
Two-Server Password-Authenticated Secret Sharing
UC-Secure Against Transient Corruptions ?

Jan Camenisch1, Robert R. Enderlein1,2, and Gregory Neven1

{jca,enr,nev}@zurich.ibm.com
1 IBM Research – Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
2 Department of Computer Science, ETH Zürich, CH-8092 Zürich, Switzerland

Abstract. Protecting user data entails providing authenticated users access to their data. The most prevalent and prob-
ably also the most feasible approach to the latter is by username and password. With password breaches through server
compromise now reaching billions of affected passwords, distributing the password files and user data over multiple
servers is not just a good idea, it is a dearly needed solution to a topical problem. Threshold password-authenticated
secret sharing (TPASS) protocols enable users to share secret data among a set of servers so that they can later recover
that data using a single password. No coalition of servers up to a certain threshold can learn anything about the data or
perform an offline dictionary attack on the password. Several TPASS protocols have appeared in the literature and one
is even available commercially. Although designed to tolerate corrupted servers, unfortunately none of these protocols
provide details let alone security proofs about the steps that need to be taken when a compromise actually occurs and
how to proceed. Indeed, they consider static corruptions only which for instance does not model real world attacks by
hackers. We provide the first TPASS protocol that is provably secure against adaptive server corruptions. Moreover, our
protocol contains an efficient recovery procedure allowing one to re-initialize servers to recover from corruption. We
prove our protocol secure in the universal composability model where servers can be corrupted adaptively at any time;
the users’ passwords and secrets remain safe as long as both servers are not corrupted at the same time. Our protocol
does not require random oracles but does assume that servers have certified public keys.

Keywords: Universal composability, threshold cryptography, passwords, transient corruptions.

1 Introduction

Properly protecting our digital assets still is a major challenge today. Because of their convenience, we protect
access to our data almost exclusively by passwords, despite their inherent weaknesses. Indeed, not a month goes
by without the announcement of another major password breach in the press. In 2013, hundreds of millions of
passwords were stolen through server compromises, including massive breaches at Adobe, Evernote, Living-
Social, and Cupid Media. In August 2014, more than one billion passwords from more than 400,000 websites
were reported stolen by a single crime ring. Barring some technical blunders on the part of Adobe, most of
these passwords were properly salted and hashed. But even the theft of password hashes is detrimental to the
security of a system. Indeed, the combination of weak human-memorizable passwords (NIST estimates sixteen-
character passwords to contain only 30 bits of entropy [6]) and the blazing efficiency of brute-force dictionary
attacks (currently testing up to 350 billion guesses per second on a rig of 25 GPUs [23]) mean that any password
of which a hash was leaked should be considered cracked.

Stronger password hash functions [36] only give a linear security improvement, in the sense that the required
effort from the attacker increases at most with the same factor as the honest server is willing to spend on
password verification. Since computing password hashes is the attacker’s core business, but only a marginal
activity to a respectable web server, the former probably has the better hardware and software for the job.

A much better approach to password-based authentication, first suggested by Ford and Kaliski [22], is
to distribute the capability to test passwords over multiple servers. The idea is that no single server by itself
stores enough information to allow it to test whether a password is correct and therefore to allow an attacker to
mount an offline dictionary attack after having stolen the information. Rather, each server stores an information-
theoretic share of the password and engages in a cryptographic protocol with the user and the other servers to
test password correctness. As long as less than a certain threshold of servers are compromised, the password
and the stored data remain secure.

Building on this approach, several threshold password-authenticated key exchange (TPAKE) have since
appeared in the literature [22, 27, 31, 5, 18, 39, 28], where, if the password is correct, the user shares a different
secret key with each of the servers after the protocol. Finally addressing the problem of protecting user data,

? This is the full version of a paper due to appear at the 18th International Conference on Practice and Theory in Public-Key Cryptog-
raphy (PKC 2015). The final publication will be available at link.springer.com. This version was not yet updated to reflect
the reviewers’ comments: an updated version will be uploaded in mid-January 2015.

threshold password-authenticated secret sharing (TPASS) protocols [2, 10, 9] combine data protection and user
authentication into a single protocol. They enable the password-authenticated user to reconstruct a strong secret,
which can then be used for further cryptographic purposes, e.g., decrypting encrypted data stored in the cloud.
An implementation of the protocol by Brainard et al. [5] is commercially available as EMC’s RSA Distributed
Credential Protection (DCP) [20].

Unfortunately, all protocols proposed to date do not provide satisfying security. Indeed, for protocols that
are meant to resist server compromise, their authors are surprisingly silent about what needs to be done when
a server actually gets corrupted and how to recover from that. The work by Di Raimondo and Gennaro [18] is
the only one to mention the possibility to extend their protocol to provide proactive security by refreshing the
shares between time periods; unfortunately, no details are provided. The RSA DCP product description [20]
mentions a re-randomization feature that “can happen proactively on an automatic schedule or reactively, mak-
ing information taken from one server useless in the event of a detected breach.” This feature is not described
in any of the underlying research papers [5, 39], however, and neither is a security proof known. Taking only
protocols with provable security guarantees into account, the existing ones can protect against servers that are
malicious from the beginning, but do not offer any guarantees against adaptive corruptions. The latter is a much
more realistic setting, modelling for instance servers getting compromised by malicious hackers. This state of
affairs is rather troubling, given that the main threats to password security today, and arguably, the whole raison
d’être of TPAKE/TPASS schemes, come from the latter type of attacks.

