
similarly, one could, for example, define restrictions for FNIKE and Fsok.12

We note that the above approach of defining a separate restriction for each protocol is general in
the sense that it can be used independently of the underlying model for universal composition, and is
12 Note that in order to show that the respective real protocols realize their ideal functionalities, according to

Definition 4.6, one needs to prove that there exists a responsive simulator. However, it is easy to verify that the
simulators constructed in [ZZQF14,FHH14,CL06] for the mentioned functionalities are already responsive, and
thus these realizations can be unalteredly used also in a responsive setting.
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thus applicable, e.g., to the UC, GNUC, and IITM models. Furthermore, this solution allows one to
fix many ideal functionalities and their realizations found in the literature without any modifications
to the specifications, including all examples mentioned in this document. However, since the
composition theorems and the transitivity property assume one restriction, different restrictions have
to be combined into a single one. This is always possible as explained in Appendix D. Nevertheless,
the following solution seems preferable.

Generic Restriction. Alternatively to employing tailored restrictions, one can use the following
generic restriction:

RG := {(m,m′) | m = (Respond,m′′),m′,m′′ ∈ {0, 1}∗}.

This means that messages prefixed with Respond are considered to be restricting and hence protocol
designers can declare a message to be restricting by simply prefixing it by Respond. While, according
to the definition of RG, the adversary/environment can respond with any message to these messages,
protocols or ideal functionalities can be defined in such a way that they repeat their requests
until they receive the expected answer: for instance, in the case of Fsok it can repeatedly send
m′′ = (Setup, sid) to the adversary until it receives the expected algorithms. In this way, the
adversary is forced to eventually provide an expected answer (if he wants the protocol to proceed).

Using this fixed multi-purpose restriction has the advantage that, in contrast to the former
approach, there is no need to combine different restrictions. Also, in protocols specifications the
prefixing makes immediately clear which messages are considered to be restricting.

The main reasons why we did not hardwire the generic restriction into our framework are twofold.
First, this is not required to prove our results, makes our framework only more general, and the
flexibility might become useful in some situations. Second, as protocols and ideal functionalities
have to send several requests until they get the expected answer, depending on the runtime notions
employed, they might run out of resources. In the IITM model, for example, this is not an issue,
though, and hence, the generic restriction can be used (see also Appendix E.2).

7 Conclusion

In this paper, we highlighted the non-responsiveness problem, the fact that it has often been ignored
in the literature, and its many negative consequences.

We have proposed a framework which completely avoids this problem. It enables protocol
designers to declare urgent requests to be restricting messages, causing such requests to be answered
immediately by (responsive) environments/adversaries. This, in particular, allows one to define
protocols and ideal functionalities in the expected and natural way. It also avoids unnecessarily
complex and artificial specifications, unintended state changes and race conditions while waiting
for responses to urgent requests, the reentrance problem, the lack of expressivity when modeling
non-interactive tasks, and the propagation of such problems to higher-level protocols and proofs.
We discussed how our concepts can be adopted by existing models for universal composition, as
exemplified in this work by the UC, GNUC, and IITM models. For the IITM model, we provided full
details, showing that our concepts can seamlessly be integrated into the existing model without losing
any of the properties compared to the setting without responsive environments: all security notions
for the realization relations are formulated, shown to be (still) equivalent, and enjoy reflexivity and
transitivity; the composition theorems carry over to the setting with responsive environments as
well.
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A Queuing of Intermediate Requests with Notifications to the Adversary

In the situation described in §3.2.3, and in particular the queuing approach described there, instead
of simply ending the activation of the ideal functionality after queuing an input, one could also
choose to send a notification to the adversary for each message that is stored this way. The adversary
would then be expected to send responses to each notification such that the ideal functionality
is activated sufficiently often to process every message. To illustrate the complexity and see the
disadvantages of this approach, let us first be more precise about the exact implementation. If the
ideal functionality, upon receiving some input, wants to send an urgent request, the input is first
stored (in some set). Then the ideal functionality not only sends the urgent request itself, but also a
notification consisting of the ID of the sender of the original input message and a token associated
with this message. Now, every time the ideal functionality receives another input before receiving a
response to its urgent request, it will again store this input and send another notification (ID and
token) to the adversary. As soon as the ideal functionality receives a response to its urgent request,
it stores the data from this response and returns control to the adversary. Now, the adversary is
allowed to send responses to the notifications he received, which can be uniquely identified by the
token in the notification. As soon as the ideal functionality receives such a response, it will process
and then delete the input message associated with the token in the response. Note that it should
now be possible to process these inputs because the ideal functionality received the answer to its
urgent request before. However, while processing one of these stored messages, the ideal functionality
might have to send a second urgent request, leading to yet another set of queued input messages,
and so on.

Observe that this gives a lot of additional power to the adversary by allowing him to see the
original sender of an input, blocking certain requests by never responding to a notification, and
being able to change the order in which messages are processed. These abilities are necessary to
prevent the same kind of artificial distinguishing attack presented for the previous approaches. In
fact, to prevent the specific attack in our running example, the simulator must know whether he has
to simulate an instance of A or B upon input (which is why we have to include the ID), and he has
to be able to tell the ideal functionality whether it should first process the stored message for A or
the stored message for B. If the ideal functionality would not allow the latter and instead process
the messages in the order they arrived, an environment could still distinguish: if in the above attack
the environment first answers the urgent request of B, then the simulator must be able to tell F to
process this request first, although A sent the first request.

Although this approach prevents the simple distinguishing attack from before, it still has three
severe drawbacks: First, it is very complex and not very intuitive, especially if ideal functionalities
send more than one urgent request. Second, this approach prevents some artificial distinguishing
attacks by giving a lot of additional power to the adversary. This weakens the overall security
guarantees provided by an ideal functionality. The adversary gains more information and is now
able to use new attacks to potentially distinguish the real and ideal worlds. Third, this approach is
still not generally applicable to any ideal functionality. This is the case, for example, if the ideal
functionality has to preserve the order of execution to model its intended task.

The complexity and the weakened security guarantees are probably the reasons why this approach
does not seem to have been followed in the literature so far.
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B Solutions for Providing Data for Ideal Functionalities

We now discuss approaches, namely default answers and code uploads, which can help to reduce the
use of urgent requests, but not fully and only for certain urgent requests, namely those that try
to retrieve some meta information from the adversary (ignoring, for example, urgent requests in
real/hybrid protocols and cases where protocols/functionalities want to provide the adversary with
information). But they do not solve the reentrance problem, let alone the general non-responsiveness
problem. Altogether, this emphasizes the difficulty of solving the non-responsiveness problem in a
satisfying way in the existing models, i.e., those without responsive environments and adversaries.

Using a default. To solve the non-responsiveness of the adversary when an ideal functionality asks
for some algorithms, one might be tempted to add a default to the functionality such that this
default will be used if the next message received is not from the adversary or does not contain the
expected information.

While this definition seems straightforward at first, it actually is much more complex as soon
as one tries to implement it. Note that after the ideal functionality sent its urgent request, the
next activation may be due to some input on the I/O interface. The ideal functionality would then
have to process two requests at the same time (while using the default), which is not possible
in current UC-like models. Dropping one of the two requests generally is not an option, since
this leads to exactly the same problems as described for the ignoring requests approach. Hence,
a queuing approach is necessary where messages are processed one after another. As discussed in
§3.2.3, the simplest form of a queue does not work in general either, while a much more complex
form (cf. Appendix A) severly weakens security guarantees of ideal functionalities and hence is
usually unacceptable.

Besides the problems mentioned above, there are further issues with this approach. First, it
might not always be possible to find a sensible default. Second, in some settings the environment
can force the usage of the default algorithm and thus distinguish real and ideal world. To see this,
consider the running example of §3.2.3 and the example attack presented in the ignoring requests
paragraph. In this setting F would be forced to use the default; the simulator has no way to first
provide other values since he has to simulate the network traffic of A before F produces output on
the I/O interface (which happens as soon as the simulator provides the algorithms). Hence, any
simulation that depends on the simulator being able to choose the information that is used by F
will fail.

Not asking for information at all (code upload constructs). One could try to eliminate urgent requests
from the ideal functionality (at least those that ask for some information from the adversary) by
requiring that the adversary actively sends the required information before it is needed. Let us be
more precise: Such an ideal functionality accepts a special message containing some data from the
adversary at any point in time. Then, as soon as the ideal functionality has to process a request
from the I/O interface, it uses the data it has previously received. If it has not received any data
prior to the request, it resorts to a default (and stays with this default even if the adversary later
on provides different data). One extreme form of this variant are code upload constructs, where the
adversary first provides some code which is then internally simulated by the ideal functionality to
generate answers to any (urgent) request it might have sent otherwise.

However, this approach, which tries to eliminate one type of urgent requests altogether, cannot
be used in general. In particular, an environment might again be able to force usage of the default to
be able to distinguish between the real and ideal world. To see this, consider an ideal functionality
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F that requires some information at the beginning (e.g., signing and verification algorithms in case
of Fsig) and otherwise does not contact the adversary/simulator at all because it models a local
computation. Let P be a realization of F that uses a specific algorithm. To simulate P the simulator
has to provide the same algorithm (or a variant of it) to F . Since F may not send an urgent request
to the simulator, the simulator now has to somehow figure out when and to which instance of F to
send the required algorithm. The simulator should send this information before (the instance of) F
is used for the first time. Even if it is guaranteed that the simulator is activated before F (such as
in the UC model, where the adversary/simulator is always activated directly after the environment),
the simulator would still have to know which session of F is going to be used by the environment.
However, the environment is not forced to tell the simulator which session ID it is going to use for
the challenge session and thus a simulator can only guess at this point (note that the simulator
will be wrong most of the time since he can only guess a polynomial number of sessions, while the
environment is free to choose from an exponential number). It is also not possible to provide the
algorithm later on since F using this approach does not contact the simulator at all. Hence, as soon
as the environment regains control, it can access F directly for some random session ID, and thus,
force (the instance of) F to use the default algorithm (with overwhelming probability).

Even if the simulator somehow gets to know the ID of the challenge session, the same issue as
above reoccurs as soon as one tries to find a joint state realization of F . A distinguishing environment
for the joint state realization is not bound to only use a single session but may access an arbitrary
number of different sessions, so a simulator has again no means to provide algorithms “in time” for
all possible sessions of F .

A variant of this approach defines a special instance with a fixed ID which gets all data from
the adversary/simulator. This instance is then used as a subroutine by all ideal functionalities that
need to access this data. While this fixes the above issue by defining a single, known ID for the
instance to which the simulator has to send its data, this comes at a hefty price: It is no longer
possible to use the composition theorem for multiple sessions. In this setting, all sessions access the
same subroutine instance and hence sessions are no longer disjoint, as required by the theorem.

All of the above approaches also have an additional disadvantage. As mentioned at the beginning,
they only seek to address urgent requests where the ideal functionality wants to retrieve information
from the adversary, but not urgent requests that are meant to provide information to the adversary.
Also, urgent requests for real/hybrid protocols are not addressed either. So even if one of the above
approaches can be applied, which depends on the concrete functionalities and realizations, it only
fixes part of the problem and this partial solution leads to artificially complex ideal functionalities.

C Postponed Proofs
C.1 Proof of Lemma 4.5
Observe that the systems {E ,A,Q} and {E ′,Q} behave exactly the same. Let us assume that
E ′ /∈ EnvR(Q). Then, there is a non-negligible set of runs of {E ′,Q} where a restricting message
from Q on the network is answered incorrectly. Since these messages are handled by the internally
simulated adversary A in E ′, there must also be a non-negligible set of runs of {E ,A,Q} where
a restricting message from Q on the network to A is answered incorrectly. However, this is a
contradiction to the responsiveness property of A. This implies that E ′ ∈ EnvR(Q). ut

C.2 Proof of Lemma 4.7
In what follows, we take the (equivalent) formulation of ≤R with the dummy adversary AD.
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Now, to prove reflexivity, we define S := AD. This trivially implies {E ,AD,P} ≡ {E ,S,P}. As
already mentioned, AD is responsive since it merely forwards messages between E and P, and E
itself is responsive for {AD,P}. This shows reflexivity.

To prove transitivity, let us assume that P ≤R P ′ and P ′ ≤R P ′′. We have to prove that
P ≤R P ′′. Let S ∈ AdvR(P ′) and S ′ ∈ AdvR(P ′′) be the simulators that yield P ≤R P ′ and
P ′ ≤R P ′′, respectively. To prove P ≤R P ′′, we build a new simulator {S,S ′} as the combination
of S and S ′ where the communication is as follows: S ′ handles the network communication with
P ′′, the network communication of S ′ at its interface to the environment is handled by S at its
network interface to P ′, and the network communication of S with the environment is in fact with
the environment. Let E ∈ EnvR({AD,P}). We have to prove that i) {E ,AD,P} ≡ {E ,S,S ′,P ′′}
and that ii) {S,S ′} is responsive for P ′′.

i) By assumption, we have that {E ,AD,P} ≡ {E ,S,P ′}. In the second system, we can plug AD
between S and P ′ without changing the overall behavior of the system since AD merely forwards
messages between S and P ′. Hence, we have that {E ,S,P ′} ≡ {E ,S,AD,P ′}. Now suppose that
{E ,S,AD,P ′} 6≡ {E ,S,S ′,P ′′} (otherwise, there is nothing to show). Then, the environment E ′
which internally simply simulates {E ,S} obviously distinguishes {AD,P ′} from {S ′,P ′′}. Moreover,
this environment is responsive for {AD,P ′}: First observe that E ∈ EnvR({S,AD,P ′}) by Lemma
4.4. Also observe that S ∈ AdvR({AD,P ′}) because S ∈ AdvR(P ′) and AD merely forwards
messages. Moreover, by applying Lemma 4.5 for Q := {AD,P ′}, we directly obtain that E ′ ∈
EnvR({AD,P ′}). This contradicts the assumption that {AD,P ′} and {S ′,P ′′} are indistinguishable
by every environment in EnvR({AD,P ′}). Hence, {E ,S,AD,P ′} ≡ {E ,S,S ′,P ′′} and, by transitivity
of the ≡ relation, {E ,AD,P} ≡ {E ,S,S ′,P ′′}.

ii) Now let E ∈ EnvR({S,S ′,P ′′}) and define the environment E ′ which internally simulates {E ,S}
just as in i). We now argue that E ′ ∈ EnvR({S ′,P ′′}). Since EnvR({S,S ′,P ′′}) = EnvR({AD,P}) by
Lemma 4.4 and hence E ∈ EnvR({AD,P}), we can reuse the results for E ′ from above, i.e., E ′ ∈
EnvR({AD,P ′}). Furthermore, because we have P ′ ≤R P ′′ by assumption and by the definition of S ′,
we can use Lemma 4.4 to obtain EnvR({AD,P ′}) = EnvR({S ′,P ′′}). This gives E ′ ∈ EnvR({S ′,P ′′}).
Now observe that, because S ′ is a responsive adversary and E ′ a responsive environment, there can
only be a negligible set of runs of {E ′,S ′,P ′′} where a restricting message of P ′′ on the network
is answered incorrectly. Since the systems {E ′,S ′,P ′′} and {E ,S,S ′,P ′′} behave exactly the same,
this implies that {S,S ′} is a responsive adversary for P ′′. ut

D Retaining Security Results for Different Restrictions

As already mentioned at the end of §4, all of our lemmas and theorems, including transitivity of
the ≤R relation and the composition theorems, have been proven using a single restriction R only.
In other words, to be able to actually use these lemmas and theorems a designer has to reuse the
same restriction in every analysis. However, sometimes it is desirable to extend a restriction, for
example, because one wants to introduce a new type of restricting message that is necessary to
model a specific protocol, or to combine the results of two different security analyses that used
different restrictions. This section first shows that extending restrictions is possible in principle, and
then shows in particular how results of two different security analyses can be combined, even if they
used different restrictions.

The following lemma allows us to extend restrictions while still retaining security results. The
general idea is as follows: Observe that there are two major constraints in the security notion (cf.
Definition 4.6), namely, indistinguishability for all responsive environments and responsiveness of
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the simulator. To be able to use a restriction R′ instead of R while still retaining security results, we
have to preserve both constraints. The first can be preserved if R′ only further restricts responsive
environments and adversaries, hence yielding a subset of responsive environments and adversaries
for R. The latter can be preserved if the ideal protocol simply never sends one of the new restricting
messages that were added by R′, since then there are no runs where the simulator answers one of
these new messages incorrectly.

Lemma D.1. Let R be a restriction and let P and F be protocols such that P ≤R F . Let R′ be an
extension of R, i.e., R ⊆ R′. Then we have that P ≤R′ F if the following holds true:

– {(m,m′)|m ∈ R[0], (m,m′) ∈ R′\R} = ∅, that is, R′ does not add new allowed answers to any
restricting message of R[0], and

– for all systems Q, the protocol F in runs of {Q,F} never outputs a message m ∈ R′[0]\R[0] on
the network interface.

Proof. Let S be the simulator that yields P ≤R F . We have to show that (1) {E ,AD,P} ≡ {E ,S,F}
for every environment E ∈ EnvR′({AD,P}) and (2) that S ∈ AdvR′(F).

For (1), observe that by assumption we have R[0] ⊆ R′[0], i.e., R′ only adds additional re-
stricting messages. Furthermore, also by assumption, R′ does not add new possible answers to any
restricting message already defined in R[0]. Therefore the restriction R′ actually restricts responsive
environments and adversaries more than R, i.e., any environment in EnvR′({AD,P}) also is in
EnvR({AD,P}). Because we have {E ,AD,P} ≡ {E ,S,F} for every environment E ∈ EnvR({AD,P})
by the definition of P ≤R F , (1) directly follows.

For (2), let E ∈ EnvR′({S,F}). Observe that E ∈ EnvR({S,F}) by the same reasoning as in the
above paragraph. Now first suppose there was a non-negligible set of runs of {E ,S,F} where S
answers a restricting message m ∈ R[0] incorrectly by the definition of R′ (note that this does not
consider messages m ∈ R′[0]\R[0]). Because R ⊆ R′, these answers would also be incorrect by the
definition of R. This contradicts the responsiveness of S (for R) since E ∈ EnvR({S,F}).

Finally observe that F will never send a restricting message m ∈ R′[0]\R[0] in runs of {E ,S,F}
by assumption. Therefore S also will never answer such a message incorrectly. Combined with the
results from the previous paragraph, this implies S ∈ AdvR′(F). ut

Using Lemma D.1, we directly obtain that security results carry over if one extends a restriction
R by adding some new restricting message not used by F with arbitrary sets of allowed answers.
This allows a protocol designer to simply add new messages each time she analyzes a different
protocol, without having to re-prove all previous results. Should F use some restricting messages
one wants to add, then one could slightly redefine F (e.g., by prefixing some messages) to avoid
overlap.

We now explain how Lemma D.1 even allows us to combine security results for two different
restrictions R1 and R2 where one is not necessarily an extension of the other as required by the
lemma.

To combine two (or more) security results for different restrictions, one has to define a new
restriction R that combines all restrictions. As a running example illustrating the exact procedure
assume two protocols P1,P2 that realize ideal functionalities F1,F2 for restrictions R1, R2, i.e.,
P1 ≤R1 F1 and P ≤R2 F2. To combine both results, e.g., via a composition theorem (cf. Theorem 4.8),
we need a restriction R such that P1 ≤R F1 and P2 ≤R F2. Generally speaking, to construct such a
restriction, one syntactically changes both the protocols and the restrictions such that protocols
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using different restrictions only send the same restricting message if both restrictions agree on the
allowed answers. It is then simple to combine both restrictions.

To be more precise, first define R1∩2 to be the binary set that contains all pairs (m,m′) ∈ R1 such
that m ∈ R1[0] ∩R2[0] and both R1 and R2 define the same allowed answers for m. In other words,
R1∩2 contains those message pairs on which both restrictions coincide. Now, syntactically change
R1 and R2 in the following way such that there is no restricting message with m ∈ R1[0] ∩ R2[0]
but m /∈ R1∩2[0]. In other words, for every restricting message from the resulting restrictions, say
R′1 and R′2, they either agree in the allowed answers or the restricting message is only defined in
one of these restrictions. This can easily be established, e.g., by prefixing every restricting message
where both restrictions do not agree with different strings.

Now observe that we can modify the protocols (and simulators) to adjust them to the new
restrictions by simply renaming messages in the same way. This yields new protocols P ′1,P ′2,F ′1,F ′2
such that P ′1 ≤R′1 F

′
1 and P ′2 ≤R′2 F

′
2. Note that these protocols are “as good as” the original

protocols for a security analysis, since their behavior is still exactly the same.
Now define R := R′1 ∪R′2.13 By construction, we can use Lemma D.1 to obtain P ′1 ≤R F ′1 and

P ′2 ≤R F ′2. This yields realizations for the same restriction and thus it is now possible to apply all
lemmas and theorems from our framework.

E The IITM Model with Responsive Environments
In this section, we provide detailed definitions and proofs of our responsive environments framework
in the IITM model. In particular, we precisely define the terms restriction, responsive environment,
and responsive adversary from §4.2 now in the IITM model. Furthermore, we define the different
security notions (unlike in §4.3, we not only define UC and dummy UC but also strong simulatability,
black-box simulatability, and reactive simulatability) w.r.t. responsive environments and prove
that, just as in the original IITM model with general (i.e., non-responsive) environments, they are
still equivalent. We also prove the composition theorems (cf. §4.4) in the IITM model now with
responsive environments.

E.1 Recalling Notions from the IITM Model
Before we can extend the IITM model to work with responsive environments, we first have to recall
parts of the original IITM model from [KT13]. Note that in the following we will introduce and use
the original notiation of the IITM model instead of using the model independent notation from
§2. The general structure of this section is as follows: First, we recall the definitions of IITMs (the
machines in the IITM model) and systems of IITMs. We also explain how to run a system with some
input and security parameter. Then we introduce several terms that describe specific properties of
I/O and network interfaces of machines such as, e.g., two machines being able to be connected to
each other (in a system) via those interfaces. Finally, we recall the original runtime definitions of
the IITM model in detail and formally specify environments, adversaries, and protocols.

Before we start, we have to recall the formal definition of negligible functions with external
input, cf. Canetti [Can01]:

Definition E.1. A function f : N×{0, 1}∗ → R≥0 is called negligible if for all c, d ∈ N there exists
η0 ∈ N such that for all η > η0 and all a ∈ {0, 1}≤ηd : f(η, a) < η−c. A function f : N× {0, 1}∗ →
[0, 1] is called overwhelming if 1− f is negligible.
13 Formally, one still has to make sure that R actually is a restriction, i.e., fulfills Definition 4.1. This, however, should

be the case for natural definitions of R1 and R2.
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E.1.1 Systems of IITMs
We start with recalling the formal definition of inexhaustible interactive turing machines. They are
used to model programs in the IITM model.

Definition E.2 (Inexhaustible Interactive Turing machine (IITM)). An (inexhaustible)
interactive Turing machine (IITM) M is a probabilistic Turing machine with a polynomial q
associated with it, where q bounds the runtime of M in mode CheckAddress, and the following
tapes: a read-only tape on which the mode the IITM M is supposed to run is written (the mode tape)

— the possible modes are CheckAddress and Compute — , a read-only tape on which the random
coins are written (the random tape), a read-only tape on which the security parameter is written
(the security parameter tape), a write-only tape (the address decision tape, where the output of
mode CheckAddress is written), zero or more input and output tapes, and work tapes. The input
and output tapes have names and we require that different tapes of M have different names. We also
require that only input tapes may be named start and only output tapes may be named decision.

The CheckAddress mode is used as a generic mechanism for addressing instances (also called
copies) of IITMs in a system of IITMs, as explained further below. In this mode an IITM may
perform, in every activation, a deterministic polynomial time computation in the length of the
security parameter plus the length of the current input plus the length of its current configuration,
where the polynomial is the one associated with the IITM. The IITM is supposed to output “accept”
or “reject” at the end of the computation in this mode, indicating whether the received message
is processed further or ignored. The actual processing of the message, if accepted, is then done
in mode Compute. In mode Compute, a machine may only output at most one message on an
output tape, which then ends its activation (see below).

Input and output tapes, identified by their names, are classified as either I/O or network tapes.
These tapes are used to model secure direct connections between (sub-)programs, or unsecure
network connections that are controlled by an adversary. For brevity, we define NET to be the set
of names of all network tapes.

Several machines can connect to each other via their input and output tapes to form a system of
machines, where instances of these machines can send messages to each other via those tapes. Two
machines in a system are connected via a tape if one of them has an input tape named n and the
other has an output tape named n. In a system, there are at most two tapes with the same name
and if there are exactly two, they have opposite directions. This uniquely defines how machines
connect to each other. More formally:

Definition E.3 (Systems of IITMs). A system of IITMs is a set of IITMs. An input/output
tape with name n of one of the IITMs in the system is called internal if there is another machine in
the same system with a tape named n and opposite direction. Input and output tapes that are not
internal are called external. Using this terminology, a system is defined recursively as follows:

– Every single IITM M also is a system of IITMs.
– If Q is a system, then !Q is also a system.
– For two systems of IITMs Q and R, the composition Q |R, where all internal tapes of Q and R

are renamed such that they only connect via external tapes, is a system iff there is no external
tape in both Q and R with the same name and direction.

In the above definition, for !Q, we say that Q is in the scope of a bang. This means, that every
IITM that is contained in Q will be allowed to have more than one instance in a run of the system
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Q; in contrast to this, IITMs which are not (in systems that are) in the scope of a bang will only
have at most one instance in every run (see below). We note that the bang operator ! binds stronger
than the composition operator | , i.e., the systems (!Q) |R and !Q |R are equivalent, while ! (Q |R)
is a different system. Also note that, by definition of the behavior of the bang operator, we have
that ! (Q |R) is the same as !Q | !R and that ! (!Q) is the same as !Q.

E.1.2 Running a System

In a run of a system Q, several instances of each IITM in Q may be spawned, where the
CheckAddress mode is used to determined which instance gets to process a message. The actual
processing is then done in mode Compute. More specifically, in a run of a system Q(1η, a) with
security parameter η and external input a, only one IITM instance (ITI ) is active at any time
and all other ITIs wait for new input. The first machine to be activated is the IITM in Q with
an input tape named start, also called master IITM, by writing the external input a on start (if
no external input is considered, then the empty message is written on start instead); if no master
IITM exists, the run of Q terminates immediately. If a message m is written by some ITI on one
of its output tapes, say on t (initially, as mentioned, the external input is written on start), and
there is a machine, say M , in Q, with an input tape named t, then it is decided as follows which
instance of M gets to process m. All existing instances of M are run in CheckAddress mode
in the order of their creation, until one instance accepts m. This instance (if any) then runs in
Compute mode with input m written on its input tape t.14 If no instance accepted m and M is in
the scope of a bang, or if there is no instance of M yet, a fresh instance of M is spawned and run
in mode CheckAddress and if it accepts m, it gets to process m on its input tape t. Otherwise,
the freshly created instance is deleted again, m is dropped, and the empty message is written on
start in order to trigger the master IITM (of which there might be several instances as well, where
again their CheckAddress mode is used to decide which one gets to process the message). After
running an ITI in mode CheckAddress, the configuration is set back to the state before it was
run in CheckAddress, thus this mode does not and cannot change the configuration of a machine.

When an instance of M processes a message in mode Compute, it may write at most one
non-empty message, say m, on one of its output tapes, say t, and then stop. If there is an IITM
with an input tape named t in the system, the message m is delivered to one instance of that IITM
on tape t as described above. If the instance of M stops without producing output (sometimes also
called empty output since all output tapes contain the empty message, i.e., m = ε) or there is no
IITM with an input tape t, then (an instance of) the master IITM is activated by writing the empty
message on start. A run stops as soon as a message is written on decision, no master ITI accepted
the incoming message, or in mode Compute a master ITI did not produce output.

The overall output of a finite run is defined to be the message that is output on decision. If
no message was written to decision, the overall output is the empty message. If a run does not
terminate, the overall output is undefined. In slight abuse of notation, by writing Q(1η, a) we denote
both the run of the system Q and its overall output distribution.

If two systems output 1 with the same probability (except for a negligible difference), these
systems are called indistinguishable. The notion of indistinguishability is fundamental in universal
composability models; in particular, it is used in the definition of the realization relation (cf. E.19)
which states that two systems, one containing a real protocol and one an ideal protocol, must be
indistinguishable. More formally:
14 The tape t contains m only, that is, input tapes are emptied before receiving a new message.
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Definition E.4 (Equivalence/Indistinguishability of Systems). Two systems Q and R are
called equivalent or indistinguishable (Q ≡ R) if and only if there exists a negligible function
f : N× {0, 1}∗ → R≥0 such that for every security parameter η and external input a ∈ {0, 1}∗ the
following holds true:

|Pr [Q(1η, a) = 1]− Pr [R(1η, a) = 1]| ≤ f(η, a)

E.1.3 Interfaces and Connectivity of Systems
For lemmas and theorems we often have to require specific properties of the external interfaces of
some systems Q and R. This section recalls several terms that describe these properties.

We start by introducing a term which describes systems Q and R that can be connected to each
other, i.e., the system Q |R is well defined. However, merely considering the case of two systems is
not sufficient: Observe that by Definition E.3 the composition and hence the runtime behavior of
three or more systems can depend on the order of the systems. This is the case, e.g., for systems A
and C that have an external input tape named n and a system B that has an external output tape
named n. The systems (A |B) | C and A | (B | C) are well defined, but are not identical. Since this is
undesirable, the following terminology also deals with the case of multiple systems:

Definition E.5. Two systems of IITMs Q and R are connectable iff each common external tape
of Q and R has complementary directions (i.e., in one system the tape is an input tape, while it
is an output tape in the other). We also say that Q can be connected to R (and vice-versa). The
systems Q1, . . . ,Qn are connectable iff they are pairwise connectable.

Note that, if the systems Q1, . . . ,Qn are connectable, then the system Q1 | . . . | Qn is uniquely
defined. In particular, for connectable systems, the composition operator | is associative and
commutative. In the following we will only use | in this context, i.e., we will always require that
the composition is uniquely defined. Sometimes we want to stress that two connectable systems
connect only via their external I/O-tapes, but not via their external network tapes. We will use the
term I/O-connectable to describe such systems.

Besides the term “connectable”, we also recall a term that describes systems with identical
(external) tape interfaces. This property is usually needed when replacing one system Q with another
system R, since this operation should not change the machines to which Q and R, respectively, can
connect to.

Definition E.6. Two systems of IITMs Q and R are compatible iff the set of (names of) external
input tapes of Q is the same as the set of (names of) external input tapes of R, and the set of
(names of) external ouput tapes of Q is the same as the set of (names of) external ouput tapes of R

E.1.4 Runtime Definitions
As already mentioned in §2, the IITM model, just as other universal composability models, ensures
that systems run in polynomial time in the security parameter η and the length of the external
input. This section formalizes this intuition by recalling the runtime definitions of the IITM model.

The IITM model ensures this with the three runtime notions of of almost bounded, universally
bounded, and environmentally bounded systems. These definitions differ in the setting they consider:
A system Q is almost bounded if its runtime is bounded by a polynomial, it is universally bounded
if its runtime is still bounded by a polynomial even when running with an arbitrary system R, and
it is environmentally bounded if the combined runtime of Q and any universally bounded system R
is still bounded by a polynomial. Note that all of these notions consider runtime in mode Compute
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only, the CheckAddress mode is already bounded by the polynomial associated with the IITM.
More formally:

Definition E.7. A system Q is called almost bounded if there exists a polynomial p such that

f(η, a) = Pr [Time(Q(1η, a)) > p(η, |a|)] for all η ∈ N and a ∈ {0, 1}∗

is negligible, where Time(Q(1η, a)) is the random variable which denotes the combined runtime of
all instances of Q (in a run of Q(1η, a)) in mode Compute.
A system Q is called strictly bounded if it is almost bounded for f(η, a) = 0.

Definition E.8. A system E is called universally bounded if there exists a polynomial p such that
for every security paramater η ∈ N, external input a ∈ {0, 1}∗, any system Q that can be connected
to E it holds true that the combined runtime in mode Compute of all instances of E in every run
of (E |Q)(1η, a) is at most p(η, |a|).

Definition E.9. A system P is called environmentally bounded if for every universally bounded E
that can be connected to P the system E | P is almost bounded. A system P is called environmentally
strictly bounded if for every universally bounded E that can be connected to P the system E | P is
strictly bounded.

E.1.5 Environments, Adversaries, Protocols
Recall from §2 that there are three types of special entities, namely environments, adversaries,
and protocols, which can be modelled via systems of machines. This section precisely defines the
properties of a system modelling one of these entities. This includes both runtime and connectivity
requirements: Environments are required to be universally bounded, i.e., they will not exceed a
polynomial runtime no matter in which system they are used. Protocols and adversaries only have to
be polynomial when running with an (universally bounded) environment and hence when receiving
inputs of at most polynomial length. Furthermore, these entities are not allowed to start or end a
run since environments are expected to do this.

Definition E.10. A system E is called environmental system or just environment if it is universally
bounded. For some system Q, we denote by Env(Q) the set of all environments E that can be connected
to Q.

Definition E.11. A system P is called protocol system if (i) no tape in P is named start or
decision, (ii) P is environmentally bounded and (iii) for every IITM M occuring in P such that
M is not in the scope of a bang, we require that M accepts every incoming message in mode
CheckAddress.

Definition E.12. A system A is called adversarial system if no tape of A is named start or
decision.15

Note that, because of the simple and general runtime notions, the runtime conditions imposed
on these systems are easy to check and all reasonable protocol definitions should automatically
fulfill them. One does not need any tweaks such as (artificial) padding of messages or (artificially)
adding extra messages that only serve to transfer runtime (see also the discussion in [KT13]).
15 Note that, similar to environmental systems and protocol systems, there are also runtime conditions imposed on

adversarial systems. However, these conditions depend on the system that is connected to A and thus will be
presented in later definitions. Informally, if A is connected to another system Q, then A |Q will be required to be
environmentally bounded.
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E.2 Restricting Messages
We now formally define the term restriction from §4.2 in the IITM model. Recall that a restriction
is a set of pairs of messages. The first component of a pair is a message that, when sent on a network
tape by a protocol, has to be answered “immediately”, i.e., an answer should be received on the
corresponding network tape before any other machine of the protocol is activated on a different
tape. The second component of a pair describes one possible answer. Additionally, we require that
it is possible to efficiently decide whether an environment violates the restriction. More formally:

Definition E.13 (Restriction). Let R ⊆ {0, 1}+ × {0, 1}+ be a set of tuples of non-empty mes-
sages. Recall that R[0] := {m|∃m′ : (m,m′) ∈ R}.

The set R is called a restriction if and only if the following holds true: There exists an algorithm
A which for all inputs of the form (m,m′) runs in at most polynomial time in the length of m′
and outputs 1 iff m ∈ R[0] and (m,m′) 6∈ R, outputs 2 iff (m,m′) ∈ R, and otherwise outputs 0. A
message m ∈ R[0] is called a restricting message.

In the following, we will say that R is decidable in polynomial time in the second component or
efficiently decidable in the second component when we refer to the property defined in the above
definition. Note that this is different from the usual meaning of decidable in polynomial time: First,
the algorithm A does not decide whether (m,m′) ∈ R but it decides whether, given some initial
message m, a response m′ is allowed by the restriction: If A outputs 0, the answer is allowed since
m 6∈ R[0], if it outputs 1, the answer is not allowed, and if it outputs 2, the answer is allowed iff it is
sent on the correct tape. Second, A does not run in polynomial time in the length of (m,m′) but only
in the length of m′. This property is needed in the proof of Lemma E.15. Technically, in Lemma E.15
we can guarantee only that the length of the second component m′ is polynomially bounded in the
security parameter η and the external input a (if considered) as it is produced by the (universally
bounded) environment; the first component m might not be as it is generated by the protocol, which
in Lemma E.15 we do not require to be bounded in any way. Still the environment needs to be
able to decide in polynomial time in the η and a whether m ∈ R[0] and whether (m,m′) ∈ R. This
property does not seem to be a strong requirement for practical purposes, as can be seen by the
following example restriction:

R := {(m,m′)|m = (id, AmICorrupted?),
m′ = (id, Corruption, b),
id ∈ {0, 1}∗, b ∈ {false, true}}

∪ {(m,m′)|m = (id, Info,m′′),
m′ = (id, OK),
id,m′′ ∈ {0, 1}∗}

∪ {(m,m′)|m = (id, Respond,m′′),
m′ = (id,m′′′),
id,m′′,m′′′ ∈ {0, 1}∗},

This restriction consists of three types of restricting messages, each identified by a fixed bitstring.
Each of the three types of restricting messages is prefixed with some identifier id, which has to be
repeated in the answer. This can be used to ensure that the same instance which sent a message
will also receive the answer, e.g., by defining mode CheckAddress such that every instance only
accepts messages that are prefixed with its own (unique) ID. In fact, one of the main reasons
why we did not simply hardwire a specific restriction into our framework is that one can adjust
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restrictions to different definitions of the CheckAddress mode. In the above example, the first
type of restricting messages can be used to ask the adversary for the corruption state of a fresh
instance upon its first activation, the adversary then has to provide a bit b immediately. The second
type can be used to provide the adversary with some information such that the adversary has to
give back control immediately by sending an acknowledgement. The third type is meant to exchange
arbitrary data between the protocol and the adversary, i.e., it could be used to ask the adversary for
some initialization such as keys and algorithms (the string m′′ can be used to distinguish different
requests), while the adversary can provide an arbitrary answer m′′′ but has to do so immediately.
Note that this type is a variant of the generic restriction introduced in §6 and hence is actually
sufficient to model all cases where restricting messages are needed. In particular, one can omit the
first two types and only use the third type instead. We expect that restrictions will usually be
variants of the generic restriction which have been adapted to the definition of the CheckAddress
mode such that responses will be received by the correct instance.