One would hope to be able to strengthen existing protocols with ideas from proactive secret sharing [24] to
obtain security against adaptive corruptions, but this task is not straightforward and so far neither the resulting
protocol details nor the envisaged security properties have ever been spelled out. Indeed, designing crypto-
graphic protocols secure against adaptive corruptions is much more difficult than against static corruptions.
One difficulty thereby is that in the security proof the simulator must generate network traffic for honest parties
without knowing their inputs, but, once the party is corrupted, must be able to produce realistic state informa-
tion that is consistent with the now revealed actual inputs as well as the previously simulated network traffic.
Generic multiparty computation protocols secure against adaptive corruption can be applied, but these are too
inefficient. In fact, evaluating a single multiplication gate in the most efficient two-party computation protocol
secure against adaptive corruptions [7] is more than three times slower than a full execution of the dedicated
protocol we present here.
Our contributions. We provide the first threshold password-authenticated secret sharing protocol that is prov-
ably secure against adaptive corruptions, assuming data can be securely erased, which in this setting is a stan-
dard and also realistic assumption. Our protocol is a two-server protocol in the public-key setting, meaning
that servers have trusted public keys, but users do not. We do not require random oracles. We also describe a
recovery procedure that servers can go execute to recover from corruption and to renew their keys assuming
a trusted backup is available. The security of the password and the stored secret is preserved as long as both
servers are never corrupted simultaneously.

We prove our protocol secure in the universal composability (UC) framework [11, 12]. The very relevant
advantages of composable security notions for the particular case of password-based protocols have been argued
before [14, 10]; we briefly summarize them here. In composable notions, the passwords for honest users, as well
as their password attempts, are provided by the environment. Passwords and password attempts can therefore be
distributed arbitrarily and even dependently, reflecting real users who may choose the same or similar passwords
for different accounts. It also correctly models typos made by honest users when entering their passwords: all
property-based notions in the literature limit the adversary to seeing transcripts of honest users authenticating
with their correct password, so in principle security breaks down as soon as a user mistypes the password.
Finally, composable definitions absorb the inherent polynomial success probability of the adversary into the
functionality. Thus security is retained when the protocol is composed. In contrast, composition of property-
based notions with non-negligible success probabilities is problematic because the adversary’s advantage may
be inflated. Also, strictly speaking, the security provided by property-based notions is guaranteed only if a
protocol is used in isolation.

Our construction uses the same basic approach as the TPASS protocols of Brainard et al. [5] and Ca-
menisch et al. [10]. During Setup, the user generates shares of his key and password and sends them to the
servers (together with some commitments that will later be used in Retrieve). During Retrieve, the servers run
a subprotocol with the user to verify the latter’s password attempt using the commitments and shares obtained
in Setup. If the verification succeeds, the servers send the shares of the key back to the user, who can then re-

2

F2pass processes the instructions as follows. F2pass accepts inputs and messages only for a specific sid . It further checks that the sid
has the correct format. Whenever F2pass receives an input from a party it will eventually send a message to A containing the identity
of the party, the type of input, sid , qid , and—if applicable—wishes to send out delayed messages. a

– Setup: The user inputs 〈Setup, sid , qid = “Setup”, p, k〉 to F2pass and the two servers each inputb 〈ReadySetup, sid , qid =
“Setup”〉 to F2pass. F2pass then sends a public delayed message 〈Done, sid , qid〉 to the user and each of the two servers.

– Retrieve: To start, the user inputs 〈Retrieve, sid , qid , a〉 to F2pass, and the two servers each input 〈ReadyRetrieve, sid , qid〉 to
F2pass. F2pass waits for a message 〈Lock, sid , qid〉 from A, and then replies whether the user’s password attempt was correct
by sending 〈Lock, sid , qid , b〉 to A—where b = 1 if a = p and b = 0 otherwise. F2pass then sends a public delayed message
〈Delivered, sid , qid , b〉 to the two servers, and a private delayed message 〈Deliver, sid , qid , k′〉 to the user, where k′ = k if a = p,
and k′ = ε otherwise.

– Corrupt: When a party becomes corrupt, the party’s ideal peer will input 〈Corrupt, sid〉 to F2pass. Recall thatA thereafter obtains
control of the corrupted party’s input to and output from F2pass. A may prevent a subsequent Refresh query from succeeding in
case the server later recovers from corruption—in a real protocolA may tamper with the server’s internal state. If both servers are
corrupted at the same time (or corrupted in sequence with no Refresh query in between), F2pass will send (k, p) toA and allowA
to provide arbitrary replacement values. That is,A can force F2pass to return arbitrary values to the user if the latter interacts with
two corrupted servers in a Retrieve query.

– Recover: When a party recovers from corruption, the party’s ideal peer will input 〈Recover, sid〉 to F2pass. F2pass then stops
accepting input and messages for all currently running Setup and Retrieve queries, and will not accept any further Setup and
Retrieve queries until a Refresh query suceeds.

– Refresh: To start a Refresh query, each server inputs 〈Refresh, sid , qid〉 toF2pass. While this query is in progress, no further Setup,
Retrieve, and Refresh queries are accepted, and currently running queries are dropped. Once it has received a message from both
servers, F2pass sends 〈RefreshDone, sid , qid〉 as public delayed messages to the two servers. F2pass then resumes accepting new
queries. Note that while a server was corrupted, A might have prevented it from completing this Refresh query.

– Hijack: Just after a user provided its first input to F2pass in a Setup or Retrieve query and before A sends anything to F2pass for
the same query,A has the option of stealing the id of the query by sending a 〈HijackSetup, sid , qid , p, k〉 or 〈HijackRetrieve, sid ,
qid , a〉 message, respectively, to F2pass. In that case, F2pass ignores the user’s first message and runs the query with A instead of
the user, with the qid chosen by the user but input—(p, k) or a—provided by A.

a Messages from an ideal functionality to a party can be public or private and are always delayed. That is, if a message is public, A
will learn the message; if private,A will learn only the type of the message and the recipient. If a message is delayed, F2pass notifies
A it wishes to send the message and waits for a confirmation by A before actually sending out the message.

b The GNUC coventions forbid that F2pass sends a message to the servers at this point, as the servers might not yet exist.