This relation is in fact a restriction as defined in Definition E.13 for an appropriate encoding.16

Given some initial message m and an answer m′, it is possible to decide in polynomial time (in
the length of m′) whether m′ is an incorrect response to a restricting message. The algorithm A
first checks whether m is a restricting message by checking the number of components in tuples
and reading components with a fixed length. Note that this is possible in constant time, since we
assumed an appropriate encoding. If m 6∈ R[0], then A outputs 0. Otherwise, A reads m′ and checks
whether m′ is a possible answer to m, i.e., whether (m,m′) ∈ R. Depending on the result, A outputs
either 1 or 2. It is easy to see that A can do this in polynomial time in the length of m′.

In the following we assume that every IITM has a corresponding output tape for every input tape
and vice versa (except for tapes named start and decision), i.e., we actually consider pairs of tapes.
For an input/output tape t 6∈ {start, decision} of a machine, we denote by t−1 the corresponding
output/input tape of the same machine such that (t, t−1) is a pair of tapes. We require that two
machines connect via tape pairs only. That is, if (t, t−1) is a tape pair of a machine M , with t being
an input tape and t−1 the corresponding output tape, and M connects to other machines, then if M
connects to an output (input) tape of another machine M ′ with t (t−1), then M also connects to the
corresponding input (output) tape of M ′ with t−1 (t). The intuition behind this is that machines,
after having received some input from a machine M , usually send a response back to M at some
point, so they need a corresponding output tape. In particular there has to be a corresponding
output tape for every input tape of the environment such that the environment is able to send
responses to restricting messages to the correct machine.

Note that this is only a formal requirement, since every system Q that does not fulfill this
requirement can easily be adjusted by adding some additional tapes. The behavior of Q does not
change since these new tapes will never be used.

E.3 Strong Simulatability for Responsive Environments

We now define responsive environments, protocols for responsive environments, and responsive
simulators from §4.2 in the IITM model. We also define the security notion strong simulatability for
responsive environments in the IITM model with responsive environments.

16 In particular, we need an encoding such that it is possible to check the number of components in a tuple and read
single components without having to read the full string. Such an encoding can easily be established, so we will
keep it implicit for simplicity of presentation.
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Definition E.14 (Responsive environments). Let R be a restriction. Let P be a system of
IITMs and let E ∈ Env(P) be an environment. We define the event E to be the set of all runs of
E | P where the following holds true: If P sends a restricting message m ∈ R[0] on an external tape
t ∈ NET and if there exists a message m′ such that m′ is the first message received on an external
tape t′ (not necessarily in NET) of P after m was sent, then t′ = t−1 and (m,m′) ∈ R.

The environment E is called a responsive environment for P (with respect to R) if and only if
Pr [E] is overwhelming. We denote the set of all responsive environments for an IITM system P by
EnvR(P).

Note that if a responsive environment receives a restricting message, it may still perform arbitrary
computations and even send messages on tapes that are not connected to P (e.g. decision or any
internal tape). Note also that this definition does not imply that E is actually connected to the tape
t on which P sends a restricting message; it is entirely possible that a restricting message activates
a master IITM with an empty string on tape start. Nevertheless, the definition guarantees that the
next message to P will be on the corresponding answer tape and will be of a form that satisfies R
(except with negligible probability). Typically, however, E will be connected to all external tapes of
P, where P could be a real protocol or a simulator connected to an ideal protocol.

In our proofs, we will often say that “in a run of the system E | P restricting messages from P are
answered correctly” to say that such a run belongs to the event E specified in Definition E.14, i.e.,
after P sends a restricting message there is either no answer or the answer is of an expected form on
the correct tape. Analogously we say that “in a run of the system E | P a restricting message from
P is answered incorrectly” to say that such a run does not belong to E, i.e., at least one restricting
message was answered with an unexpected answer or on the wrong tape.

While responsive environments are defined with respect to a specific system P, the following
lemma shows that responsive environments are also responsive for systems that are indistinguishable
from P.

Lemma E.15. Let R be a restriction. Let P and P ′ be two systems of IITMs such that neither of
them has a start or decision tape, both systems have the same external interface, and E | P ≡ E |P ′
for all E ∈ EnvR(P). Then, EnvR(P) = EnvR(P ′).17

Proof. Let E ∈ EnvR(P). We can assume that start is a tape of E ; otherwise there would be no master
IITM and every run would directly terminate with empty output, which implies E ∈ EnvR(P ′). If
E 6∈ EnvR(P ′), then there must be a non-negligible set of runs of E | P ′ where a restricting message
of P ′ is not answered correctly. Let E ′ ∈ Env(P) be the single IITM that accepts all messages in
mode CheckAddress and then simulates E . Note that this is possible by Lemma 6 from [KT13]
which states that we can simulate every system with a single IITM that has the same external
interface and accepts all messages in mode CheckAddress. Furthermore, we add additional tapes
c to E ′ for each external network tape of P that does not connect to E . The system E ′ also has a
decision tape even if E does not have one. Note that these additional tapes do not interfere with the
simulation: If P in a run of E|P sends a message on an external network tape that is not connected
to E , the master IITM (which is part of E) will be activated with empty input. The system E ′ can
easily simulate this as soon as a message on one of these new tapes is received.
17 Note that this lemma does not impose any runtime requirements on the systems P and P ′. We need such a general

version of this lemma since there are often cases where we have constructed a new system P ′ from a system P and
still have to prove that the runtime of P ′ is bounded when running with a responsive environment. To prove this,
we first need the results of this lemma.
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Every time a message m′ is about to be sent by E to P (or P ′), E ′ checks whether the condition
of responsive environments is about to be violated by this message and, if that is the case, outputs
1 on decision instead. Note that this is easy to check: First, E ′ connects to all external network
tapes of P, i.e. E ′ “sees” all restricting messages m from P. Second, because R is decidable in
polynomial time in the second component, E ′ can use the algorithm A (see Definition E.13) to
decide in polynomial time in |m′| whether m′ is an allowed answer: If A outputs 0, m′ is allowed
because m 6∈ R[0]. If A outputs 1, m′ is an incorrect answer since m ∈ R[0] ∧ (m,m′) 6∈ R. If A
outputs 2, m′ is an allowed answer iff it is sent on the correct tape, because m ∈ R[0]∧ (m,m′) ∈ R.
Since m′ was outputed by the simulated E and since E is universally bounded, |m′| is bounded by a
polynomial in the security parameter η and the length of the external input a (if any). So, overall
A runs in polynomial time in η and |a|. If E wants to output something on decision or the master
IITM of E stops with empty output, E ′ outputs 0 on decision instead. Now it is easy to see that E ′
is universally bounded since E ′ only simulates the universally bounded system E and additionally
performs some checks which can be carried out in polynomial time. In particular, since E ′ uses the
algorithm A to decide whether it must ouput 1, it does not have to read the entire messages m
that are sent by P but only polynomial many bits (as many as required by the polynomial time
algorithm A and the universally bounded system E).

Clearly, we have that E ′ ∈ EnvR(P) since E ′ ends the run before a restricting message from P is
answered incorrectly. Furthermore, since every restricting message from P (or P ′) will activate the
simulated E (either on a connected tape or on tape start), it is easy to see that E ′ will output 1 if
and only if a restricting message from P or P ′ in the simulated run of E | P or E | P ′, respectively, is
answered incorrectly. In other words, E ′ is able to “see” all incorrect answers since E must have been
the system that sent the incorrect answer. Overall, because E ∈ EnvR(P) and E 6∈ EnvR(P ′), we
have that E ′ | P 6≡ E ′ | P ′ in contradiction to the assumption that E | P ≡ E |P ′ for all E ∈ EnvR(P)
and the fact that E ′ ∈ EnvR(P). The other inclusion follows analogously. ut

Since we will consider responsive environments only in this work, it is not necessary (and
generally not even possible) to make any runtime guarantees for a system P if combined with an
arbitrary environment (i.e. any universally bounded system that can be connected to P). This is
why we need a weaker notion of environmentally bounded systems.

Definition E.16 (R-environmentally bounded systems). Let P be a system of IITMs. Then
P is called environmentally bounded for responsive environments or simply R-environmentally
bounded if and only if E | P is almost bounded for all E ∈ EnvR(P).
The system P is called environmentally strictly bounded for responsive environments or simply
R-environmentally strictly bounded if and only if E | P is strictly bounded for all E ∈ EnvR(P).

Definition E.17 (Protocol systems for responsive environments). Let R be a restriction.
Let P be a system of IITMs. Then P is called a protocol system for responsive environments if and
only if P has no tapes named start or decision, P is R-environmentally bounded, and every IITM in
P that is not in the scope of a bang accepts all messages in mode CheckAddress.

The only difference between protocol systems and protocol systems for responsive environments is
that the runtime condition of the latter is relaxed, i.e. the set of all protocol systems for responsive
environments is a superset of the set of all protocol systems. From now on, we will say environmentally
bounded protocol system to denote a protocol system in the original sense and we will simply say
protocol system to denote a protocol system for responsive environments since the latter systems
will be the default from now on.
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Definition E.18 (Responsive simulators). Let R be a restriction. Let P,F be protocol systems.
Let S be an adversarial system such that S can be connected to F , the set of external tapes of S is
disjoint from the set of I/O-tapes of F , S |F and P have the same external interface, and S |F is
R-environmentally bounded.

Let E ∈ EnvR(P) be a responsive environment. We define the event E to be the set of all runs of
E | S | F where the following holds true: If F sends a restricting message m ∈ R[0] on an external
tape t ∈ NET and if there exists a message m′ such that m′ is the first message received on an
external tape t′ of F after m was sent, then t′ = t−1 and (m,m′) ∈ R.

The simulator S is called a responsive simulator (with respect to R) if and only if Pr [E] is
overwhelming for all responsive environments E ∈ EnvR(P). We denote the set of all responsive
simulators for protocol systems P and F by SimPR(F).

This definition ensures that restricting messages from F are answered without activating another
machine of F (and with an expected response), even if F is connected to a simulator (on its network
interface). Analogous to responsive environments, the terms restricting messages are answered
correctly and a restricting message is answered incorrectly can also be defined for responsive
simulators.

Note that the definition of the event E uses E ∈ EnvR(P) instead of E ∈ EnvR(S |F). This is
motivated by the fact that S should be responsive for all responsive environments of P, which
is supposed to realize F . The simulator S should not restrict this set. In fact, good simulators
do not restrict this set: We will use responsive simulators for settings where we have/require
E | P ≡ E | S |F for every E ∈ EnvR(P). Thus, by Lemma E.15, in these settings it holds true
that EnvR(P) = EnvR(S |F). This also motivates why we could use E ∈ EnvR(S |F) instead of
E ∈ EnvR(P) for simulators in Definition 4.6 in the main body. Since both sets are the same in this
setting, it was simpler to reuse the definition of responsive adversaries instead of separately defining
responsive simulators.

Now we can define strong simulatability for responsive environments.

Definition E.19 (Strong Simulatability with responsive environments). Let R be a restric-
tion. Let P and F be protocol systems, the real and ideal protocol, respectively. Then, P realizes F
with respect to responsive environments (P ≤R F) if and only if there exists a responsive simulator
S ∈ SimPR(F) such that E | P ≡ E | S |F for every responsive environment E ∈ EnvR(P).

As shown in Section E.4, being responsive is typically a property that is easy to see/prove
for simulators. First, we will prove some fundamental properties of ≤R, namely reflexivity and
transitivity. For this purpose, we first have to recall two lemmas that were originally shown in [KT13].
Since in [KT13] the lemmas were not defined with respect to responsive environments, we adjust
them and say where the original proofs have to be changed. We also prove two new lemmas that are
based on the other lemmas.

In the following lemma, for a system R|Q where R contains a master IITM, we consider an
IITM, denoted by [R]Q, which simulates R up to the runtime bound of R|Q and then, if the
runtime bound is exceeded, terminates the run with empty output.

Lemma E.20 (Lemma 7 from [KT13]). Let R and Q be connectable systems such that R|Q
is almost bounded and start is a tape of R (i.e. R contains a master IITM, and hence, Q does not).
Then there exists an IITM [R]Q such that the following conditions are satisfied:

1. [R]Q and R are compatible.
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2. [R]Q accepts every message in mode CheckAddress.
3. [R]Q is universally bounded
4. [R]Q | Q is almost bounded
5. [R]Q | Q ≡ R |Q

Lemma E.21 in combination with Lemma E.23 says that E | S is a responsive environment for F .
We require simulators to be responsive in order to get this property. Without requiring simulators
to be responsive, one could not move a simulator into the environment and still hope to obtain
a responsive environment, a property, which, however, is important in many places, such as the
transitivity of ≤R and the composition theorems.

Lemma E.21. Let R be a restriction. Let P,F be protocol systems with P ≤R F . Let S ∈ SimPR(F)
be the responsive simulator that is used in the definition of P ≤R F . Let E ∈ EnvR(P) be a responsive
environment such that start is a tape of E. Then [E | S]F ∈ EnvR(F).

Proof. Let P,F ,S, E be systems as required by the lemma. First, we observe that Lemma E.20 can
be applied to E | S | F : Since S |F is R-environmentally bounded and E ∈ EnvR(S |F) by Lemma
E.15, we have that E | S | F is almost bounded and E | S contains a master IITM.
By Lemma E.20 we know that [E | S]F is universally bounded, and hence, [E | S]F ∈ Env(F). Suppose
there was a non-negligible set of runs of [E | S]F | F where a restricting message of F is not answered
correctly. Since [E | S]F | F and E | S | F are the same except for a negligible set of runs (where a
certain runtime is reached), it follows that there must also be a non-negligible set of runs of E | S | F
where a restricting message from F is not answered correctly. However, this is a contradiction
to S ∈ SimPR(F). This implies that restricting messages from F are answered correctly in an
overwhelming set of runs of [E | S]F | F , i.e. [E | S]F ∈ EnvR(F). ut

Note that Lemma E.21 is a special case of the following more general lemma.

Lemma E.22. Let R be a restriction and let R,Q be connectable systems of IITMs such that R|Q
is almost bounded and start is a tape of R, then [R]Q ∈ EnvR(Q) if restricting messages from Q are
answered correctly in an overwhelming set of runs of R|Q.

Proof. The proof is analogous to the proof of Lemma E.21. ut

The following lemma corresponds to Lemma 8 in [KT13].

Lemma E.23. Let R be a restriction. Let R and Q be connectable systems such that R|Q is
almost bounded, start is a tape of R (i.e. R contains a master IITM, and hence, Q does not), and
decision is not a tape of Q. Furthermore, let Q′ be a system which is compatible with Q and satisfies
the following condition: E |Q ≡ E |Q′ for every E ∈ EnvR(Q) such that E |Q is almost bounded. If
[R]Q ∈ EnvR(Q), then

[R]Q | Q′ ≡ R |Q′ .

Moreover, if [R]Q ∈ EnvR(Q) and [R]Q | Q′ is almost bounded, then R|Q′ is almost bounded too.

Proof. We may assume that R is a single IITM that accepts every message in mode CheckAddress
(by Lemma 6 from [KT13]). Now, recall that by definition, [R]Q exactly simulates all transitions of
R up to a certain polynomial bound and that when running [R]Q|Q this bound is exceeded with
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negligible probability only. If [R]Q ∈ EnvR(Q), then the probability that this bound is exceeded
when running the system [R]Q|Q′ is negligible as well. Otherwise, one could easily construct a
system E such that E ∈ EnvR(Q), E|Q is almost bounded, and E|Q 6≡ E|Q′, in contradiction to
the assumption: The system E is defined to simulate [R]Q and output 1 on decision if and only
if the bound is exceeded (note that this is only possible since decision is not a tape of Q and Q′,
respectively). Since we assume [R]Q ∈ EnvR(Q), we directly obtain that E ∈ EnvR(Q). Furthermore,
since [R]Q|Q is almost bounded, it is easy to see that E|Q is also almost bounded. Observe that 1
is output on decision in runs of E|Q and E|Q′, respectively, if and only if the bound is exceeded.

It follows that with overwhelming probability [R]Q exactly simulates R in the system [R]Q|Q′.
Thus, we obtain [R]Q|Q′ ≡ R|Q′. Similarly, it is easy to see that if [R]Q|Q′ is almost bounded (and
[R]Q ∈ EnvR(Q)), then R|Q′ is almost bounded too.

ut

We can now proof reflexivity and transitivity of ≤R.

Lemma E.24. ≤R is reflexive and transitive.

Proof. Reflexivity: Let P be a protocol system. Let S be a single IITM without external tapes that
does nothing. This directly implies that S fulfills the conditions of responsive simulators regarding
the interfaces and runtime. Let E ∈ EnvR(P) be a responsive environment. We have E | P ≡ E | S | P
because S cannot interact with the other machines, i.e. S does not influence a run in any way.
Moreover, since E ∈ EnvR(P) and S is not involved in the interaction between E and P , we have that
restricting messages sent from P to E are answered correctly by E . Hence, we obtain S ∈ SimPR(P).
Overall, we have that P ≤R P.

Transitivity: Let P,P ′,P ′′ be protocol systems with P ≤R P ′ and P ′ ≤R P ′′. Without loss of
generality, we can assume that P,P ′ and P ′′ have pairwise disjoint sets of (external) network tapes.
This is possible since, if a simulator exists for two systems which share some network tape names,
we can rename the tapes of one system and define a new simulator that behaves just as the original
one but additionally forwards messages between the renamed tapes and the original tapes. Let
S ∈ SimPR(P ′) and S ′ ∈ SimP ′R (P ′′) be the simulators that are used in the definition of P ≤R P ′ and
P ′ ≤R P ′′, respectively. Let E ∈ EnvR(P) be a responsive environment. We may assume that E has
a start tape; otherwise there would be no master IITM and the run would always directly terminate
with empty output, in which case transitivity is trivially fulfilled. Since E contains a master IITM we
can use Lemma E.20 to get E | S | P ′ ≡ [E | S]P ′ | P ′. By Lemma E.21 we have [E | S]P ′ ∈ EnvR(P ′)
and thus [E | S]P ′ | P ′ ≡ [E | S]P ′ | S ′ | P ′′. Lemma E.23 implies [E | S]P ′ | S ′ | P ′′ ≡ E | S | S ′ | P ′′. Note
that E | S | S ′ | P ′′ is well defined, i.e., all systems are actually connectable by the initial assumption
that the sets of external network tapes of P,P ′, and P ′′ are pairwise disjoint. Overall we have that
E | P ≡ E | S | S ′ | P ′′.

It remains to show that S | S ′ ∈ SimPR(P ′′). It is easy to see that the conditions regarding
interfaces of responsive simulators are fulfilled. Since [E | S]P ′ ∈ EnvR(S ′ | P ′′) by Lemma E.15, we
have that [E | S]P ′ | S ′ | P ′′ is almost bounded, and thus, by Lemma E.23, E | S | S ′ | P ′′ is also almost
bounded. This holds for every E ∈ EnvR(P) and thus for every E ∈ EnvR(S | S ′ | P ′′) by Lemma E.15,
so S | S ′ | P ′′ is R-environmentally bounded. Let the event E be the set of all runs of E | S | S ′ | P ′′
where a restricting message from P ′′ is answered on the wrong tape or with an unexpected response.
If Pr [E] is non-negligible, then there must also be a non-negligible set of runs of [E | S]P ′ | S ′ | P ′′
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where a restricting message from P is not answered correctly.18 However, this is a contradiction to
S ′ being a responsive simulator, since [E | S]P ′ is a responsive environment of P ′. Altogether, this
implies S | S ′ ∈ SimPR(P ′′), and thus, P ≤R P ′′. ut

E.4 Proving Responsiveness of Simulators
According to the definition of strong simulatability (Definition E.19), for P ≤R F to hold one has to
prove that there exists a simulator S which fulfills i) certain restrictions concerning connectivity and
interfaces, ii) certain runtime conditions, iii) the responsiveness condition (i.e., restricting messages
from F are answered correctly by S), and most importantly iv) the equivalence E | P ≡ E | S |F for
all E ∈ EnvR(P). Conditions i) and ii) are easy to check. The following lemma shows that iii) can be
checked easily as well. According to the definition, one has to show that if S receives a restricting
message from F , then S has to make sure that this message is answered correctly according to the
restriction R. So if S sends out a message on an external tape, then there are two options: either
this message is sent to F , and in this case, this has to be the correct response according to R, or
this message is sent to E , but then this message has to be a restricting message for E in order to
make sure that E answers directly (to S). If S sent a non-restricting message to E , then E would be
free to send a message to F , which would violate the responsiveness property that S has to fulfill.
Whether or not S always sends such restricting messages (either to F or to E) should be easy to
check given the specification of S. Therefore, condition iii) should be easy to check. This is made
precise in the following lemma.

Lemma E.25. Let R be a restriction. Let P,F be protocol systems. Let S be an adversarial system
such that S can be connected to F , the set of external tapes of S is disjoint from the set of I/O-tapes
of F , S |F and P have the same external interface, and S |F is R-environmentally bounded.

Let E ∈ EnvR(P) be a responsive environment. We define the event EE to be the set of all runs
of E | S | F where the following holds true: The system S accepts all restricting messages from F
in mode CheckAddress. If S receives a restricting message from F , it does not produce empty
output until it has sent a message to F . Furthermore, if S sends a message on an external tape after
having received a restricting message m on tape t from F and before having sent an answer to F ,
the message is of one of two types: either a restricting message n on an external tape of S |F (i.e.
to the environment) where all possible answers n′ with (n, n′) ∈ R will be accepted by S in mode
CheckAddress, or a message m′ on tape t−1 with (m,m′) ∈ R.

Then, S ∈ SimPR(F) and P ≤R F if, for all E ∈ EnvR(P), we have that (I) E | P ≡ E | S |F and
(II) the event EE is overwhelming.

Proof. Let E ∈ EnvR(P) be a responsive environment and let S be given as above such that (I) and
(II) are satisfied. In order to show P ≤R F , we have to prove only that S ∈ SimPR(F). For this,
it remains to show that S fulfills the responsiveness condition, i.e., restricting messages from F
are answered correctly in an overwhelming set of runs of E | S | F . First, by Lemma E.15 we have
E ∈ EnvR(S |F). Let E′ be the set of all runs of E | S | F where a restricting message from F is
answered incorrectly, let E′′ be the subset of E′ where the first restricting message from F that
is not answered correctly is sent on a network tape that is not connected to S, and let E′′′ be the
subset of E′ where the first restricting message from F that is not answered correctly is sent on a
18 Per construction of [E | S]P′ it works just like E | S except for cases where a certain runtime is reached. However,

this runtime is only reached by E | S | S ′ | P ′′ in a negligible set of runs (see the proof of Lemma E.23). Since both
systems only differ in a negligible set of runs, the statement follows.
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network tape that is connected to S. Obviously, E′′ and E′′′ are disjoint, E′ = E′′ ∪E′′′, and hence,
Pr [E′] = Pr [E′′] + Pr [E′′′].

The event E′′ is a subset of all runs of E | S | F where a restricting message from S |F is answered
incorrectly. Since E ∈ EnvR(S |F), this set of runs is negligible, and thus, Pr [E′′] must also be
negligible.

The event E′′′ can be devided into two (distinct) subsets E′′′0 and E′′′1 , where we define E′′′0 to
contain only those runs of E′′′ which belong to EE (as defined in the lemma) and E′′′1 contains the
remaining runs of E′′′. Since, by assumption, EE is overwhelming, we have that E′′′1 is negligible.
Now, we further divide E′′′0 into two (distinct) subsets E′′′0a and E′′′0b, where we define E′′′0a to contain
only those runs of E′′′0 where restricting messages from S on an external tape of S |F are answered
correctly and E′′′0b contains the remaining runs of E′′′0 . Again, we directly obtain that E′′′0b is negligible
since E ∈ EnvR(S |F).

We now show that E′′′0a is the empty set, and hence, Pr [E′′′0a] = 0. Assume that E′′′0a contains a
run. Consider the first restricting message from F sent to S that is answered incorrectly. Such a
message exists since E′′′0a ⊆ E′′′. Since E′′′0a ⊆ EE , S accepts this message in mode CheckAddress
and thus gets activated. Since S may not produce empty output, it can only end its activation by
sending one of two kinds of messages. If it sends a restricting message to E , the next message to
S |F will be on a tape of S (otherwise the run would be in E′′′0b). Since S must accept this message
in mode CheckAddress (by definition of EE) the system S will get activated and, again, it may
only end this activation by sending one of two kinds of messages. If S sends a message to F , it will
be of such a form that the answer to the restricting message is correct; otherwise this run would be
in E′′′1 . Hence, the restricting message from F is actually answered correctly, a contradiction. This
implies that E′′′0a = ∅.

Altogether, we have that Pr [E′] = Pr [E′′] + Pr [E′′′1 ] + Pr [E′′′0a] + Pr [E′′′0b], where all probabilities
on the right-hand side of the equation are negligible. Hence, the claim follows. ut

We note that S might send several restricting messages to E until it sends an answer to F .

E.5 Notions of Universal Composability
In the literature, besides strong simulatability, often the security notions UC, dummy UC, and
black-box simulatability are used. In [KT13], it was shown that these notions are equivalent to strong
simulatability, which justifies the use of the coneptually simpler notion of strong simulatability.
Furthermore, in [KT13], equivalence to reactive simulatability, a notion which is not used in the
literature, was shown as well; however, this equivalence holds true only with respect to non-uniform
environments. In this section, we show that these notions are still equivalent with respect to
responsive environments. Hence, again, it suffices to consider strong simulatability only. First,
we have to define the other security notions. For this purpose, we have to introduce responsive
adversaries and the (responsive) dummy adversary.

Definition E.26 (Responsive adversaries). Let R be a restriction. Let P be a protocol system.
Let A be an adversarial system such that A can be connected to P, the set of external tapes of A is
disjoint from the set of I/O-tapes of P, A connects to all external network tapes of P, and A|P is
R-environmentally bounded.

Let E ∈ EnvR(A|P) be a responsive environment. Define the event E to be the set of all runs of
E|A|P where the following holds true: If P sends a restricting message m ∈ R[0] on an external tape
t ∈ NET and if there exists a message m′ such that m′ is the first message received on an external
tape t′ of P after m was sent, then t′ = t−1 and (m,m′) ∈ R.
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The adversarial system A is called a responsive adversary (with respect to R) if and only if
Pr [E] is overwhelming for all responsive environments E ∈ EnvR(A|P). We denote the set of all
responsive adversaries for a protocol system P by AdvR(P).

Note that responsive adversaries are quite similar to responsive simulators since both definitions
only differ in the requirements for the external interface of A|P and S|F , respectively. The idea
behind this definition is that an adversary should also answer restricting messages from P correctly,
i.e. he should not be more powerful than a responsive environment.

In the following, we will also need a special responsive adversary: Given a protocol system P,
by DP we denote the dummy adversary for P which connects to all network tapes of P and has
one corresponding network tape per network tape of P. The dummy adversary simply forwards all
messages between a tape of P and the corresponding tape. Note that the connectivity conditions
of responsive adversaries are fulfilled and that DP |P is R-environmentally bounded since P is
R-environmentally bounded. Furthermore, it is easy to see that restricting messages of P are
answered correctly in an overwhelming set of runs, since the dummy adversary forwards the same
restricting message to a responsive environment on a network tape. Thus, we have DP ∈ AdvR(P).

Definition E.27. Let R be a restriction. Let P and F be protocol systems, the real and ideal
protocol.19

1. Strong Simulatability with responsive environments (SSR):
P ≤SSR F iff ∃ S ∈ SimPR(F) ∀ E ∈ EnvR(A|P):

E|P ≡ E|S|F .

2. Universal Simulatability/Composability with responsive environments (UCR):
P ≤UCR F iff ∀ A ∈ AdvR(P) ∃ I ∈ SimA|PR (F) ∀ E ∈ EnvR(A|P):

E|A|P ≡ E|I|F .

3. Dummy Version of UC with responsive environments (dummyUCR):
P ≤dumUCR F iff ∃ I ∈ SimDP |P

R (F) ∀ E ∈ EnvR(DP |P):

E|DP |P ≡ E|I|F .

4. Black-box Simulatability with responsive environments (BBR):
P ≤BBR F iff ∃ S ∈ SimPR(F) ∀ A ∈ AdvR(P) ∀ E ∈ EnvR(A|P):

E|A|P ≡ E|A|S|F .

5. Reactive Simulatability with responsive environments (RSR):
P ≤RSR F iff ∀ A ∈ AdvR(P) ∀ E ∈ EnvR(A|P) ∃ I ∈ SimA|PR (F):

E|A|P ≡ E|I|F .

19 Strong simulatability was defined in Definition E.19 already. We here list strong simulatability again to have a
complete list of the security notions we consider.
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For strong and black-box simulatability, if P and F do not have disjoint network tapes, there might
not exist a simulator such that P and S |F are indistinguishable since S cannot connect to all
network tapes of F in this case. In what follows, we therefore always (implicitly) assume that the
network tapes of F are renamed first so that the set of network tapes of P and F are disjoint. Note
that this is only a formal requirement. It does not influence the behavior of P and F in any way.

We will now prove that strong simulatability with responsive environments is equivalent to the
other notions of Definition E.27. We note that, except for the equivalence of strong simulatability
and reactive simulatability, this theorem holds true also for uniform environments, i.e., environments
that do not obtain external input. As mentioned before, an analogous result was originally proven
in [KT13] for arbitrary environments.

Theorem E.28. Let R be a restriction. Let P and F be protocol systems. Then:

P ≤SSR F iff P ≤UCR F iff P ≤dumUCR F iff P ≤BBR F iff P ≤RSR F .

Proof. Let P and F be protocol systems.

P ≤SSR F iff P ≤UCR F iff P ≤dumUCR F : We will first show the equivalence of SSR, UCR, and
dummyUCR. Since UCR trivially implies dummyUCR, we only have to show that SSR implies UCR

and that dummyUCR implies SSR.
Let P ≤SSR F . Then there exists a responsive simulator S ∈ SimPR(F) such that E|P ≡ E|S|F

for all E ∈ EnvR(P). Let A ∈ AdvR(P) be a responsive adversary and let E ∈ EnvR(A|P) be a
responsive environment. We define I := A|S. We may assume that start is a tape of E ; if this was not
the case, then there would be no master IITM in E|A|P and E|I|F , i.e. every run directly terminates
with empty output, which trivially fulfills the following statements. Since A|P is R-environmentally
bounded we have that E|A|P is almost bounded. Furthermore, by the definition of responsive
adversaries, we know that restricting messages of P are answered correctly in an overwhelming set
of runs of E|A|P. This gives the following equation:

E|A|P ≡ [E|A]P |P (Lemma E.20)
≡ [E|A]P |S|F (Lemma E.22 and P ≤SSR F)
≡ E|A|S|F (Lemma E.23)
= E|I|F

We also obtain that E|I|F is almost bounded by Lemma E.23. Since this holds for all E ∈ EnvR(I|F)
by Lemma E.15, we have that I|F is R-environmentally bounded.

Now observe that there is only a negligible set of runs of [E|A]P |S|F where a restricting message
from F is answered incorrectly because S is a responsive simulator. Since [E|A]P |S|F and E|A|S|F
are the same except for a negligible set of runs (see the proof of Lemma E.23), the set of runs of
E|I|F where a restricting message from F is answered incorrectly must also be negligible. Overall
we have I ∈ SimA|PR (F), which shows that P ≤UCR F .

For the other implication, let P ≤dumUCR F . Then there exists a responsive simulator I ∈
SimDP |P

R (F) such that E|DP |P ≡ E|I|F for all E ∈ EnvR(DP |P). Let E ∈ EnvR(P). We can
construct a new responsive environment E ′ ∈ EnvR(DP |P) that works exactly as E but for all
network tapes c that connect between E and P, E ′ instead has a network tape c′ that connects to
the tape of DP that corresponds to c. Note that E|P and E ′|DP |P work in exactly the same way
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since we can rename tapes and insert the dummy adversary without changing the behavior of the
system by Lemma 4 and 5 from [KT13]. This implies E ′ ∈ EnvR(DP |P) since restricting messages
from P are answered correctly in an overwhelming set of runs of E|P and thus restricting messages
of DP |P must also be answered correctly in an overwhelming set of runs of E ′|DP |P.

Similarly, we can construct S ∈ SimPR(F) that works just as I but for every external network
tape c′ that does not connect to F , S instead has a network tape c that corresponds to c′.20 Now
we have:

E|P ≡ E ′|DP |P (Lemma 4 and 5 from [KT13])
≡ E ′|I|F (P ≤dumUCR F)
≡ E|S|F (Lemma 4 from [KT13])

It also holds true that S ∈ SimFR(P): The conditions regarding external interfaces are obviously
fulfilled. Since E ′|I|F and E|S|F are the same and E ′|I|F is almost bounded, we have that E|S|F
is almost bounded. This holds for all E ∈ EnvR(S|F) by Lemma E.15, and thus, S|F is R-
environmentally bounded. Finally, observe that restricting messages from F are answered correctly
in an overwhelming set of runs of E ′|I|F because I is a responsive simulator. This implies that
restricting messages from F are also answered correctly in an overwhelming set of runs of E|S|F ,
which shows S ∈ SimFR(P), and thus, P ≤SSR F .

P ≤SSR F iff P ≤BBR F : We first show SSR ⇒ BBR. Let P ≤SSR F . Then there exists S ∈ SimPR(F)
with E|P ≡ E|S|F for all E ∈ EnvR(P). Let A ∈ AdvR(P) and E ∈ EnvR(A|P). Analogously to the
proof of “SSR ⇒ UCR” we obtain that E|A|P ≡ E|A|S|F ,which directly implies P ≤BBR F since
S ∈ SimPR(F).

For the other implication let P ≤BBR F . Then there exists S ∈ SimPR(F) with E|A|P ≡ E|A|S|F
for all A ∈ AdvR(P) and E ∈ EnvR(A|P). In the following let E ∈ EnvR(P). Analogous to the proof
of “dummyUCR ⇒ SSR”, we can construct a new environment E ′ ∈ EnvR(DP |P) by renaming some
tapes of E such that E ′ connects to the dummy adversary DP instead of the network tapes of P.
We obtain the following equation:

E|P ≡ E ′|DP |P (Lemma 4 and 5 from [KT13])
≡ E ′|DP |S|F (DP ∈ AdvR(P) and P ≤BBR F)
≡ E|S|F (Lemma 4 and 5 from [KT13])

Since S ∈ SimPR(F) we directly obtain P ≤SSR F .

P ≤SSR F iff P ≤RSR F : Because dummyUCR, UCR and SSR are equivalent and UCR trivially
implies RSR, we have to show only that RSR implies dummyUCR. The main argument is similar to
the one presented in [Can01].

Let P ≤RSR F , then for all A ∈ AdvR(P) and all E ∈ EnvR(A|P) there exists I ∈ SimA|PR (F)
such that:

E|A|P ≡ E|I|F .

20 With corresponds we mean that P has a network tape c, which is mapped to a network tape c′ by the dummy
adversary.
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We choose A = DP to be the dummy adversary for P. We also choose E ∈ EnvR(DP |P) to be a
“universal” Turing machine (more precisely, a universal IITM) which takes as external input (i.e.,
input on start) a tuple of the form (a, e, 1t) where e is an encoding of some IITM (representing an
environmental system E ′), a is interpreted to be external input to E ′, and t is interpreted to be
runtime (by Lemma 6 from [KT13], we may assume that e encodes a single IITM which accepts
every message in mode CheckAddress). The universal IITM E simulates E ′ with external input
a up to t steps. During this simulation, E always checks whether E ′ is about to send an incorrect
answer to a restricting message of DP |P and, if that is the case, stops the run with empty output
instead. This check is possible in polynomial time, since R is decidable in polynomial time in the
second component (also see the proof of Lemma E.15 for a more detailed discussion). Clearly, E is
universally bounded because its runtime is polynomial in the security parameter plus the length
of the external input. Furthermore, E is responsive (for DP |P) since it never answers a restricting
message incorrectly. This implies that there exists IE ∈ SimDP |P

R (F) such that E|DP |P ≡ E|IE |F .
We observe that given a security parameter η, external input a, and an environmental system

E ′, there exists a tuple (a, e, 1t) of length polynomial in η + |a| (it suffices to choose t polynomial
in η + |a| because E ′ is universally bounded) such that E with external input (a, e, 1t) precisely
simulates E ′ except for runs where a restricting message is answered incorrectly by E ′. We will refer
to this observation by (*).

Now let E ′ ∈ EnvR(DP |P) be a responsive environment with representation e. We first show that
E ′ ∈ EnvR(IE |F). For this, let E ′′ ∈ EnvR(DP |P) be the universally bounded IITM that simulates
E ′, checks whether a restricting message is about to be answered incorrectly and outputs 1 if this is
about to happen. In all other cases 0 is output (again, see the proof of Lemma E.15 which includes
a more detailed construction of such an IITM). Let e′ be the representation of E ′′. Since E ′′ never
answers a responsive message incorrectly, we can use (*) to obtain that for all η ∈ N and a ∈ {0, 1}∗
there exists a tuple (a, e′, 1t) such that E ′′ is perfectly simulated by E with external input (a, e′, 1t).
Since E|DP |P ≡ E|IE |F , i.e. both systems differ only with negligible probability, the length of
(a, e′, 1t) is polynomial in η and |a|, and E ′′ outputs 1 with negligible probability in runs of E ′′|DP |P ,
we obtain that E ′′ also outputs 1 with negligible probability in runs of E ′′|IE |F . This implies that
E ′ ∈ EnvR(IE |F).