Fig. 1: High level definition of F2pass. See the text for explanations, and see §A for the full formalization.

construct the key. Furthermore, the correctness of all values exchanged is enforced by zero-knowledge proofs.
Like the recent work of Camenisch et al. [9], we do not require the user to share the password during Retrieve
but run a dedicated protocol to verify whether the provided password equals the priorly shared one. This of-
fers additional protection for the user’s password in case he mistakenly tries to recover his secret from servers
different from the ones he initially shared his secret with. During setup, the user can be expected to carefully
choose his servers, but retrieval happens more frequently and possibly from different devices, leaving more
room for error.

The novelty of our protocol lies in how we transform the basic approach into an efficient protocol secure
against an adaptive adversary. The crux here is that parties should never be committed to their inputs but at
the same time must prove that they perform their computation correctly. We believe that the techniques we use
in our protocol to achieve this are of independent interest when building other protocols that are UC-secure
against adaptive corruptions. First, instead of using (binding) encryptions to transmit integers between parties,
we use a variant of Beaver and Haber’s non-committing encryption based on one-time pads (OTP) [4]: the
sender first commits to a value with a mixed trapdoor commitment scheme [7] and then encrypts both the value
and the opening with the OTP. This enables the recipient to later prove statements about the encrypted value.
Second, our three-party password-checking protocol achieves efficiency by transforming commitments with
shared opening information into an Elgamal-like encryption of the same value under a shared secret key. To be
able to simulate the servers’ state if they get corrupted during the protocol execution, each pair of parties needs
to temporarily re-encrypt the ciphertext with a key shared between them.

Finally, we note that our protocol is practical: users and servers have to perform a few hundred exponentia-
tions each, which translates to an overall computation time of less than 0.1 seconds per party.

2 Our Ideal Functionality F2pass

We now describe on a high level our ideal functionality F2pass for two-server password-authenticated secret
sharing, secure against transient corruptions. We provide the formal definition of F2pass in the GNUC vari-

3

ant [25] of the UC framework [11] in the Appendix in §A. F2pass is reminiscent of similar functionalities
by Camenisch et al. [10, 9], the main differences being our modifications to handle transient corruptions. We
compare the ideal functionalities in §E.1.

The functionality F2pass involves two servers, P and Q, and a plurality of users. We chose to define
F2pass for a single user account, specified by the session id sid . Multiple accounts can be realized by mul-
tiple instances of F2pass or with a multi-session realization of F2pass. The session identifier sid consists of
(pidP , pidQ, (G, q, g), uacc, ssid), i.e., the identity of the two servers, the description of a group of prime or-
der q with generator g, the name of the user account uacc (any string), and an arbitrary suffix ssid . Only the
parties with identities pidP and pidQ can provide input in the role of P and Q, respectively, to F2pass. When
starting a fresh query, any party can provide input in the role of a user to F2pass; for subsequent inputs in that
query, F2pass ensures it comes from the same party; additionally, F2pass does not disclose the identity of the
user to the servers.
F2pass[sid] reacts to a set of instructions, each requiring the parties to send multiple inputs to F2pass in a

specific order. The main instructions are Setup, Retrieve, and Refresh. Additionally F2pass reacts to instructions
modelling dishonest behavior, namely Corrupt, Recover, and Hijack. F2pass may process multiple queries (in-
stances of instructions) concurrently. A query identifier qid is used to distinguish between separate executions
of the main instructions. We now provide a summary of the instructions. We refer to Figure 1 for a high level
definition of F2pass and to §A for the full formalization.

With the Setup instruction, a user sets up the user account by submitting a key k and a password p to F2pass

for storage, protected under the password. This instruction can be run only once, which we enforce by fixing
qid to “Setup”. With the Retrieve instruction, any user can then retrieve that k provided her submitted password
attempt a is correct, i.e., a = p, and the servers are willing to participate in this query. Giving the server the
choice to refuse to participate in a query is important to counter online password guessing attacks.F2pass allows
for the adaptive corruption of users and servers with the Corrupt instruction, and for recovery from corruption
of servers at any time with the Recover instruction. Servers should run the Refresh instruction whenever they
recover from corruption or at regular intervals; in the real protocol, the two servers re-randomize their state
in this instruction and thereby clear the residual knowledge A might have. If both servers are corrupted at the
same time or sequentially with no Refresh in between, the adversaryA will learn the current key and password
(k, p) and is allowed to set them to different values. Finally, recall that in our realization of F2pass, the first
message from the user to the servers is not authenticated.A can therefore learn the qid from that message, drop
the message, and send his own message to the servers with that qid . We model this attack in F2pass with the
Hijack instruction. Servers will not notice this attack, but the user will conclude his query failed.

Our F2pass functionality gives the following security guarantees: k and p are protected from A as long as
at least one server is honest and no corrupt user is able to correctly guess the password. Furthermore, if at least
one server is honest, no offline password guessing attacks are possible. Honest servers can limit online guessing
attacks by limiting Retrieve queries after too many failed attempts. Finally, an honest user’s password attempt
a remains hidden even if a Retrieve query is directed at two corrupt servers.

3 Preliminaries
In this section, we introduce the notation used throughout this paper, give the ideal functionalities and crypto-
graphic building blocks we use as subroutines in our construction, and provide a refresher on corruption models
in the UC framework.

3.1 Notation
Let η ≥ 80 be the security parameter. Let ε denote the empty string. If S is a set, then s $← S means we set s to
a random element of that set. If A is a probabilistic polynomial-time (PPT) algorithm, then y $← A(x) means
we assign y to the output of A(x) when run with fresh random coins on input x. If s is a bitstring, then by |s|
we denote the length of s. If U and P are parties, and Sub is a two-party protocol, then by (out U ; outP)

$←
〈U .Sub(in U),P.Sub(inP)〉(in UP) we denote the simultaneous execution of the protocol by the two parties,
on common input in UP , with U’s additional private input in U , with P’s additional private input inP , and
where U’s output is out U and P’s output is outP . We use an analogue notation for three-party protocols.