In the following, let g be the negligible function that bounds the probability of an incorrectly
answered message of DP |P in runs of E ′|DP |P and let g′ be the negligible function that bounds
the probability of an incorrectly answered message of IE |F in runs of E ′|IE |F . For all η ∈ N and
a ∈ {0, 1}∗, let (a, e, 1t) be the tuple from (*) such that E simulates E ′ perfectly in runs where all
restricting messages are answered correctly. We obtain the following equation, where f is a negligible
function:

|Pr
[
E ′|DP |P(1η, a) = 1

]
− Pr

[
E ′|IE |F(1η, a) = 1

]
|

≤ |Pr
[
E|DP |P(1η, (a, e, 1t)) = 1

]
− Pr

[
E|IE |F(1η, (a, e, 1t)) = 1

]
|+ g(η, a) + g′(η, a)

≤ f(η, (a, e, 1t)) + g(η, a) + g′(η, a)

Since the length of (a, e, 1t) is polynomial in η + |a|, with e being a fixed bit string and t being
a polynomial in η and a, we have that f ′(η, a) := f(η, (a, e, 1t)) is a negligible function. Now,
since the sum of three negligible functions is still negligible, we have that there is a negligible
function (in η and a) that bounds |Pr [E ′|DP |P(1η, a) = 1] − Pr [E ′|IE |F(1η, a) = 1] |. Hence, we
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have that E ′|DP |P ≡ E ′|IE |F for all E ′ ∈ EnvR(DP |P), which together with IE ∈ SimDP |P
R (F)

implies P ≤dumUCR F .
ut

E.6 Composition of a Constant Number of Protocol Systems

In this section we formally define and prove Theorem 4.8 in the IITM model. Analogously to [KT13],
in order to prove a theorem for composing a constant number of protocol systems, we first prove a
theorem which talks about computational indistinguishability. This theorem corresponds to Theorem
4 in [KT13], which we adjust to the case of responsive environments.

Theorem E.29. Let R be a restriction. Let k ≥ 1, Q,P1, . . . ,Pk,R1, . . . ,Rk be systems of IITMs
without start and decision tapes such that the following conditions are satisfied:

1. For all j ≤ k: Pj and Rj are R-environmentally bounded, Pj and Rj have the same (external)
interface, and E | Pj ≡ E |Rj for all E ∈ EnvR(Pj).

2. Q,P1, . . . ,Pk are I/O-connectable (hence, Q,R1, . . . ,Rk are I/O-connectable) and Q |P1 | . . . | Pk
is R-environmentally bounded.

Then, E |Q |P1 | . . . | Pk ≡ E |Q |R1 | . . . |Rk for all E ∈ EnvR(Q |P1 | . . . | Pk) and Q |R1 | . . . |Rk
is R-environmentally bounded.

Proof. The proof follows essentially the same argument as the original proof in [KT13], but uses
responsive environments instead of general environments.

Let Q,P1, . . . ,Pk,R1, . . . ,Rk be systems of IITMs such that the requirements of the theorem
are fulfilled. We will first prove the theorem for k = 1:

Let E ∈ EnvR(Q |P1) be a responsive environment. We can assume that start is a tape of E ;
otherwise there is no master IITM in E |Q |P , thus every run terminates directly with empty output,
in which case the theorem holds true. If P1 sends a restricting message m on an external network
tape t, then t is also an external network tape of Q |P1 since Q and P1 only connect via I/O
tapes. Because E is a responsive environment for Q |P1 we have that the next message m′ that
is sent to Q |P1 will be on tape t−1 with (m,m′) ∈ R (except for a negligible set of runs). Using
Lemma E.20 and Lemma E.22, we obtain E |Q |P1 ≡ [E |Q]P1 | P1 with [E |Q]P1 ∈ EnvR(P1). Then
E | P1 ≡ E |R1 for all E ∈ EnvR(P1) implies [E |Q]P1 | P1 ≡ [E |Q]P1 |R1. Using Lemma E.23, we
obtain [E |Q]P1 |R1 ≡ E |Q |R1. This implies that E |Q |P1 ≡ E |Q |R1.

We still have to prove that Q |R1 is R-environmentally bounded: By Lemma E.15 we know that
[E |Q]P1 ∈ EnvR(R1), and thus, since R1 is R-environmentally bounded, we know that [E |Q]P1 |R1
is almost bounded. By Lemma E.23 we conclude that E |Q |R1 is almost bounded. Since this holds
true for all E ∈ EnvR(Q |P1) and thus, by Lemma E.15, for all E ∈ EnvR(Q |R1), we have that
Q |R1 is R-environmentally bounded.

We now prove the theorem for k > 1. For every r ≤ k, we define the r-th hybrid system:

Hr := Q |R1 | · · · |Rr−1 | Pr+1 | · · · | Pk
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which can be connected to Pr or Rr. Let E ∈ EnvR(Q |P1 | . . . | Pk) be a responsive environment.
By applying the case “k = 1” k times, we obtain that:

E |Q |P1 | · · · | Pk
= E |H1 | P1 (syntactic reordering of systems)
≡ E |H1 |R1 (case k = 1 with H1 playing the role of Q)
= E |H2 | P2 (syntactic reordering of systems)
≡ E |H2 |R2 (Lemma E.15 and case k = 1 with H2 playing the role of Q)

...
= E |Hk | Pk (syntactic reordering of systems)
≡ E |Hk |Rk (Lemma E.15 and case k = 1 with Hk playing the role of Q)
= E |Q |R1 | . . . |Rk

In the above argument we need that Hr | Pr is R-environmentally bounded. This is the case:
Q |P1 | · · · | Pk = H1 | P1 is R-environmentally bounded by assumption. But then H1 |R1 is also
R-environmentally because the theorem holds true for “k = 1”. Iterating this argument proves the
claim; in particular this shows that Q |R1 | . . . |Rk is R-environmentally bounded, which is the
second part of the theorem. ut

Using the above theorem, we can now prove the composition theorem for a constant number of
protocol systems.

Theorem E.30 (Composition Theorem for a Constant Number of Protocol Systems).
Let R be a restriction. Let k ≥ 1, Q be a system of IITMs without start and decision tape, and
P1, . . . ,Pk,F1, . . . ,Fk be protocol systems such that all systems have pairwise disjoint sets of network
tapes and the following conditions are satisfied:

1. For all j ≤ k: Pj ≤R Fj
2. Q,P1, . . . ,Pk are I/O-connectable and Q |P1 | . . . | Pk is R-environmentally bounded.

Then, Q |P1 | . . . | Pk ≤R Q |F1 | . . . | Fk

Proof. Let Q,P1, . . . ,Pk,F1, . . . ,Fk be as assumed in the theorem. For all j ≤ k let Sj ∈ SimPjR (Fj)
be a responsive simulator such that E | Pj ≡ E | Sj | Fj for all responsive environments E ∈
EnvR(Pj). Note that, since Q,P1, · · · ,Pk,F1, · · · ,Fk have disjoint sets of network tapes, the systems
Q,S1,F1, · · · ,Sk,Fk are connectable.

By applying Theorem E.29 (with Rj := Sj | Fj for j ≤ k) we obtain that E |Q |P1 | . . . | Pk ≡
E |Q | S1 | F1 | . . . | Sk | Fk for all E ∈ EnvR(Q |P1 | . . . | Pk). We also obtain that the system Q |S1 |
F1 | . . . | Sk | Fk is R-environmentally bounded.

We still have to show that S1 | . . . | Sk ∈ SimQ |P1 | ... | Pk
R (Q |F1 | . . . | Fk). It is easy to see that

all conditions regarding interfaces of responsive simulators are fulfilled. We have also just proven
the runtime condition for S1 | . . . | Sk. So we only have to show that restricting messages from
Q |F1 | . . . | Fk are answered correctly in an overwhelming set of runs. Let E ∈ EnvR(Q |P1 | . . . | Pk)
be a responsive environment. By Lemma E.15 we know that E ∈ EnvR(Q |S1 | F1 | . . . | Sk | Fk). We
may assume that start is a tape of E ; otherwise there is no master IITM in E |Q | S1 | F1 | . . . | Sk | Fk
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and every run directly terminates with empty output. Since there are no messages sent in such a
run, there also is no restricting message that is answered incorrectly and the claim follows.

Let the event E be the set of all runs of E |Q | S1 | F1 | . . . | Sk | Fk where a restricting message
from Q |F1 | . . . | Fk is answered incorrectly, let E′ be the set of all runs of E |Q | S1 | F1 | . . . | Sk | Fk
where a restricting message from Q is answered incorrectly, and let Ej for j ≤ k be the set of all
runs of E |Q | S1 | F1 | . . . | Sk | Fk where a restricting message from Fj is answered incorrectly. Note
that Q,F1, . . . ,Fk have disjoint network tapes, so if one of those systems sends a restricting message
on a network tape, then this message is sent on an external network tape of Q |F1 | . . . | Fk. In
particular, we have that E = E′ ∪

⋃
j≤k Ej , and thus, Pr [E] ≤ Pr [E′] +

∑
j≤k Pr [Ej ].

Since every incorrectly answered restricting message from Q is sent on an external network tape
of the system Q |S1 | F1 | . . . | Sk | Fk (network tapes of Q, Pj and Fj are disjoint for all j ≤ k) and
since it holds true that E ∈ EnvR(Q |S1 | F1 | . . . | Sk | Fk) we directly obtain that E′ is negligible.

Now, let us consider the event Ej for some j ≤ k. For brevity of presentation, we define the system
H := E |Q | S1 | F1 | . . . | Sj−1 | Fj−1 | Sj+1 | Fj+1 | . . . | Sk | Fk, i.e. the system H does not contain Sj
and Fj . We will construct a responsive environment for Sj | Fj : First we observe that if the system
Sj | Fj sends a restricting message on an external network tape (in a run of E |Q | S1 | F1 | . . . | Sk | Fk),
the restricting message is sent on an external network tape ofQ |S1 | F1 | . . . | Sk | Fk since the systems
Q,S1 | F1, . . . ,Sk | Fk have disjoint network tapes. Because of E ∈ EnvR(Q |S1 | F1 | . . . | Sk | Fk)
those messages are answered correctly in an overwhelming set of runs; we will refer to this observation
by (*) in what follows. Since the system E |Q | S1 | F1 | . . . | Sk | Fk is almost bounded and E contains
a master IITM, we can use Lemma E.20, and because of (*), we can also use Lemma E.22 to
obtain E |Q | S1 | F1 | . . . | Sk | Fk = H |Sj | Fj ≡ [H]Sj | Fj | Sj | Fj with [H]Sj | Fj ∈ EnvR(Si | Fi).
Furthermore, by Lemma E.15, we also have that [H]Sj | Fj ∈ EnvR(Pj).

Because the system Sj is a responsive simulator, we know that restricting messages from Fj
must be answered correctly in an overwhelming set of runs of [H]Sj | Fj | Sj | Fj . But then restricting
messages from F in H |Sj | Fj must also be answered correctly in an overwhelming set of runs since
H |Sj | Fj and [H]Sj | Fj | Sj | Fj are identical in an overwhelming set of runs. This implies that the
event Ej is negligible.

Overall, we have that Pr [E] ≤ Pr [E′] +
∑
j≤k Pr [Ej ] where the right side is a sum of k + 1

negligible functions, and hence, Pr [E] is negligible. ut

E.7 Unbounded Self-Composition
We now prove Theorem 4.9 in the IITM model. Recall that this composition theorem says that
it suffices to prove that a single session of a real protocol P realizes a single session of an ideal
protocol F in order to conclude that multiple sessions of the real protocol realize multiple sessions
of the ideal protocol.

For this purpose, we first recall and adapt the definitions of session identifier (SID) functions
and σ-session versions from [KT13]. An SID function assigns an SID (or ⊥) to every message sent
or received on a tape of an IITM. An IITM M is called a σ-session version if it does not accept
messages (in mode CheckAddress) for which σ outputs ⊥. Also, if M accepted a message on some
tape at some point for which σ returned the SID sid 6= ⊥, then later on M may only accept messages
with the same SID sid, i.e., for which σ returns sid. Also, M may only output messages with this
sid. A system is called a σ-session version if all IITMs in that system are σ-session versions.

Then, we recall and adapt the definitions of σ-single session environments and simulators
from [KT13]. Such environments may output messages which all have the same SID (according
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to σ), and hence, these environments can create only a single protocol session in every run. The
(restricted) simulators have to work only for those environments.

Finally, we state a version of the composition theorem for unbounded self-composition from [KT13]
(see Theorem 10 in that work). We adapt this theorem for responsive environments.

As mentioned, we start with the definition of SID functions and σ-session versions.

Definition E.31 (Session Identifier (SID) Function). A function σ : {0, 1}∗ × T → {0, 1}∗ ∪
{⊥} (where T is a set of tapes names) is called a session identifier (SID) function if it is computable
in polynomial time (in the length of its input).

Definition E.32 (σ-Session Versions). Let σ be an SID function and let M be an IITM such
that σ is defined for all (names of) tapes of M . Then, M is a σ-session machine (also called a
σ-session version) if for every system Q such that Q and M are connectable the following conditions
are satisfied for every η, a, and every run ρ of (Q|M)(1η, a):

1. Whenever M is activated in ρ in mode CheckAddress with an input message m on tape c,
then M rejects m if σ(m, c) = ⊥.

2. If the first input message that M accepted in ρ in mode CheckAddress is m0 on tape c0 and
(later) M is activated in mode CheckAddress in ρ with an input message m on tape c, then
M rejects m if σ(m, c) 6= σ(m0, c0).

3. Whenever M outputs a non-empty message m on tape c in ρ in mode Compute, then σ(m, c) =
σ(m0, c0) (where the first accepted message was m0 on tape c0, see above).

A system R is called a σ-session system/version if every IITM occuring in R is a σ-session version.

We will also use a stronger variant of σ-session versions. An IITM M is called σ-complete, if it fulfills
the conditions stated in Definition E.32, but with Condition 2. replaced by the following stronger
condition: If the first input message that M accepted in ρ in mode CheckAddress is m0 on tape
c0 and (later) M is activated in mode CheckAddress in ρ with an input message m on tape c,
then M accepts m iff σ(m, c) = σ(m0, c0). In other words, σ determines exactly those messages
accepted by M in mode CheckAddress.

Definition E.33 (σ-Single Session Responsive Environment). Let R be a restriction. Let σ
be an SID function, let P be a system of IITMs and let E ∈ EnvR(P) be a responsive environment for
P. The system E is called a σ-single session responsive environment if for every system Q such that
E and Q are connectable the following holds true for every η, a and in every run ρ of (E |Q)(1η, a):

Let m0 6= ε (where ε is the empty bit string) be the first message output by E on some external
tape c0 6= decision in ρ. Then σ(m0, c0) 6= ⊥ and every message m 6= ε output by E on an external
tape c 6= decision in ρ satisfies σ(m, c) = σ(m0, c0).

We denote the set of all σ-single session responsive environments for a system P by EnvR,σ-single(P).

Definition E.34 (σ-Single Session Responsive Simulator). Let R be a restriction. Let σ be
an SID function and let P,F be protocol systems. Let S be an adversarial system such that S can
be connected to F , the set of external tapes of S is disjoint from the set of I/O-tapes of F , S |F
and P have the same external interface, and E | S | F is almost bounded for all E in EnvR,σ-single(P).

Let E ∈ EnvR,σ-single(P) be a σ-single session responsive environment. Define the event E to
be the set of all runs of E | S | F where the following holds true: If F sends a restricting message
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m ∈ R[0] on an external tape t ∈ NET and if there exists a message m′ such that m′ is the first
message received on an external tape t′ of F after sending m, then t′ = t−1 and (m,m′) ∈ R.

The simulator S is called a σ-single session responsive simulator (with respect to σ and R) if and
only if Pr [E] is overwhelming for all σ-single session responsive environments E ∈ EnvR,σ-single(P).
We denote the set of all σ-single session responsive simulators for protocol systems P and F by
SimPR,σ-single(F).

Note that every responsive simulator also is a σ-single session responsive simulator, since the
definition of the latter is a relaxed version of the former (i.e. the runtime condition and the event E
are only defined for a subset of all responsive environments).

Definition E.35 (σ-Single Session Realization). Let R be a restriction. Let σ be an SID
function and let P and F be protocol systems, the real and ideal protocol, respectively, such that P
and F are σ-session versions. Then, P single-session realizes F w.r.t. σ and R (P ≤R,σ-single F)
if and only if there exists S ∈ SimPR,σ-single(F) such that E | P ≡ E | S |F for every σ-single session
responsive environment E ∈ EnvR,σ-single(P).

Now, the following theorem says that if a single session of P realizes a single session of F , i.e., if
P realizes F for all σ-single session (responsive) environments, then multiple session of P realize
multiple sessions of F , i.e., P realizes F for all (responsive) environments.

Theorem E.36 (Composition Theorem for Unbounded Self-Composition of SID De-
pendent Protocols). Let R be a restriction. Let σ be an SID function and let P and F be protocol
systems such that P and F are σ-session versions and P ≤R,σ-single F . Then, P ≤R F .

Before we can prove this theorem we have to show some additional lemmas and another theorem.
In what follows, we will often use the (informal) term copy of a system to denote the set of all

instances of a σ-session version (in some run) that accept messages with the same SID. Note that
this term is justified, since σ-session versions will never accept two messages with different SIDs
and thus we can group instances according to the SID of the first message they accepted.

Lemma E.37 (Variant of Lemma E.15 for σ-single session environments). Let R be a
restriction. Let P and P ′ be two systems of IITMs such that neither of them has a start or decision
tape, both systems have the same external interface, and E|P ≡ E|P ′ for all E ∈ EnvR,σ-single(P).
Then, EnvR,σ-single(P) = EnvR,σ-single(P ′).

Proof. The original proof can easily be adjusted: First, one assumes E ∈ EnvR,σ-single(P). Then it
is obvious that E ′ ∈ EnvR,σ-single(P) by construction. The remainder of the proof stays exactly the
same. ut

Lemma E.38 (Variant of Lemma E.23 for σ-single session environments). Let R be a
restriction. Let R and Q be connectable systems such that R|Q is almost bounded, start is a tape
of R (i.e. R contains a master IITM), and decision is not a tape of Q. Furthermore, let Q′ be
a system which is compatible with Q and satisfies the following condition: E|Q ≡ E|Q′ for every
E ∈ EnvR,σ-single(Q) such that E|Q is almost bounded. If [R]Q ∈ EnvR,σ-single(Q), then

[R]Q|Q′ ≡ R|Q′ .

Moreover, if [R]Q ∈ EnvR,σ-single(Q) and [R]Q|Q′ is almost bounded, then R|Q′ is almost bounded
too.
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Proof. The proof is analogous to the proof of Lemma E.23. ut

The following theorem says that unbounded self-composition holds true for the computational
indistinguishability relation. From this theroem, we will easily obtain Theorem E.36, i.e., unbounded
self-composition for strong simulatability.

Theorem E.39. Let R be a restriction. Let σ be an SID function and let P be a protocol system
such that P is a σ-session version. Let Q be a system of IITMs compatible with P such that Q is a
σ-session version, every machine in Q that is not in the scope of a bang accepts all messages in
mode CheckAddress and E|Q is almost bounded for all E ∈ EnvR,σ-single(Q).21

If E|P ≡ E|Q for all E ∈ EnvR,σ-single(P), then E|P ≡ E|Q for all E ∈ EnvR(P) and Q is
R-environmentally bounded.

Proof. Let P,Q be systems of IITMs as required by the theorem such that E|P ≡ E|Q for all
E ∈ EnvR,σ-single(P). Let E ∈ EnvR(P). In the following, by a hybrid argument, where we replace the
copies of P by copies of Q with the same SID, we show that E|P ≡ E|Q. Then, we use this result to
show that Q is R-environmentally bounded.

By Lemma 6 from [KT13], we may assume that E is a single IITM which, in mode CheckAddress,
accepts all messages. We may also assume that start is an external tape of E (otherwise there would
be no master IITM in E|P and E|Q, i.e. every run immediately ends with empty output. Thus,
E|P ≡ E|Q trivially holds true in this case). In addition, we may assume that the only external
tapes of E | P (and hence, E |Q) are start and decision. Moreover, we may assume, without loss of
generality, that E is such that every message m that E outputs on tape c (except if m is output
on tape decision) has some SID, i.e. σ(m, c) 6= ⊥: Since E will interact only with σ-session versions,
messages without an SID would be rejected by these σ-session versions anyway. Since E is universally
bounded, it follows that there exists a polynomial pε such that the number of different sessions
(i.e. messages with distinct SIDs output by E) is bounded from above by pε(η, |a|) (where η is the
security parameter and a is the external input given to E).

In what follows, let Q′ be the variant of Q obtained from Q by renaming every tape c occurring
in Q to c′. Analogously, let P ′′ be obtained from P by renaming every tape c occurring in P to c′′.
By this, we have that P, Q′, and P ′′ have pairwise disjoint sets of external tapes, and hence, these
systems are pairwise connectable.

We now define an IITM Er (for every r ∈ N) which essentially simulates E and which will run in
the system Er|P ′′|Q′|P or Er|P ′′|Q′|Q, respectively. The IITM Er randomly shuffles the copies of the
systems P and Q, respectively, invoked by E by choosing a random permutation on {1, . . . , pε(η, |a|)}.
Intuitively, this permutation is needed because E must not “know” whether the copy invoked in the
system P ′′|Q′|P (P ′′|Q′|Q) is a copy of P ′′, Q′, or P (P ′′, Q′, or Q). This is needed in the proof of
Lemma E.44. The first r − 1 copies (after shuffling) of the protocol invoked by E will be copies of
Q′, the r-th copy will be the external system P or Q, respectively, and the remaining copies will be
copies of P ′′.

Formally, Er is obtained from E as follows (recall that we assume that E is a single IITM which
accepts every message in mode CheckAddress). The IITM Er will also always accept every message
in mode CheckAddress. The behavior of Er in mode Compute is specified next.

First, we need to make sure that Er has the appropriate tapes to connect to the different entities.
The IITM E already has tapes to connect to the external tapes of P and Q. For each such tape c,
we add to Er a tape c′ and c′′ to connect to the external tapes of Q′ and P ′′, respectively.
21 Note that Q is essentially a protocol system with a relaxed runtime bound.
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Next, we need to specify how Er redirects protocol invocations of E in the way sketched above:
Er keeps a list L of SIDs, which initially is empty, and the length l of the list, which initially is
0. By definition of pε, it will always hold that l ≤ pε(η, |a|). Furthermore, in the first activation
with security parameter η ∈ N and external input a ∈ {0, 1}∗, Er chooses a permutation π of
{1, . . . , pε(η, |a|)} uniformly at random. From now on, Er simulates E with security parameter η and
external input a. In particular, if E produces output, then so does Er, and if Er receives input, then
E is simulated with this input. However, as explained next, the behavior of Er deviates from that of
E when it comes to sending and receiving messages to the different copies of protocols.

1. If E produces output m on some external tape c of P (and hence, Q) with s := σ(m, c), then Er
checks whether s occurs in L. If s does not occur in L, s is first appended at the end of L and l
is increased by 1. Let j ∈ {1, . . . , l} be the position where s occurs in L.
a) If π(j) < r, then Er writes m on tape c′.
b) If π(j) = r, then Er writes m on c.
c) If π(j) > r, then Er writes m on tape c′′.

2. If Er receives input on tape c′′ (where c′′ is an external tape of P ′′ corresponding to an external
tape c of P), then Er behaves as E in case input was received on tape c.

3. If Er receives input on tape c′ (where c′ is an external tape of Q′ corresponding to an external
tape c of Q), then Er behaves as E in case input was received on tape c.

4. If Er receives input on tape c (where c is an external tape of P or Q, respectively), then Er
behaves as E in case input was received on tape c.

It is easy to see that Er is universally bounded for every r ∈ N since E is universally bounded. We
define the following hybrid systems, for every r ∈ N:

Hr := Er|P ′′|Q′ ,

which can be connected to P (and hence Q).
By Epε and Hpε we denote the systems which first set r = pε(η, |a|) and then behave exactly as

Er and Hr, respectively. By construction, for every r ∈ N, the systems E|P and H1|P, the systems
Hr|Q and Hr+1|P, and the systems E|Q and Hpε |Q, respectively, behave exactly the same (see
below). In particular, for all r ∈ N, we have that:

E|P ≡ H1|P , (3)
Hr|Q ≡ Hr+1|P , and (4)
E|Q ≡ Hpε |Q . (5)

For (3) we need that P is a protocol system and a σ-session version:
The second property is necessary since it guarantees that two instances of machines in P with

different SIDs will never send messages to each other (since they only send messages with their
own SID or produce empty output, which activates the environment), i.e. it is no problem that the
systems P ′′ and P in H1|P do not have a connection to each other.

Furthermore, for machines M of P that are in the scope of a bang, it is easy to see that every
instance of such a machine in a run of E|P corresponds to one instance of this machine (either in
P ′′ or P, depending on the SID of the instance) in a run of H1|P.

If there is a machine M in P that is not in the scope of a bang the following problem can
occur: In a run of E|P there can only be at most one instance of such a machine, while there
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may be two instances (one in P ′′ and one in P) in a run of H1|P, i.e. one of those instances
would not have a corresponding instance of M in E|P. This is where we need that P is a protocol
system, i.e. such a machine M must accept all messages m on all tapes c in mode CheckAddress.
Since M is a σ-session version, it accepts only messages with the same SID and thus we obtain
σ(m, c) = s for some fixed value s 6= ⊥, m ∈ {0, 1}∗, and all input tapes c of M . (If σ(m, c) were ⊥
for some m ∈ {0, 1}∗ and some input tape c of M , then M would accept m, in contradiction to the
assumption that M is a σ-session version. Similarly, if there would exist (m, c) and (m′, c′) with
σ(m, c) 6= σ(m′, c′), then M would accept both (m, c) and (m′, c′), again in contradiction to the
assumption that M is a σ-session version.) Since E1 never sends messages with the same SID to both
P and P ′′ there will be at most one copy of either P or P ′′ with SID s. But then there is also only
one instance of M in a run of H1|P , which corresponds to the single instance of M in a run of E|P .

A similar argument is used for (4) and (5).
Since E|P is almost bounded by assumption (i.e. P is a protocol system and thus R-environmentally

bounded), it is easy to see that H1|P is almost bounded too. Moreover, it is easy to see that E|Q is
almost bounded if and only if Hpε |Q is almost bounded.

We proceed by showing the following claim.

Claim I. Hpε |Q is almost bounded.

This is a crucial step of the proof. For this, we first have to define some events that describe the
runtime of systems and the probability of answering a restricting message incorrectly.

For different systems, we define the event (i.e. a set of runs or equivalently a set of random
coins) that the j-th copy of the system takes more than q(η, |a|) steps. More specifically, for every
polynomial q, natural numbers r, i, j, η ∈ N, and a ∈ {0, 1}∗ we define:

1. Bq,j
Hr|P = Bq,j

Hr|P(1η, a) is the following set of runs of (Hr|P)(1η, a). A run ρ belongs to Bq,j
Hr|P iff

one of the following conditions is satisfied:
a) π(j) < r and the instances of machines in Q′ with SID L[j] took more than q(η, |a|) steps in

ρ, where only the steps in mode Compute are counted; in other words, only the computation
steps carried out by Q′ (and hence, Q) are counted.

b) π(j) = r and the machines in P (with SID L[j]) took more than q(η, |a|) steps in ρ, with the
steps counted as above.

c) π(j) > r and the instances of machines in P ′′ with SID L[j] took more than q(η, |a|) steps in
ρ, with the steps counted as above.

2. Bq
Hr|P :=

⋃
i∈NB

q,i
Hr|P .

3. Bq,6=j
Hr|P :=

⋃
i∈N\{j}B

q,i
Hr|P .

4. A run ρ belongs to Bq,π−1(i)
Hr|P iff for the permutation, say π′, chosen in ρ, it holds that ρ ∈ Bq,j

Hr|P

with j = π′−1(i). The event Bq,6=π−1(i)
Hr|P is defined analogously.

5. Analogously to the above events, we define the following events where the external system P is
replaced by Q: Bq,j

Hr|Q, Bq
Hr|Q, Bq,6=j

Hr|Q, Bq,π−1(i)
Hr|Q , Bq,6=π−1(i)

Hr|Q .

We note that for all r, the system Hr|P (resp., Hr|Q) is almost bounded if and only if there
exists a negligible function f and a polynomial q such that Pr

[
Bq
Hr|P(1η, a)

]
≤ f(η, a) (resp.,

Pr
[
Bq
Hr|Q(1η, a)

]
≤ f(η, a)) for all η ∈ N and a ∈ {0, 1}∗. The direction from left to right is trivial.

For the other direction first recall that (the simulated) E is universally bounded, and hence, only a
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polynomial number of copies of the protocol is created (the length l of the list L in Hr is bounded
by pε(η, |a|)). Now since, by assumption, the number of steps taken by every copy of the protocol
is polynomially bounded (except with negligible probability) and the number of steps taken by
(the simulated) E is polynomially bounded, the number of steps taken by Hr|P (resp., Hr|Q) is
polynomially bounded.

Furthermore, for a system S with tape start and a polynomial q we define the single IITM [S]q
to be the IITM that simulates S but simulates at most q(η, |a|) many steps of S in mode Compute.
That is, [S]q works just like the definition of [S]R (for some system R such that S|R is almost
bounded) from Lemma E.20 but uses a fixed polynomial q instead of the runtime bound of S|R.

Finally, we also need to define some events that include runs where a restricting message from
some part of a system is answered incorrectly. More specifically:

1. For all systems S,R the event C RS = C RS (1η, a) is defined to be the set of all runs of S|R where
a restricting message of R is answered incorrectly.

2. For all r ∈ N and polynomials q the event Ĉ Pr,q = Ĉ Pr,q(1η, a) is defined to be the set of all runs
of [Hr]q|P = [Er|P ′′|Q′]q|P where a restricting message of P, P ′′, or Q′ is answered incorrectly
(by Er).

3. Analogous to Ĉ Pr,q we define Ĉ Qr,q by replacing all occurences of P with Q.

After having fixed some definitions, we can now start proving Claim I. First, we present a lemma
which shows that, for all r ∈ N, there exists a polynomial qr such that the event Bqr

Hr|Q occurs with
negligible probability. As argued above, this is equivalent to Hr|Q being almost bounded. This
however does not suffice to prove that Hpε |Q is almost bounded, i.e. we need a uniform bound that
is independent of r (as will be established in Lemma E.44). This is in fact one of the main difficulties
in proving Claim I and the only reason the permutation π is required. Additionally, the next lemma
also shows some properties of the system Er which are required by the following lemmas.

Lemma E.40. For all r ∈ N the following holds true:

1. There exists a polynomial qr and a negligible function fr such that for all η ∈ N and a ∈ {0, 1}∗:

Pr
[
Bqr
Hr|Q(1η, a)

]
≤ fr(η, a) .

2. Er ∈ EnvR(P ′′|Q′|P) and Er ∈ EnvR(P ′′|Q′|Q).

Proof. The case r = 0 is simple: By construction the system E0 in a run of E0|P ′′|Q′|P sends all
messages to P ′′, i.e., Q′ and P will never be activated by E0 and, since they do not contain a master
IITM, they are also not actived via start. Thus, we can drop Q′ and P and only look at E0|P ′′, which
behaves just as E|P . Since E ∈ EnvR(P) and E|P is almost bounded (because P is R-environmentally
bounded), we have that E0 ∈ EnvR(P ′′|Q′|P) and E0|P ′′|Q′|P is almost bounded. We can also easily
define a bijection between runs of E0|P ′′|Q′|P and E0|P ′′|Q′|Q, since P and Q, respectively, are
never activated in any run. By this, we obtain that E0 ∈ EnvR(P ′′|Q′|Q) and E0|P ′′|Q′|Q is almost
bounded (the latter implies that qr and fr for r = 0 exist, as argued above).

Now, let r > 0 and suppose that the lemma holds for r − 1, i.e. Hr−1|Q is almost bounded,
Er−1 ∈ EnvR(P ′′|Q′|P), and Er−1 ∈ EnvR(P ′′|Q′|Q). Because Hr−1|Q and Hr|P behave exactly the
same (see Equation (4)), Er−1 ∈ EnvR(P ′′|Q′|Q) implies Er ∈ EnvR(P ′′|Q′|P) and Hr−1|Q being
almost bounded implies that Hr|P is almost bounded. We also know that restricting messages from
P are answered correctly in an overwhelming set of runs of Hr|P, since all external tapes of P are
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external tapes of P ′′|Q′|P and Er is a responsive environment for P ′′|Q′|P. Now Lemma E.20 and
Lemma E.22 imply Hr|P ≡ [Hr]P |P with [Hr]P ∈ EnvR(P). Note that [Hr]P is a σ-single session
restricted environment, i.e. [Hr]P ∈ EnvR,σ-single(P), since the only external tapes (except for start
and decision) of [Hr]P are those that connect Er and P/Q and by construction, Er sends only messages
with the same SID on these tapes. By Lemma E.37 we obtain that [Hr]P ∈ EnvR,σ-single(Q), and in
particular, that [Hr]P |Q is almost bounded. Finally, by Lemma E.38, we also obtain [Hr]P |Q ≡ Hr|Q
and that Hr|Q is almost bounded, which implies the existance of qr and fr.

We still have to show that Er ∈ EnvR(P ′′|Q′|Q). Suppose this was not the case, i.e. a restricting
message from P ′′|Q′|Q is answered incorrectly in a non-negligible set of runs. Then there must be
a non-negligible set of runs of [Hr]P |Q where a restricting message from Q or P ′′|Q′ (which are
simulated by [Hr]P) is answered incorrectly. This is because [Hr]P |Q behaves just likeHr|Q except for
a negligible set of runs where a runtime bound is reached. Furthermore, because Er ∈ EnvR(P ′′|Q′|P)
and every restricting message of P or P ′′|Q′ is a restricting message of P ′′|Q′|P, we obtain with
a similar argument that there must be a negligible set of runs of [Hr]P |P where a restricting
message from P or P ′′|Q′ is answered incorrectly. Now one can construct a new environment
E ′ ∈ EnvR,σ-single(P) that distinguishes P and Q. The system E ′ simulates [Hr]P (the system [Hr]P is
universally bounded and thus can be simulated by an environment) but connects to all tapes of P and
Q, respectively, and produces different output on tape decision: It outputs 1 if and only if a restricting
message from P ′′|Q′ or P and Q, respectively, was answered incorrectly during the run. Note that
E ′ can easily check this since it sees all messages on all tapes except for internal tapes of P and Q,
respectively, and R is decidable in polynomial time in the second component (also see the proof of
Lemma E.15, which includes a more detailed discussion on why this can be done by a universally
bounded system). It is also obvious that E ′ ∈ EnvR,σ-single(P) since [Hr]P ∈ EnvR,σ-single(P). Since
this contradicts the assumption that P and Q are indistinguishable for all σ-single session responsive
environments, it must hold true that Er ∈ EnvR(P ′′|Q′|Q)

This concludes the proof of Lemma E.40. ut

In the next steps of the proof of Claim I we will define several systems that get r as input and
then simulate [Hr]q for some polynomial q. We need that such a system is a responsive environment,
i.e., correctly answers restricting messages from P in an overwhelming set of runs. For this it is not
sufficient to know that [Hr]q ∈ EnvR,σ-single(P), i.e. that for every r there exists a negligible function
that bounds Pr

[
C P[Hr]q

]
. Instead we need a universal function that bounds Pr

[
C P[Hr]q

]
for all values

of r (in some range). The next two lemmas show that such a function exists.

Lemma E.41. Let q be a polynomial. Then there exists a negligible function g1,q such that for all
η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):∣∣∣Pr

[
Ĉ Pr,q(1η, a)

]
− Pr

[
Ĉ Qr,q(1η, a)

]∣∣∣ ≤ g1,q(η, a) .

Proof. We prove this lemma for the case of non-uniform environments, that is, environments that
obtain external input. Using the same technique as in [KT13] (see Appendix B), namely sampling
of runs, one easily obtains a proof for uniform environments, i.e., those that do not obtain external
input, as well.

We define an IITM D ∈ EnvR(P) which expects to receive (r, a) as external input and then
simulates [Hr]q with external input a and outputs 1 if and only if [Hr]q is about to send an incorrect
answer to a restricting message of P ′′, Q′, or P and Q, respectively.
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More formally, D is defined as follows. The IITM D has the same (external) tapes as Hr. In
mode CheckAddress, D accepts every message. In mode Compute, D behaves as follows: First,
D parses the external input on start as (r, a) with r ∈ {1, . . . , pε(η, |a|)} and a ∈ {0, 1}∗. If the
external input is not of this form, D outputs 0 on decision. Otherwise, D simulates the system
[Hr]q = [Er|P ′′|Q′]q with external input a, i.e. it first activates Er with input a on start and then
simulates all the machines in [Hr]q. If D receives input on a tape, then D forwards this input to the
simulated [Hr]q. If [Hr]q produces output, then D first checks whether the output is an incorrect
response to a restricting message of P ′′, Q′, and P and Q, respectively. Note that this is easy to
check since D sees all restricting messages from those systems (recall that we assume that E and
hence Er, Hr, and D connect to all tapes of P and Q, respectively) and R is decidable in polynomial
time in the second component (again, see the proof of Lemma E.15, which includes a more detailed
discussion on why this can be done by a universally bounded system). If the answer is an incorrect
response, D outputs 1 on decision instead of sending the message. If the run terminates (i.e. [Hr]q
outputs something on decision or [Hr]q produces empty output, which terminates the run because
[Hr]q is a master IITM) then D halts with output 0 on decision.

It is easy to see that D is universally bounded (i.e. D ∈ Env(P)) and that it is a responsive
environment for P and Q since it will never incorrectly answer a restricting message from P and Q,
respectively. It is also obvious that D is a σ-single session environment, since it simulates [Hr]q (for
some r) and Hr only sends messages with a single SID to P and Q, respectively. We have for all
η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η):

Pr [(D|P)(1η, (r, a)) = 1] = Pr
[
Ĉ Pr,q(1η, a)

]
and

Pr [(D|Q)(1η, (r, a)) = 1] = Pr
[
Ĉ Qr,q(1η, a)

]
.