We use the following arrow-notation: publicData to denote the transmission of public data over a
channel that the two parties have already established between themselves (we discuss how such a channel is
established in more detail later). When we write (: dataToErase) next to such an arrow, we mean that the

4

value dataToErase is securely erased before the public data is transmitted. When we write
[
secretData

]
on

such an arrow, we mean that secretData is sent in a non-committing encrypted form. All these transmissions
must be secure against adaptive corruptions in the erasure model.

3.2 Ideal Functionalities that we Use as Subroutines

We now describe the ideal functionalities we use as subroutines in our construction. These are authenticated
channels (Fac), one-sided–authenticated channels (Fosac), zero-knowledge proofs of existence (Fgzk), and com-
mon reference strings (FDcrs).

Authenticated channels. Let Fac[sid] be a single-use authenticated channel [25]. In our construction, we
allow only servers to communicate among themselves using Fac[sid]. We recall the formal definition in §B.2.

One-sided–authenticated channels. Let Fosac[sid] be a multi-use channel where only one party, the server,
authenticates himself towards the other party, the client. The server has the guarantee that in a given session all
messages come from the same client. Note that the first message from the client to the server is not authenticated
and can be modified (hijacked) by the adversary—the original client will be excluded from the rest of the
interaction. We provide a formal definition in §B.3. We also refer to the work of Barak et al. [3] for a formal
treatment of communication without or with partial authentication. A realization of Fosac[sid] is out of scope,
but not hard to construct.

Zero-knowledge proofs of knowledge and existence. Let Fgzk[sid] be the zero-knowledge functionality
supporting proofs of existence [8]. These proofs of existence are cheaper than the corresponding proofs of
knowledge, but they impose limitations on the simulator S in the security proof. In a realization of Fgzk, the
prover reveals the statement to be proven only in the last message. This is crucial for our construction, as this
allows the prover to erase () witnesses and other data before disclosing the statement to be proven. We recall
the formal definition [8] in §B.4.

Notation. When specifying the predicate to be proven, we use a combination of the Camenisch-Stadler notation
[16] and the notation introduced by Camenisch, Krenn, and Shoup [8]; for example: Fgzk[sid]{(α, β ; ∃γ) :
y = gγ ∧ z = gαkβhγ} is used for proving the existence of the discrete logarithm to the base g, and of a
representation of z to the bases g, k, and h such that the h-part of this representation is equal to the discrete
logarithm of y to the base g. Furthermore, knowledge of the g-part and the k-part of the representation is proven.
Variables quantified by (knowledge) can be extracted by the simulator S in the security proof, while variables
quantified by ∃ (existence) cannot.

By writing a proof on an arrow:
π0 we denote the performance of such an interactive zero-knowledge

proof protocol secure against adaptive corruptions with erasures. If additional public or secret data is written on
the arrow, or data to be erased besides the arrow, then this data is transmitted with, or erased before, respectively,
the last message of the proof protocol (cf. §3.1). The predicate of the proof may depend on that data.

Proofs with two verifiers. Let F2v
gzk[sid] be the three-party ideal functionality to denote the parallel execution

of two independent zero-knowledge proofs with the same prover and same specification, but two different
verifiers. The prover waits for a reply from both verifiers before sending out the last message of each proof.
This gives the prover the opportunity to erase the same witnesses in both proofs. We provide a formal definition
in §B.5. The proof that the special composition theorem by Camenisch, Krenn, and Shoup [8] holds also for
F2v
gzk is very similar to the proof that it holds for Fgzk and is omitted.

Common reference string. Let FDcrs[sid] be a common reference string (CRS) functionality, which provides a
CRS distributed according to some distributionD. We make use of two distributions in this paper:FG3

crs provides
a uniform CRS over G3 and Fgzk

crs provides a CRS as required by Camenisch et al.’s protocol π, the intended
realization of Fgzk [8]. We provide a formal definition in §B.1.

3.3 Cryptographic Building Blocks of Our Construction

Our construction makes use of two cryptographic building blocks: a CCA-2 secure encryption scheme, and a
homomorphic mixed trapdoor commitment scheme.

5

CCA2-secure encryption. We denote the key generation function (pk , sk , kgr)
$← Gen(1η), where kgr is the

randomness that was used to generate the key pair. We denote the encryption function (e, er)
$← Enc(pk , pt , l)

that takes as input a public key pk , a plaintext pt ∈ {0, 1}∗, and a label l ∈ {0, 1}∗; and outputs the ciphertext
e and the randomness er used to encrypt. The corresponding decryption function pt

$← Dec(sk , e, l) takes as
input the secret key sk , the ciphertext e, and the label l. We require the scheme to be secure against adaptive
chosen ciphertext attacks [37]. An example of such an encryption scheme is Cramer-Shoup encryption in a
hybrid setting over a group G of prime order q [16, §5.2]. To accommodate the label l in the encryption
function, it must be added as an additional input to the hash function used during encryption.

Homomorphic mixed trapdoor (HMT) commitment. An HMT commitment scheme [7] is a computation-
ally binding equivocable homomorphic commitment scheme, constructed from Pedersen commitments [34]. It
works well with proofs of existence using Fgzk, resulting in an efficiency gain in our protocol compared to a
construction using plain Pedersen commitments, which would have to use proofs of knowledge. We provide a
high-level overview of HMT commtiments here and recall the definition of HMT commitments in §C.

HMT commitments operate in a group G of prime order q (with generator g) where the decision Diffie-
Hellman (DDH) problem is hard. They implicitly use a CRS (h, y, w) provided by FG3

crs . By (c, o)
$← Com(s)

we denote the function that takes as input a value s ∈ Zq to be committed, and outputs a commitment c and
an opening o ∈ Zq to the commitment. We will also use the notation c ← Com(s, o), where the opening
is chosen outside the function. The commitments are homomorphic with respect to addition over Zq: i.e.,
c ∗ c′ = Com(s+ s′, o+ o′). With a trapdoor to the CRS it is possible to efficiently equivocate commitments.
Finally, we note that it is possible to extract a Pedersen commitment pc from a commitment c, we denote this
operation by pc := ysho ← PedC(c).

3.4 Corruption in the UC Model
The UC model defines several types of party corruptions, the most important being static, adaptive, and tran-
sient corruptions. In protocols secure against static party corruptions, parties are either honest or corrupt from
the start of the protocol and do not change their corruption status. In protocols secure against adaptive corrup-
tions, parties can become corrupted at any time; once corrupted, they remain so for the rest of the protocol.
Finally, transient corruptions [11] are similar to the adaptive corruptions, but parties can recover from corrup-
tion and regain their security.

In the following we discuss the modelling of transient corruptions in the UC framework, how one can
use ideal functionalities designed for adaptive corruptions in a protocol designed for transient corruptions, and
finally we discuss a particular problem that appears in protocols secure against adaptive or transient corruptions:
the selective decommitment problem.

Modelling transient corruptions in real/hybrid protocols. We now recall how corruption and recovery is
modelled in real/hybrid protocols.

Corruption of a party. When a party becomes corrupted, all of its internal state excluding the parts that were
explicitly erased () is handed over to the adversaryA.A then controls that party. The ideal functionalities that
were used as subroutines are notified of the corruption, and may provide additional information or capabilities
to A. Parties may not necessarily be aware that they have been corrupted: for example, A could passively
monitor that party’s internal state for a while, and become active only at some later point.

Recovery from corruption. A may cede control from a party. When doing that, A may specify a new internal
state for the party. We then say that the party formally recovered. Parties may or may not be aware thatA ceded
control: for example, a party might know it recovered if it detected a breach and has restored from backup.

In most protocols however, formal recovery is not enough: the adversary still knows parts of the internal
state of the formally recovered party. To allow the party to effectively recover its security, it must take additional
steps, e.g., notify its subroutines (and stop using the subroutines that cannot handle recovery) and run a protocol-
specific Refresh instruction. The party might thereby drop all currently running queries.

A party initiates a Refresh query to modify its internal state so that firstly it is synchronized with the other
protocol participants, and so that secondly A has no more residual knowledge of that state. Parties should
initiate a Refresh query when they formally recover from corruption. (If parties cannot detect formal recovery,
they should run Refresh periodically.) The Refresh query might fail if the state of the party is inconsistent with
that of the others. The party might also not necessarily recover its security even after succesful completion of

6

the query, e.g., because all other participants are corrupted. Note that the security of a party is fully restored (if
at all) only after Refresh completes: in the grey zone bewteen formal recovery and completion of Refresh, the
party must not run any queries other that Refresh.

Using ideal functionalities designed for the adaptive type in a transient-secure hybrid protocol. Protocols
secure against transient corruptions may use ideal functionalities as subroutines that were designed to handle
adaptive corruptions, e.g., Fac, Fosac, Fgzk, and F2v

gzk: upon formal recovery, the party must stop using all
instances of these ideal functionalities. Thereby, it has to abort all currently running queries. Thereafter, it has
to use fresh instances of these ideal functionalities for running the Refresh query, and all subsequent queries.

The selective decommitment problem. Hofheinz demonstrated that it is impossible to prove any protocol
secure against adaptive corruptions (and thus, also secure against transient corruptions) that uses perfectly
binding commitments or (binding) encryptions to commit to or to encrypt the parties’ input, respectively [26].
Let us expand on this. For example, assume that in a protocol a user U with an input i must send out a
binding commitment c or an encryption e depending on i, e.g., (c, o) = Com(i) or (e, er) = Enc(pk , i, l). The
simulator S in the security proof must be able to simulate the honest U without knowing her input i, i.e., S
must send c or e to the adversary A, containing some value that is most likely different from i. If U then gets
corrupted, S must produce an internal state for U , namely the opening o or the randomness er used to encrypt
and—if applicable—the secret key sk , that is consistent with both her real input i and the values c or e already
sent out to the adversary. However, due to the binding nature of the commitment and encryption, and unless
it could predict i, S cannot find an internal state for U consistent with these values and therefore the security
proof will not go through.

4 Our Construction of TPASS Secure Against Transient Corruptions

In this section we present our realization Π2pass of the F2pass ideal functionality in the (FG3

crs , Fosac, Fac, Fgzk,
F2v
gzk)-hybrid setting. Π2pass further uses a CCA2-secure cryptosystem and an HMT commitment scheme. As

for F2pass, we describe Π2pass for a single user account only, i.e., each instance of Π2pass uses a fixed sid .
We start this section by discussing the high level ideas of our construction. We then elaborate on the novel

core ideas in our construction, before providing the detailed construction. We then comment on a multi-session
version of Π2pass that uses a constant size CRS. We finish by providing an estimate of the computational and
communication complexity of Π2pass in both the standard and random oracle models, and compare it with the
complexity of related work.

4.1 High Level Approach of our TPASS Protocol

Our protocol Π2pass implements the Setup, Retrieve, and Refresh instructions of F2pass. An adversary can
hijack a Setup or Retrieve query through the Fosac subroutine. The other instructions of F2pass are purely
conceptual for the security proof. At a high level, the realizations of the Setup and Retrieve instructions of
Π2pass are reminiscent of the schemes by Camenisch et al. [10, 9] and Brainard et al. [5]: during Setup, the user
generates shares of his key and password and sends them to the servers (together with some commitments that
will later be used in Retrieve). During Retrieve, the servers run a subprotocol with the user to verify the latter’s
password attempt using the commitments and shares obtained in Setup. If the verification succeeds, the servers
send the shares of the key back to the user, who can then reconstruct the key. Furthermore, the correctness
of all values exchanged is enforced by zero-knowledge proofs. To deal with transient corruptions, our Π2pass

needs to implement the Refresh instruction, which allows the servers to re-randomize their shares of the key
and password and thereby to re-secure their states when one of them is recovering from corruption. Naturally,
prior schemes do not have a Refresh instruction as they do not provide security against transient corruptions.