(6)

Since E ′|P ≡ E ′|Q for all E ′ ∈ EnvR,σ-single(P) and D ∈ EnvR,σ-single(P), we have that D|P ≡ D|Q.
In particular, there exists a negligible function g′1,q such that for all η ∈ N, a ∈ {0, 1}∗, and
1 ≤ r ≤ pε(η):

g′1,q(η, (r, a)) ≥ |Pr [(D|P)(1η, (r, a)) = 1]− Pr [(D|Q)(1η, (r, a)) = 1]|
(6)=
∣∣∣Pr

[
Ĉ Pr,q(1η, a)

]
− Pr

[
Ĉ Qr,q(1η, a)

]∣∣∣ .
Let g1,q(η, a) := maxr≤pε(η,|a|) g′1,q(η, (r, a)). It is easy to see that g1,q is a negligible function. Now,
clearly we have that ∣∣∣Pr

[
Ĉ Pr,q(1η, a)

]
− Pr

[
Ĉ Qr,q(1η, a)

]∣∣∣ ≤ g1,q(η, a)

for all η ∈ N, a ∈ {0, 1}∗, and r ≤ pε(η, |a|). Note that g1,q does not depend on r (only on q). This
concludes the proof of Lemma E.41. ut

We can now use Lemma E.41 to prove that, for every polynomial q, the probability of C P[Hr]q is
bounded by a negligible function g2,q which is independent of r (for 1 ≤ r ≤ pε(η, |a|)). Note that
this also implies [Hr]q ∈ EnvR,σ-single(P) since [Hr]q is universally bounded and the only external
tapes (except for start and decision) of [Hr]q are those that connect Er and P/Q and by construction,
Er sends only messages with the same SID on these tapes.
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Lemma E.42. Let q be a polynomial. There exists a negligible function g2,q such that for all η ∈ N,
a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):

Pr
[
C P[Hr]q(1

η, a)
]
≤ g2,q(η, a) .

Proof. We will show the following stronger statement instead: Let q be a polynomial. There exists a
negligible function g2,q such that for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|) it holds true that
Pr
[
Ĉ Pr,q(1η, a)

]
≤ g2,q(η, a). Since C P[Hr]q ⊆ Ĉ

P
r,q , the lemma trivially follows by using the same g2,q.

First, let r = 1. Observe that Pr
[
Ĉ P1,q(1η, a)

]
is bounded by a negligible function g(η, a) since

E1 ∈ EnvR(P ′′|Q′|P) by Lemma E.40.
Now let r > 1. We have that

Pr
[
Ĉ Pr,q(1η, a)

] (4)= Pr
[
Ĉ Qr−1,q(1η, a)

]
Lemma E.41
≤ Pr

[
Ĉ Pr−1,q(1η, a)

]
+ g1,q(η, a).

By induction on r, we obtain that

Pr
[
Ĉ Pr,q(1η, a)

]
≤ (r − 1) · g1,q(η, a) + Pr

[
Ĉ P1,q(1η, a)

]
≤ (r − 1) · g1,q(η, a) + g(η, a).

We define

g2,q(η, a) := pε(η, a) · g1,q(η, a) + g(η, a)

and obtain

Pr
[
Ĉ Pr,q(1η, a)

]
≤ g2,q(η, a)

for all 1 ≤ r ≤ pε(η, |a|). Note that g2,q is negligible and does not depend on r (only on q). This
concludes the proof of Lemma E.42. ut

We can now continue to prove that Hpε |Q is almost bounded. First, we will show in the next lemma
that for all r ≤ pε(η, |a|) the difference of the probabilities that the events Bq1,6=π−1(r)

Hr|P and Bq1,6=π−1(r)
Hr|Q

occur is negligible (where q1 is the polynomial from Lemma E.40). Note that this statement does
not consider the number of steps taken by the external protocol copy P and Q, respectively, because
this copy, which corresponds to π−1(r), is excluded in these events.

Lemma E.43. There exists a negligible function f ′ such that for all η ∈ N, a ∈ {0, 1}∗, and
1 ≤ r ≤ pε(η, |a|): ∣∣∣Pr

[
B
q1, 6=π−1(r)
Hr|P (1η, a)

]
− Pr

[
B
q1, 6=π−1(r)
Hr|Q (1η, a)

]∣∣∣ ≤ f ′(η, a) .

Proof. Just as in Lemma E.41, we prove this lemma for the case of non-uniform environments.
Again, using the same technique as in [KT13] (see Appendix B) one easily obtains a proof for
uniform environments.
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We define an IITM D ∈ EnvR,σ-single(P) which expects to receive (r, a) as external input and
then simulates Hr with external input a until the runtime bound q1(η, |a|) is exceeded by any of the
internally simulated sessions. If the runtime bound is exceeded, D outputs 1 on decision. If the run
stops and the runtime bound has not been exceeded, D outputs 0 on decision.

More formally, D is defined as follows. In mode CheckAddress, D accepts every message.
In mode Compute, D behaves as follows: First, D parses the external input on start as (r, a)
with r ∈ {1, . . . , pε(η, |a|)} and a ∈ {0, 1}∗. If the external input is not of this form, D outputs 0
on decision. Otherwise, D simulates the system Hr = Er|P ′′|Q′ with external input a, i.e. it first
activates Er with input a on start and then simulates all the machines in Hr. If Hr produces output,
then so does D and if D receives input, then D forwards this input to the simulated Hr. Additionally,
D counts the number of transitions taken by all the simulated machines and checks if the conditions
of the event Bq1, 6=π−1(r)

Hr|P (1η, a) and B
q1,6=π−1(r)
Hr|Q (1η, a), respectively, are satisfied (note that D can

do this even though it cannot inspect the number of transitions in the external systems, P and Q,
respectively). If such a condition is satisfied (i.e. some internal session takes more than q1(η, |a|)
steps), then D halts with output 1 on decision. If the run terminates (i.e., Er outputs something on
decision or Er produces empty output, which terminates the run because Er is a master IITM) but
these conditions are not satisfied, then D halts with output 0 on decision.

It is easy to see that D is universally bounded (i.e., D ∈ Env(P)) and that it is σ-single session.
We now show that D ∈ EnvR(P): If the input of the system D|P is not of the expected form, D
will never send a message to P and thus never violate the condition of responsive environments. So
we only have to find a bound for those cases where the input is of the correct form, i.e. the input a′
is of the form (r, a) with r ∈ {1, . . . , pε(η, |a|)}.

Since D is universally bounded, there exists a polynomial q such that the runtime of the
simulated Hr in mode Compute is bounded by q in every run. Now, observe that (D|P)(1η, (r, a))
and ([Hr]q|P)(1η, a) behave in the same way, except that (D|P)(1η, (r, a)) might terminate earlier
than ([Hr]q|P)(1η, a), namely if in a session simulated by D the runtime bound q1 is reached. Hence,
it holds true that Pr

[
C PD(1η, (r, a))

]
≤ Pr

[
C P[Hr]q(1

η, a)
]
. This is because we have Pr

[
C PD(1η, a)

]
=

Pr
[
C P[Hr]q(1

η, a) ∩ Runtimeq1

]
where Runtimeq1 is the event that a restricting message of P is

answered incorrectly before any session of P ′′ and Q′ in [Hr]q exceeds the runtime bound q1. Now,
by Lemma E.42 this implies Pr

[
C PD(1η, (r, a))

]
≤ g2,q(η, a) (note that this bound is the same for

every valid r, i.e. it is independent of r).
We define g(η, a′) := maxa∈{0,1}≤|a′| g2,q(η, a). It is easy to see that g is negligible. Since g2,q(η, a)

bounds Pr
[
C PD(1η, (r, a))

]
for all 1 ≤ r ≤ pε(η, |a|) and, by the definition of D, Pr

[
C PD(1η, a′)

]
= 0

for all a′ such that a′ cannot be parsed as (r, a) for some r with 1 ≤ r ≤ pε(η, |a|), we have that
Pr
[
C PD(1η, a′)

]
≤ g(η, a′) for all η ∈ N, a′ ∈ {0, 1}∗. This implies that D ∈ EnvR(P), and thus,

D ∈ EnvR,σ-single(P).

By this definition of D, we have for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):

Pr [(D|P)(1η, (r, a)) = 1] = Pr
[
B
q1, 6=π−1(r)
Hr|P (1η, a)

]
and

Pr [(D|Q)(1η, (r, a)) = 1] = Pr
[
B
q1, 6=π−1(r)
Hr|Q (1η, a)

]
.

(7)
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Since E ′|P ≡ E ′|Q for all E ′ ∈ EnvR,σ-single(P) and D ∈ EnvR,σ-single(P), we have that D|P ≡ D|Q.
In particular, there exists a negligible function f such that for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤
pε(η, |a|):

f(η, (r, a)) ≥ |Pr [(D|P)(1η, (r, a)) = 1]− Pr [(D|Q)(1η, (r, a)) = 1]|
(7)=
∣∣∣Pr

[
B
q1, 6=π−1(r)
Hr|P (1η, a)

]
− Pr

[
B
q1,6=π−1(r)
Hr|Q (1η, a)

]∣∣∣ .
Let f ′(η, a) := maxr≤pε(η,|a|) f(η, (r, a)). It is easy to see that f ′ is a negligible function. Now,
obviously we have that∣∣∣Pr

[
B
q1, 6=π−1(r)
Hr|P (1η, a)

]
− Pr

[
B
q1, 6=π−1(r)
Hr|Q (1η, a)

]∣∣∣ ≤ f ′(η, a)

for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|). This concludes the proof of Lemma E.43. ut

In the next step, we can finally prove that there is a polynomial q′ such that there is a universal
bound, i.e., one that is independent of r, for the probability of Bq′

Hr|Q. This directly implies that
Hpε |Q is almost bounded, and hence, Claim I.

Lemma E.44. There exists a polynomial q′ and a negligible function f ′′ such that for all η ∈ N,
a ∈ {0, 1}∗, and 0 ≤ r ≤ pε(η, |a|):

Pr
[
Bq′

Hr|Q(1η, a)
]
≤ f ′′(η, a) .

Proof. We will first prove a weaker version of the lemma which holds true only for 1 ≤ r ≤ pε(η, |a|).
For this we use the polynomial q1 from Lemma E.40 and construct a negligible function g. Afterwards
we use this result to show the lemma for 0 ≤ r ≤ pε(η, |a|).

Let η ∈ N, and a ∈ {0, 1}∗. For all 1 ≤ r ≤ pε(η, |a|) we define

tr := tr(1η, a) := Pr
[
Bq1
Hr|Q(1η, a)

]
.

We need to show that there exists a negligible function that bounds tr from above for every
1 ≤ r ≤ pε(η, |a|).

Let 1 ≤ r ≤ pε(η, |a|). If r = 1, then tr = t1 ≤ f1(η, a) by Lemma E.40. Next, we consider the
case r > 1. Since the permutation π is chosen uniformly at random, we obtain for all j ≤ r the
following equality:

Pr
[
B
q1,π−1(r)
Hr|Q (1η, a) \Bq1, 6=π−1(r)

Hr|Q (1η, a)
]

= Pr
[
B
q1,π−1(j)
Hr|Q (1η, a) \Bq1,6=π−1(j)

Hr|Q (1η, a)
]
. (8)

Intuitively, the event B1 := B
q1,π−1(r)
Hr|Q (1η, a) \Bq1, 6=π−1(r)

Hr|Q (1η, a) says that the number of steps taken
in the external protocol system Q exceeded q1, but not the number of steps in the internal systems.
The event B2 := B

q1,π−1(j)
Hr|Q (1η, a) \Bq1, 6=π−1(j)

Hr|Q (1η, a) says that the number of steps taken in the j-th
copy of the internally simulated protocol system Q exceeded q1, but not the number of steps taken
in the other protocol systems, i.e., in the other internal copies and the external system. Since π is
chosen uniformly at random, it does not make a difference whether q1 is exceeded by the external
system or one of the internal copies of Q.
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Formally, the equality (8) can easily be established by defining a bijection between the runs
in B1 and those in B2: a run ρ ∈ B1 in which the permutation π was chosen is mapped to the
corresponding run in B2 where a permutation π′ is chosen which coincides with π except that π−1(r)
and π−1(j) are swapped, i.e. π′−1(r) = π−1(j) and π′−1(j) = π−1(r).

Now, by (8) we have that:

Pr
[
B
q1, 6=π−1(r)
Hr|Q (1η, a)

]
≥ Pr

[r−1⋃
j=1

B
q1,π−1(j)
Hr|Q (1η, a)

]

≥ Pr
[r−1⋃
j=1

B
q1,π−1(j)
Hr|Q (1η, a) \Bq1,6=π−1(j)

Hr|Q (1η, a)
]

=
r−1∑
j=1

Pr
[
B
q1,π−1(j)
Hr|Q (1η, a) \Bq1,6=π−1(j)

Hr|Q (1η, a)
]

(8)= (r − 1) · Pr
[
B
q1,π−1(r)
Hr|Q (1η, a) \Bq1, 6=π−1(r)

Hr|Q (1η, a)
]
.

(9)

We conclude that:
tr = Pr

[
Bq1
Hr|Q(1η, a)

]
= Pr

[
B
q1, 6=π−1(r)
Hr|Q (1η, a)

]
+ Pr

[
B
q1,π−1(r)
Hr|Q (1η, a) \Bq1, 6=π−1(r)

Hr|Q (1η, a)
]

≤ r

r − 1 · Pr
[
B
q1, 6=π−1(r)
Hr|Q (1η, a)

]
due to (9)

≤ r

r − 1 ·
(
Pr
[
B
q1, 6=π−1(r)
Hr|P (1η, a)

]
+ f ′(η, a)

)
due to Lemma E.43

≤ r

r − 1 ·
(
Pr
[
Bq1
Hr|P(1η, a)

]
+ f ′(η, a)

)
.

Since the systems Hr|P and Hr−1|Q behave exactly the same, we have that

Pr
[
Bq1
Hr|P(1η, a)

]
= Pr

[
Bq1
Hr−1|Q(1η, a)

]
= tr−1

and we obtain the following simple recurrence relation:

tr ≤
r

r − 1 ·
(
tr−1 + f ′(η, a)

)
.

By induction on r it can be shown that:

tr ≤

r−1∏
j=1

j + 1
j

 · t1 +

r−1∑
j=1

r−1∏
i=j

i+ 1
i

 · f ′(η, a) . (10)

From this we obtain for 1 ≤ r ≤ pε(η, |a|):

tr ≤

r−1∏
j=1

j + 1
j

 · t1 +

r−1∑
j=1

r−1∏
i=j

i+ 1
i

 · f ′(η, a) due to (10)

= r · t1 +

r−1∑
j=1

r

j

 · f ′(η, a)

≤ r · t1 + (r − 1) · r · f ′(η, a)
≤ pε(η, |a|) · f1(η, a) + p2

ε (η, |a|) · f ′(η, a) due to Lemma E.40.
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Hence, with
g(η, a) := pε(η, |a|) · f1(η, a) + p2

ε (η, |a|) · f ′(η, a)

we obtain that
Pr
[
Bq1
Hr|Q(1η, a)

]
= tr ≤ g(η, a) ,

for all 1 ≤ r ≤ pε(η, |a|). Note that g is negligible and does not depend on r.

Now we still have to look at the case r = 0. By Lemma E.40 we know that Pr
[
Bq0
H0|Q(1η, a)

]
≤

f0(η, a). We define the polynomial q′(η, |a|) := q0(η, |a|) + q1(η, |a|). Observe that both the results
for r = 0 and 1 ≤ r ≤ pε(η) also hold for the polynomial q′ since every run of Hr|Q(1η, a)
that exceeds the runtime bound q′(η, |a|) also exceeds both the runtime bounds q0(η, |a|) and
q1(η, |a|) (note that q0 and q1 can not be negative). Furthermore we define the negligible function
f ′′(η, a) = f0(η, a) + g(η, a). Now the following holds true for all 0 ≤ r ≤ pε(η, |a|) by construction:

Pr
[
Bq′

Hr|Q(1η, a)
]
≤ f ′′(η, a) .

Note that f ′′ does not depend on the value of r. This concludes the proof of Lemma E.44. ut

Lemma E.44 immediately implies that Pr
[
Bq′

Hpε |Q
(1η, a)

]
≤ f ′′(η, a) for all η ∈ N and a ∈ {0, 1}∗.

In particular, it follows that Hpε |Q is almost bounded, and hence, Claim I. By (5), this immediately
implies that E|Q is almost bounded (for all E ∈ EnvR(P)).

Furthermore, Lemma E.44 also implies that Pr
[
Bq′

Hr|P(1η, a)
]
≤ f ′′(η, a) for all 1 ≤ r ≤ pε(η, |a|)

since Hr|Q and Hr+1|P behave exactly the same (see Equation (4)). In fact, the only reason to
include the case r = 0 in Lemma E.44 is to obtain this result.

After having bounded the probability for exceeding a certain runtime, we will now proceed in the
proof of Theorem E.39 with showing that P and Q are indistinguishable by any E ∈ EnvR(P), i.e.,
E|P ≡ E|Q. For this we need just one more result: It is necessary to show that, for every polynomial
q, all σ-single session responsive environments [Hr]q (for 1 ≤ r ≤ pε(η, |a|)) can distinguish P and
Q with only roughly the same probability. Note that this is stronger than what we have already
shown (i.e. [Hr]q ∈ EnvR,σ-single(P)) since we have to find a single negligible function that holds for
all possible values of r.

Lemma E.45. Let q be a polynomial. There exists a negligible function g3,q such that the following
holds true for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):

|Pr [[Hr]q|P(1η, a) = 1]− Pr [[Hr]q|Q(1η, a) = 1]| ≤ g3,q(η, a).

Proof. Just as in Lemmas E.41 and E.43, we prove this lemma for the case of non-uniform environ-
ments. Again, using the same technique as in [KT13] (see Appendix B) one easily obtains a proof
for uniform environments.

This proof follows essentially the same idea as the proofs of Lemma E.41 and Lemma E.43.
We define an IITM D ∈ EnvR,σ-single(P) which expects to receive (r, a) as external input and then
simulates [Hr]q with external input a. The IITM D outputs 1 on tape decision if and only if the
simulated [Hr]q wants to output 1 on tape decision.
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More formally, D is defined as follows. In mode CheckAddress, D accepts every message. In
mode Compute, D behaves as follows: First, D parses the external input on start as (r, a) with
r ∈ {1, . . . , pε(η, |a|)} and a ∈ {0, 1}∗. If the external input is not of this form, D outputs 0 on
decision. Otherwise, D simulates the system [Hr]q with external input a. If [Hr]q produces output,
then so does D and if D receives input, then D forwards this input to the simulated [Hr]q. If the
run terminates (i.e. [Hr]q outputs something on decision or [Hr]q produces empty output, which
terminates the run because [Hr]q is a master IITM), then D terminates its run in the same way (i.e.
it either outputs the same message on tape decision or produces empty output).

It is easy to see that D is universally bounded (i.e. D ∈ Env(P)) and that it is σ-single session.
By Lemma E.42 we also know that Pr

[
C P[Hr]q(1

η, a)
]
≤ g2,q(η, a) for all 1 ≤ r ≤ pε(η, |a|). By this

we have that Pr
[
C PD(1η, a′)

]
≤ maxa∈{0,1}≤|a′| g2,q(η, a), which is negligible, and thus D ∈ EnvR(P).

Overall, this implies that D ∈ EnvR,σ-single(P).

We have for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):

Pr [(D|P)(1η, (r, a)) = 1] = Pr [[Hr]q|P(1η, a) = 1] and
Pr [(D|Q)(1η, (r, a)) = 1] = Pr [[Hr]q|Q(1η, a) = 1] .