The novelties of our construction arise from how we turn this basic approach into a scheme that is secure
against adaptive and transient corruptions and at the same time similarly efficient as the CLN-protocol [10].

4.2 Key Ideas of our TPASS Protocol

We now present the key ideas that make it possible for our TPASS protocol to be secure against transient
corruptions. These ideas are novel and of independant interest.

7

Three-party computation for determining equality to zero. We now explain our core subprotocol ChkPwd,
depicted in Figure 2. To check if the password attempt a input by the user during a Retrieve query matches the
stored password p = pP + pQ, the user and the two servers engage in a three-party computation to check if
δ := pP + pQ− a ?= 0, where pP and pQ are the shares stored by the respective servers. For efficiency reasons,
it does not make sense to base that protocol on a generic multiparty computation protocol. Indeed, running one
Retrieve query in our protocol is more than 3.7 times faster than evaluating a single multiplication gate in the
best generic two-party computation protocol that is secure against adaptive corruptions [7] (see §E.3).

The first observation is that a commitment in the HMT scheme we use essentially consists of a pair of
Pedersen commitments. Thus, while all components need to be considered to prove that a commitment is
formed correctly, it is often sufficient to consider just one component later when doing computations with
them. Now, based on this, a first idea for the desired subprotocol would be as follows. The servers’ com-
mitments cPp and cQp to the shares of the password are distributed to all the parties, who then generate a
commitment on the sum of the two shares using the homomorphic property of HMT commitments, and ex-
tract the first component thereof to obtain a value C := PedC(cPp ∗ cQp) = yp

P+pQho
P
p +oQp (here y and h

are part of the CRS). That value is an equivocable Pedersen commitment to p := pP + pQ (equivocable
because the simulator knows logy h). Given C, the user subtracts his password attempt from that commit-
ment: B := Cy−a = yδho

P
p +oQp . We now consider the Elgamal “ciphertext”

(
A := h−1, B

)
, which is an

encryption of yδ under the shared secret key (−oPp − oQp) with fixed randomness −1. This ciphertext is then
passed from U to P , from P to Q, and then from Q back to P , where at each step, the sender exponentiates
that ciphertext by a non-zero random number rU, rP, and rQ, respectively, thereby multiplying the plaintext
by that random number. Also, if possible, the sender will partially decrypt the ciphertext by removing oPp

or oQp : U computes
(
AU , B′U

)
:=

(
Ar
U
, BrU

)
=

(
h−r

U
, yδr

U
h(o
P
p +oQp)rU

)
and sends it to P , P computes(

AP , B′P
)
:=

(
(AU)r

P
, (B′U)r

P
(AP)o

P
p
)
=

(
h−r

UrP , yδr
UrPho

Q
p r
UrP

)
and sends it to Q, and Q computes(

AQ, BQ
)
:=

(
(AP)r

Q
, (B′P)r

Q
(AQ)o

Q
p
)
=

(
h−r

UrPrQ , yδr
UrPrQ

)
and sends it to P . If in the end the result

BQ is the neutral element, then δ = 0, and the password was correct.
Unfortunately, this first idea doesn’t quite work: if δ = 0, B′U fixes a value for (oPp + oQp) and B′P

fixes a value for oQp . Thus cPp and cQp , together with B′U and B′P form unequivocable statistically binding
commitments to pP and pQ. This causes a selective decommitment problem. Our solution is to blind the values
B′U and B′P with non-committing random shifts sUP, sUQ, and sPQ as follows, thereby circumventing the
problem. U chooses sUP and sUQ, and sends them to P and Q, respectively, in a non-committing manner. U
then generates BU by multiplying B′U with the blinding factor (AU)s

UP+sUQ , and sends BU instead of B′U

to P . The ciphertext (AU , BU) is now encrypted under the shared key (sUP + sUQ − oPp − oQp). Similarily,
P chooses sPQ and sends it to Q. P generates BP like B′P but uses BU instead of B′U in the formula and
multiplies the result by (AP)−s

UP+sPQ , and sends BP to Q instead of B′P , i.e., the ciphertext (AP , BP) is
now encrypted under the shared key (sUQ + sPQ − oQp). Finally Q computes BQ differently by replacing
B′P by BP in the formula and multiplying the result by (AQ)−s

UQ−sPQ . At the end of each step, the parties
prove to each other in zero-knowledge that they computed their values correctly; whereby the parties use the
trick explained in the next paragraph to refer to sUP , sUQ, and sPQ in the proofs. These proofs also allow the
simulator to extract a, pP , pQ, oPp , oQp , and (sUP + sPQ) in the security proof.

Transmission of secrets for later use in proofs. In the protocol just described, U must send the value sUP

to P in a non-committing manner and all parties must be able to refer back to that value in subsequent zero-
knowledge proofs. Simply having U encrypt sUP is not sufficient, because P can later not refer back to sUP in
proofs. A similar situation also arises in other parts of our protocol, for example in the Setup instruction when
U must send a share pP to the password to P in a non-committing manner.

In a setting that considers only static corruptions, such problems are often solved by requiring U to send a
Pedersen commitment cUPs to sUP to all parties, and to send sUP and the opening oUPs to the commitment to P ,
encrypted under P’s public key. Thus, with cUPs , P can later prove that it correctly used sUP in its computations.

When dealing with adaptive or transient corruptions, this does not work: the encryption of sUP causes
a selective decommitment problem. Instead, we have U generate an equivocable commitment cUPs to sUP

with opening oUPs , then establish a one-time pad (OTP) with P , and then encrypt both sUP and oUPs with the
OTP. U then sends the resulting ciphertext to P in any convenient manner (in this specific example, U sends

8

U .ChkPwd(sid , qid , a): P .ChkPwd(sid , qid , cPp , cQp , pP , oPp): Q.ChkPwd(sid , qid , cPp , cQp , pQ, oQp):

cPp , c
Q
p , π3

cPp , c
Q
p , π4

Check that she received the same
(cPp , c

Q
p) from both servers.

C ← PedC(cPp ∗ cQp) := yp
P+pQho

P
p +oQp .

sUP
$← Zq; (cUPs , oUPs)

$← Com(sUP).
sUQ

$← Zq; (cUQs , oUQs)
$← Com(sUQ).

rU
$← Z∗q ; AU ← h−r

U
.

BU ← (Cy−a)r
U
(AU)s

UP+sUQ
.

C ← PedC(cPp ∗ cQp). C ← PedC(cPp ∗ cQp).

(: rU, sUP, sUQ, oUPs , o
UQ
s)

 Run

simultaneously
(see §3.2).

AU, BU, cUPs , c
UQ
s ,
[
sUP, oUPs

]
, π5

AU , BU , cUPs , cUQs ,
[
sUQ, oUQs

]
, π5

Check: cUPs
?= Com(sUP , oUPs).

sPQ
$← Zq;(cPQs , oPQs)

$← Com(sPQ).
rP

$← Z∗q ; AP ← (AU)r
P

.

BP ← (BU)r
P
(AP)o

P
p −s

UP+sPQ
.

Check: cUQs
?= Com(sUQ, oUQs).

AP, BP, cPQs ,
[
sPQ, oPQs

]
, π6(: rP, sPQ, oPQs)

Check: cPQs
?= Com(sPQ, oPQs).

rQ
$← Z∗q ; AQ ← (AP)r

Q
.

BQ ← (BP)r
Q
(AQ)o

Q
p −s

UQ−sPQ
.

AQ, BQ, π7 (: rQ)

If BQ = g0: Output 1.
Else: Output 0.

If BQ = g0: Output 1.
Else: Output 0.

Instantiation of zero-knowledge proofs:

π3 := Fgzk[sid , qid , 3]
{(

pP , oPp
)
: cPp = Com(pP , oPp)

}
.

π4 := Fgzk[sid , qid , 4]
{(

pQ, oQp
)
: cQp = Com(pQ, oQp)

}
.

π5 := F2v
gzk[sid , qid , c

P
p , c
Q
p , 5]

{(
a, σ ; ∃ρ, β

)
: h = (AU)ρ ∧ C = ((BU)−1)ρyahσ ∧ (cUPs ∗ cUQs) = Com(σ, β)

}
,

where σ := sUP + sUQ, ρ := −1/rU , and β := oUPs + oUQs .

U runs two proofs, one with P and one withQ, in parallel: she performs the erasures and sends out the last message of
both proofs only after she received the second message of the proof from both servers (see Proofs with two verifiers in §3.2).

π6 := Fgzk[sid , qid , c
P
p , c
Q
p , c
UP
s , cUQs , AU , BU , 6]

{(
∃pP , oPp , rP , σ, β

)
:

AP = (AU)r
P
∧AP 6= g0 ∧BP = (BU)r

P
(AP)o

P
p +σ ∧ cPp = Com(pP , oPp) ∧

(
cPQs ∗ (cUPs)−1) = Com(σ, β)}

,where σ := sPQ − sUP and β := oPQs − oUPs .

π7 := Fgzk[sid , qid , c
PQ
s , AP , BP , 7]

{(
∃pQ, oQp , rQ, σ, β

)
:

AQ = (AP)r
Q
∧AQ 6= g0 ∧BQ = (BP)r

Q
(AQ)o

Q
p −σ ∧ cQp = Com(pQ, oQp) ∧ (cUQs ∗ cPQs) = Com(σ, β)}

,where σ := sUQ + sPQ and β := oUQs + oPQs .

Fig. 2: Subroutine ChkPwd: the servers check if U’s password attempt a is equal to the password pP + pQ.

it as part of proof protocol π5 in Figure 2 that actually uses the values sUP, oUPs , and cUPs in some indirect
form; in the Setup instruction where she needs to send pP to P in a non-committing manner, U sends the
ciphertext to P directly). Afterwards, P can refer to sUP in zero-knowledge proofs by means of cUPs , e.g.,
Fgzk[sid]{(∃sUP , oUPs) : cUPs = Com(sUP , oUPs)}. This approach will allow S to equivocate sUP, provided
that no extra dependencies on the opening oUPs are introduced in other protocol steps (the first idea of the
three-party protocol above describes the problems when such an extra dependency is introduced on oPp).

9

T .secureSend(sid , qid , secretData): R.secureSend(sid , qid , |secretData|):

(pkT , skT , kgr)
$← Gen(1η). otpT R

$← {0, 1}|secretData|.

pkT(: kgr)

(eT, erT)← Enc(pkT, otpT R, (sid , qid , pidT, pidR)).

eT (: erT)

otpT R ← Dec(skT , eT , (sid , qid , pidT , pidR)).
eR ← secretData ⊕ otpT R.

eR(: skT , secretData, otpT R)

secretData ← eR ⊕ otpT R.
Output secretData .

Fig. 3: Subroutine secureSend, the realization of
[
secretData

]
: a party T (user or server) sends secretData

to a partyR (user or server) in a non-committing encrypted form.

4.3 Detailed Construction ofΠ2pass in the Standard Model (with Erasures)
We now give the full details of the instructions of our protocol and their respective subprotocols. Let us start
with five remarks. First, we implicitly assume that all parties query FG3

crs to obtain a CRS (h, y, w) when-
ever they need it. Second, all commitments Com must be realized with HMT commitments (see §3.3). Using
Pedersen commitments instead would require expensive zero-knowledge proofs of knowledge in the protocol,
thereby massively increasing the computational complexity. Third, we assume that for each query the user estab-
lishes a single instance of a one-sided authenticated channel Fosac[(sid , qid),P] and Fosac[(sid , qid),Q] with
each respective server; all communication denoted by arrows: , and all communication inside the zero-
knowledge functionalities Fgzk and F2v

gzk happen through that instance.3 The two servers communicate with
each other through regular authenticated channels Fac[(sid , qid),P,Q, ssid]. Fourth, parties can send data in
a non-committing and confidential manner, i.e., secure against adaptive corruptions, by using the secureSend
subroutine depicted in Figure 3. We denote such communication by:

[
secretData

]
(cf. §3.1). The parties estab-

lish a one-time pad (OTP) with each other, encrypt the data with that OTP, and erase the OTP before sending
the ciphertext [4]. Fifth, we implicitly assume that a party aborts a query without output if any check fails.