(11)

Since E ′|P ≡ E ′|Q for all E ′ ∈ EnvR,σ-single(P) and D ∈ EnvR,σ-single(P), we have that D|P ≡ D|Q.
In particular, there exists a negligible function g′3,q such that for all η ∈ N, a ∈ {0, 1}∗, and
1 ≤ r ≤ pε(η, |a|):

g′3,q(η, (r, a)) ≥ |Pr [(D|P)(1η, (r, a)) = 1]− Pr [(D|Q)(1η, (r, a)) = 1]|
(11)= |Pr [[Hr]q|P(1η, a) = 1]− Pr [[Hr]q|Q(1η, a) = 1]| .

Let g3,q(η, a) := maxr≤pε(η,|a|) g′3,q(η, (r, a)). It is easy to see that g3,q is a negligible function. Now,
obviously we have that

|Pr [[Hr]q|P(1η, a) = 1]− Pr [[Hr]q|Q(1η, a) = 1]| ≤ g3,q(η, a)

for all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|). This concludes the proof of Lemma E.45. ut

We can now conclude the proof of Theorem E.39. First we observe that there exists a single
polynomial q that bounds the runtime of Er (in every run) for all 1 ≤ r ≤ pε(η, |a|). This is because
every Er just simulates E , which is universally bounded, and because r ≤ pε(η, |a|).

We define the polynomial q′′(η, |a|) := q(η, |a|) + pε(η, |a|) · q′(η, |a|), where q is the polynomial
from the last paragraph and q′ is the polynomial from Lemma E.44. Now we have that, for all η ∈ N,
a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|), the system Hr in a run of Hr|P(1η, a) will exceed the runtime
q′′(η, |a|) in mode Compute only if at least one copy of P ′′ or Q′ exceeds the runtime q′(η, |a|).
That is, every run of Hr|P(1η, a) where Hr needs more than q′′(η, |a|) steps is in Bq′

Hr|P(1η, a).
Analogously, we have that runs of Hr|Q(1η, a) where Hr exceeds the runtime q′′(η, |a|) must be in
Bq′

Hr|Q(1η, a).

Since Pr
[
Bq′

Hr|P(1η, a)
]
≤ f ′′(η, a) and Pr

[
Bq′

Hr|Q(1η, a)
]
≤ f ′′(η, a) for all 1 ≤ r ≤ pε(η, |a|) (by

Lemma E.44 and the remark following this lemma) we can conclude that the systems Hr|P and
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[Hr]q′′ |P and Hr|Q and [Hr]q′′ |Q only differ in a negligible set of runs. More formally, we have for
all η ∈ N, a ∈ {0, 1}∗, and 1 ≤ r ≤ pε(η, |a|):

|Pr [Hr|P(1η, a) = 1]− Pr
[
[Hr]q′′ |P(1η, a) = 1

]
| ≤ f ′′(η, a) and

|Pr [Hr|Q(1η, a) = 1]− Pr
[
[Hr]q′′ |Q(1η, a) = 1

]
| ≤ f ′′(η, a) .

(12)

By this, we obtain the following inequalities, which hold true for all η ∈ N and a ∈ {0, 1}∗:

|Pr [E|P(1η, a) = 1]− Pr [E|Q(1η, a) = 1]|
(3),(5)= |Pr [H1|P(1η, a) = 1]− Pr [Hpε |Q(1η, a) = 1]|

≤
pε(η,|a|)∑
r=1

|Pr [Hr|P(1η, a) = 1]− Pr [Hr|Q(1η, a) = 1]|

≤
pε(η,|a|)∑
r=1

|Pr [Hr|P(1η, a) = 1]− Pr
[
[Hr]q′′ |P(1η, a) = 1

]
|

+
pε(η,|a|)∑
r=1

|Pr
[
[Hr]q′′ |P(1η, a) = 1

]
− Pr

[
[Hr]q′′ |Q(1η, a) = 1

]
|

+
pε(η,|a|)∑
r=1

|Pr
[
[Hr]q′′ |Q(1η, a) = 1

]
− Pr [Hr|Q(1η, a) = 1]|

(12), Lemma E.45
≤

pε(η,|a|)∑
r=1

(
f ′′(η, a) + g3,q′′(η, a) + f ′′(η, a)

)
= pε(η, |a|) ·

(
f ′′(η, a) + g3,q′′(η, a) + f ′′(η, a)

)
We define f ′′′(η, a) := pε(η, |a|) ·

(
f ′′(η, a) + g3,q′′(η, a) + f ′′(η, a)

)
. It is easy to see that f ′′′ is

negligible and that the following holds true:

|Pr [E|P(1η, a) = 1]− Pr [E|Q(1η, a) = 1]| ≤ f ′′′(η, a) .

This implies E|P ≡ E|Q for all E ∈ EnvR(P).
To conclude the proof of Theorem E.39, it remains to show that Q is R-environmentally bounded.

Since P and Q are indistinguishable for all E ∈ EnvR(P), we can apply Lemma E.15 to obtain
EnvR(P) = EnvR(Q). We have already shown that E|Q is almost bounded for all E ∈ EnvR(P)
by Lemma E.44 (see the comment following the lemma) and thus E|Q is almost bounded for all
E ∈ EnvR(Q), i.e. Q is R-environmentally bounded.

This concludes the proof of Theorem E.39.
ut

The following lemma corresponds to Lemma 14 in [KT13], but it is adapted to the case of responsive
environments. With this lemma, we can then prove Theorem E.36.

Lemma E.46. Let σ be an SID function and let P and F be protocol systems such that P and
F are σ-session versions and P ≤R,σ-single F . Then, there exists S ∈ SimPR,σ-single(F) such that
E|P ≡ E|S|F for all E ∈ EnvR,σ-single(P) and S is a single IITM which is σ-complete.

Proof. The original proof uses that there exists a simulator S ∈ SimPσ-single(F) such that E|P ≡ E|S|F
for all E ∈ Envσ-single(P). Then one can construct a new simulator S ′ that is defined to be σ-complete
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and essentially simulates S and some copies of F which only interact with S (except for a negligible
set of runs). It is then shown that, by definition, S ′ is a σ-single session simulator and E|P ≡ E|S ′|F
for all E ∈ Envσ-single(P).

Now, if one uses a simulator S ∈ SimPR,σ-single(F) with E|P ≡ E|S|F for all E ∈ EnvR,σ-single(P),
then it follows with the same construction that E|P ≡ E|S ′|F for all E ∈ EnvR(P) and that S ′
fulfills the conditions of σ-single session responsive simulators regarding interfaces and runtime.
Furthermore, since E|S|F and E|S ′|F essentially behave the same for all E ∈ EnvR,σ-single(P) (except
for a negligible set of runs) there must only be a negligible set of runs of E|S ′|F where a restricting
message of F is answered incorrectly (if this were not the case, then there would also be a non-
negligible set of runs of E|S|F where a restricting message is answered incorrectly, which contradicts
S ∈ SimPR,σ-single(F)). This implies S ′ ∈ SimPR,σ-single(F).

ut

We can now prove Theorem E.36:

Proof (Theorem E.36). By Lemma E.46, there exists S ∈ SimPR,σ-single(F) such that S is a σ-complete
IITM and E|P ≡ E|S|F for all E ∈ EnvR,σ-single(P). Since S is σ-complete, we can conclude that
E|P ≡ E|!S|F for all E ∈ EnvR,σ-single(P):22 Because the environment E invokes only a single session,
i.e. sends only messages to S and F with the same SID (w.r.t. σ), and F is a σ-session version,
S receives only messages with the same SID (w.r.t. σ) from F and E . So, even with !S only one
instance of S will be invoked in every run of E|!S|F , which implies E|P ≡ E|S|F ≡ E|!S|F .

Next, we observe that E|!S|F is almost bounded for all E ∈ EnvR,σ-single(!S|F): Since E|S|F ≡
E|P ≡ E|!S|F for all E ∈ EnvR,σ-single(P), we can use Lemma E.37 two times to obtain that
EnvR,σ-single(S|F) = EnvR,σ-single(P) = EnvR,σ-single(!S|F). Because S is a σ-single session responsive
simulator, the system E|S|F is almost bounded for all E ∈ EnvR,σ-single(S|F) = EnvR,σ-single(!S|F). As
argued above we can easily define a bijection between runs of E|S|F and runs of E|!S|F for all σ-single
session environments and thus E|!S|F must also be almost bounded for all E ∈ EnvR,σ-single(!S|F).

Finally, we note that, by construction, !S|F is a σ-session version where every machine that
does not occur in the scope of a bang accepts all messages in mode CheckAddress. Thus, we can
use Theorem E.39 (with Q := !S|F) to obtain E|P ≡ E|!S|F for all E ∈ EnvR(P) and that !S|F is
R-environmentally bounded.

Let E ∈ EnvR(P) (and thus, by Lemma E.15, E ∈ EnvR(!S|F)). The remainder of the proof
shows that the set of all runs of E|!S|F where a restricting message from F is answered incorrectly
is negligible; this implies !S ∈ SimPR(F) and thus P ≤R F . We will first show that there exists
a single negligible function which bounds the probability of an incorrectly answered restricting
message of a copy of F for all possible copies. Since there are only polynomial many copies in any
run, we can then construct another negligible function which bounds the probability that any copy
of F receives an incorrect answer to a restricting message.

By Lemma 6 from [KT13], we may assume that E is a single IITM which, in mode CheckAddress,
accepts all messages. We may also assume that start is a tape of E (otherwise there would be no
master IITM in E | !S |F , i.e. every run immediately ends with empty output. Thus, the claim
holds true trivially). In addition, we may assume that the only external tapes of E | !S |F are start
and decision. Moreover, we may assume, again without loss of generality, that E is such that every
message m that E outputs on tape c (except if m is output on tape decision) has some SID, i.e.
22 Note that ‘!’ binds stronger than ‘ | ’, and hence, the system E|!S|F is the same as E|(!S)|F .
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σ(m, c) 6= ⊥: Since E will only interact with σ-session versions, messages without an SID would be
rejected by these σ-session versions anyway. Since E is universally bounded, it follows that there
exists a polynomial pε such that the number of different sessions (i.e. messages with distinct SIDs
output by E) is bounded from above by pε(η, |a|) (where η is the security parameter and a is the
external input).

In what follows, let S ′ be the variant of S obtained from S by renaming every tape c occurring
in S to c′. Analogously, let F ′ be obtained from F by renaming every tape c occurring in F to
c′. By this, we have that !S|F and !S ′|F ′ have pairwise disjoint sets of external tapes, and hence,
these systems are pairwise connectable.

We now define an IITM Er (for every r ∈ N) which basically simulates E and which will run in
the system Er|!S ′|F ′|!S|F . The r-th copy of the protocol invoked by (the simulated) E will be a
copy of !S|F and the remaining copies will be copies of !S ′|F ′.

Formally, Er is obtained from E as follows (recall that we assume that E is a single IITM which
accepts every message in mode CheckAddress). The IITM Er will also always accept every message
in mode CheckAddress. The behavior of Er in mode Compute is specified next.

First, we need to make sure that Er has the appropriate tapes to connect to the different entities.
The IITM E already has tapes to connect to the external tapes of !S|F . For each such tape c, we
add to Er a tape c′ to connect to the external tapes of !S ′|F ′.

Next, we need to specify how Er redirects protocol invocations of E in the way sketched above:
Er keeps a list L of SIDs, which initially is empty, and the length l of the list, which initially is 0. By
definition of pε, it will always hold that l ≤ pε(η, |a|). After the first activation, Er simulates E with
security parameter η and external input a. In particular, if E produces output, then so does Er, and
if Er receives input, then E is simulated with this input. However, as explained next, the behavior of
Er deviates from that of E when it comes to sending and receiving messages to the different copies
of protocols.

1. If E produces output m on some external tape c of !S|F with s := σ(m, c), then Er checks
whether s occurs in L. If s does not occur in L, s is first appended at the end of L and l is
increased by 1. Let j ∈ {1, . . . , l} be the position where s occurs in L.
a) If j = r, then Er writes m on c.
b) If j 6= r, then Er writes m on tape c′.

2. If Er receives input on tape c′ (where c′ is an external tape of !S ′|F ′ corresponding to an external
tape c of !S|F), then Er behaves as E in case input was received on tape c.

3. If Er receives input on tape c (where c is an external tape of !S|F), then Er behaves as E in
case input was received on tape c.

It is easy to see that Er is universally bounded for every r ∈ N since E is universally bounded.
We now define a system E$ which first chooses some r ∈ {1, . . . , pε(η, |a|)} uniformly at random

and then behaves exactly as Er. It is easy to see that E$ is universally bounded since E$ simulates
the universally bounded system Er and r is bounded by a polynomial. Furthermore, we define the
system H$ = E$|!S ′|F ′ for brevity of presentation.

By construction, the systems E|!S|F and H$|!S|F behave exactly the same (see below). That
is, there exists a mapping which maps a run ρ of E|!S|F to a set of corresponding runs of H$|!S|F
such that the probability of ρ equals the probability of the corresponding set of runs of H$|!S|F ,
where the runs in this set differ only on the choice of r. In particular, we have that:

E|!S|F ≡ H$|!S|F , (13)
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For (13) we need that !S|F is a protocol system and a σ-session version. The second property is
necessary since it guarantees that two instances of machines in !S|F with different SIDs will never
send messages to each other (since they only send messages with their own SID), i.e. it is no problem
that the systems !S ′|F ′ and !S|F in H$|!S|F do not have a connection to each other. Furthermore,
for machines M of !S|F that are in the scope of a bang, it is easy to see that every instance of such
a machine in a run of E|!S|F corresponds to one instance of this machine (either in !S ′|F ′ or !S|F ,
depending on the SID of the instance) in a run of H$|!S|F .

If there is a machine M in !S|F that is not in the scope of a bang the following problem
can occur: In a run of E|!S|F there can only be at most one instance of such a machine, while
there may be two instances (one in !S ′|F ′ and one in !S|F) in a run of H$|!S|F , i.e. one of those
instances would not have a corresponding instance of M in E|!S|F . This is where we need that
!S|F is a protocol system, i.e. such a machine M must accept all messages m on all tapes c in mode
CheckAddress. Since M is a σ-session version, i.e. accepts only messages with the same SID, we
obtain σ(m, c) = s for some fixed value s 6= ⊥, m ∈ {0, 1}∗, and all (input-)tapes c of M . Since Er
and thus E$ never sends messages with the same SID to both !S ′|F ′ and !S|F there will be at most
one copy of either !S ′|F ′ or !S|F with SID s. But then there is also at most one instance of M in a
run of H$|!S|F , which corresponds to the single instance of M in a run of E|!S|F .

Remember that we have to show that restricting messages of F are answered correctly in an
overwhelming set of runs of E|!S|F . For this, we need the following events: Recall from the proof of
Lemma E.39 that, for all systems Q and R, we define the event C RQ = C RQ (1η, a) to be the set of
all runs of Q|R where a restricting message of R is answered incorrectly. With C RQ we denote the
complementary event.

In the following, we will first prove that Pr
[
C FH$|!S

]
is negligible, which can then be used to

conclude that Pr
[
C FE|!S

]
is negligible. For this result, we need that H$|!S|F is almost bounded:

Observe that E|!S|F is almost bounded, since E ∈ EnvR(!S|F) and !S|F is R-environmentally
bounded. Because H$|!S|F and E|!S|F behave exactly the same (see (13) and the explanation
above this equation), it is easy to see H$|!S|F is almost bounded as well.

It also holds true that E$ ∈ EnvR(!S ′|F ′|!S|F): Since the systems H$|!S|F and E|!S|F behave
exactly the same we have that in a run ρ of E|!S|F a restricting message of !S|F is not answered
correctly iff in every run in the set of runs of H$|!S|F corresponding to ρ this restricting mes-
sage, which comes from !S|F or !S ′|F ′, is not answered correctly as well. Since Pr

[
C

!S|F
E

]
is

overwhelming, this directly implies that Pr
[
C

!S′|F ′|!S|F
E$

]
is also overwhelming.

Now observe that every restricting message (on an external network tape) of !S|F in the system
H$|!S|F is also a restricting message of !S ′|F ′|!S|F (note that !S|F and !S ′|F ′ have disjoint
tapes). Thus we have Pr

[
C

!S|F
H$

]
= Pr

[
C

!S|F
E$|!S′|F ′

]
≤ Pr

[
C

!S′|F ′|!S|F
E$

]
, i.e., Pr

[
C

!S|F
H$

]
must also

be negligible.
By the previous observations, we can use Lemma E.20 and Lemma E.22 to obtain that [H$]!S|F ∈

EnvR(!S|F). Furthermore, [H$]!S|F is also a σ-single session environment, since the only external
tapes (except for start and decision) of [H$]!S|F are those between (the simulated) Er and !S|F ,
and Er only sends messages with the same SID on these tapes. Overall, we have that [H$]!S|F ∈
EnvR,σ-single(!S|F), and thus, by Lemma E.37, [H$]!S|F ∈ EnvR,σ-single(P). Since S ∈ SimPR,σ-single(F),
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this implies that Pr
[
C F[H$]!S|F |S

]
= Pr

[
C F[H$]!S|F |!S

]
is negligible. (Recall that [H$]!S|F is a σ-single

session environment and that S is σ-complete. Hence, the systems [H$]!S|F |S and [H$]!S|F |!S
behave in exactly the same way.) Finally, because [H$]!S|F |!S|F and H$|!S|F behave exactly the
same except for a negligible set of runs (i.e. when the runtime bound of [H$]!S|F is reached), we can
conclude that Pr

[
C FH$|!S

]
is negligible.

We can now show that Pr
[
C FE|!S

]
is negligible. First we observe that, for every run ρ in

C FE|!S(1η, a) there is a unique run ρ′ in C FH$|!S(1η, a) with Pr [ρ′] = 1
pε(η,|a|) · Pr [ρ].

More formally, we can define an injective function f that maps runs ρ from C FE|!S to runs ρ′ of
C FH$|!S in the following way: Let ρ be such a run. Then there exists at least one restricting message
of F that is answered incorrectly. Let s be the SID of the instance of F (in the run ρ) which is
the first instance that receives an incorrect answer. Let r′ be such that s is the r′-th (unique) SID
that is used by E . We define ρ′ to be the run of H$|!S|F where H$ chooses r = r′ (which happens
with probability pε(η, |a|)−1) and the run then continues just as ρ, i.e. all instances in ρ′, after r is
chosen, use the same random coins as those in ρ. Then ρ′ is in C FH$|!S by construction. Furthermore,
it is easy to see that f is injective and that Pr [ρ′] = 1

pε(η,|a|) · Pr [ρ]. Now, we obtain:

Pr
[
C FE|!S

]
=

∑
ρ∈C FE|!S

Pr [ρ]

=
∑

ρ∈C FE|!S

pε(η, |a|) · Pr [f(ρ)]

f injective
≤

∑
ρ′ ∈C FH$|!S

pε(η, |a|) · Pr
[
ρ′
]

= pε(η, |a|) · Pr
[
C FH$|!S

]
.

Since Pr
[
C FH$|!S

]
is negligible, it follows that Pr

[
C FE|!S

]
is bounded by a negligible function as well.

This implies !S ∈ SimPR(F), and thus, concludes the proof of Theorem E.36. ut
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