The Setup instruction. Recall that the goal of the Setup instruction is for a user to set up an account uacc with
the two servers P and Q and store a key k ∈ Zq protected under a password p ∈ Zq therein. The servers will
silenty abort a Setup query if the user account has already been established.

When a user U receives an input 〈Setup, sid = (pidP , pidQ, (G, q, g), uacc, ssid), qid = “Setup”, p, k〉
from the environment Z , she starts a Setup query. Each of the servers starts a Setup query when he receives
an input 〈ReadySetup, sid , qid〉 from Z . As the first step of the Setup query, U distributes shares of k and p
to both servers using the Share subprotocol. In that subprotocol, the user establishes an OTP with each server
and encrypts the shares with the respective OTPs in order to circumvent the selective decommitment problem
[26]. Finally, the servers store their shares as their internal state and send an acknowledgement back to the user.
See Figure 4. At the end of the Setup query, each of the three parties outputs 〈Done, sid , qid〉 to Z .

The Share subprotocol Setup uses is depicted in Figure 5. In that subprotocol U splits her inputs p and k
into random additive shares pP+pQ := p and kP+kQ := k, and sends (pP , kP) to P and sends (pQ, kQ) toQ.
She commits to all shares and sends all commitments to both servers; additionally she sends the openings for a
server’s shares to the respective server; thus enabling the servers to later perform zero-knowledge proofs about
their shares and the commitments to them. The servers then ensure they got the same commitments and prove to
each other that they know their shares. In π2,Q also proves to P that he knows the opening oQp corresponding to

his share of the password: this is needed so that S can properly simulate BP = (AP)s
UQ+sPQ−oQp in ChkPwd

(we note that S does not need to know the value oPp from π1 at this point).

The Retrieve instruction. Recall that the goal of the Retrieve instruction is for a user (not necessarily the same
as during Setup) to retrieve the key k, contingent upon her holding a correct password attempt a ∈ Zq.

When a user U receives an input 〈Retrieve, sid , qid , a〉with the same sid as during Setup fromZ , she starts
a Retrieve query. Each of the servers starts a Retrieve query when he receives an input 〈ReadyRetrieve, sid ,

3 Refer to Barak et al. [3] for details about modelling communication with partial authentication in the UC model.

10

U .Setup(sid , qid , p, k) P .Setup(sid , qid)
p, k

shares, comm. shares, comm.

shares, comm. shares, comm.

Share

ok

Q.Setup(sid , qid)

ok

1.

2. 2.

3. 3.

1. 1.

1. U generates shares and commitments to her password and key and sends them to the servers:(
ε; (cPp , c

P
k, c
Q
p , c
Q
k , p
P, kP, oPp , o

P
k); (c

P
p , c
P
k , c
Q
p , c
Q
k , p
Q, kQ, oQp , o

Q
k)
) $←

〈
U .Share

(
p, k
)
,P.Share

()
,Q.Share

()〉(
sid , qid

)
.

2. Each serverR ∈ {P,Q} stores
(
cPp , c

P
k , c
Q
p , c
Q
k , p

R, kR, oRp , o
R
k

)
into his long-term storage.

3. The servers send an acknowledgement to U .

Fig. 4: Setup instruction: U distributedly stores a key k protected under a password p on two servers P and Q.

U .Share(sid , qid , p, k): P .Share(sid , qid): Q.Share(sid , qid):

pP
$← Zq; (cPp , oPp)

$← Com(pP).

kP
$← Zq; (cPk , oPk)

$← Com(kP).
pQ ← p− pP ; (cQp , oQp)

$← Com(pQ).

kQ ← k − kP ; (cQk , o
Q
k)

$← Com(kQ).

cPp , c
P
k , c
Q
p , c
Q
k ,
[
pP , oPp , k

P , oPk
]

cPp , c
P
k , c
Q
p , c
Q
k ,
[
pQ, oQp , k

Q, oQk
]

Check: cPp
?= Com(pP , oPp)

and cPk
?= Com(kP , oPk).

Check: cQp
?= Com(pQ, oQp)

and cQk
?= Com(kQ, oQk).

π1

π2

Output (cPp , cPk , c
Q
p , c
Q
k , p
P, kP, oPp , o

P
k). Output (cPp , cPk, c

Q
p , c
Q
k , p
Q, kQ, oQp , o

Q
k).

Instantiation of zero-knowledge proofs:

π1 := Fgzk[sid , qid , c
P
p , c
P
k , c
Q
p , c
Q
k , 1]

{(
pP , kP ; ∃oPp , oPk

)
: cPp = Com(pP , oPp) ∧ cPk = Com(kP , oPk)

}
.

π2 := Fgzk[sid , qid , c
P
p , c
P
k , c
Q
p , c
Q
k , 2]

{(
pQ, kQ, oQp ; ∃oQk

)
: cQp = Com(pQ, oQp) ∧ cQk = Com(kQ, oQk)

}
.

Fig. 5: Subroutine Share: U generates shares to her password p and key k, and sends them to the servers.

qid〉 from Z . The servers may refuse to service the query if they for instance suspect that an online password
guessing attack is in progress, e.g., if they have processed too many failed Retrieve queries for that user account
already. As many policies for throttling down can be envisaged, we decided not to include the policy in our
model but rather to let Z decide: if the server should refuse service, Z does not provide the initial input
〈ReadyRetrieve, sid , qid〉. The Retrieve instruction runs as follows and is depicted in Figure 6. The servers
start a Retrieve query by retrieving their internal state. The user and the servers then engage in a three-party
computation to determine whether δ := pP + pQ − a ?= 0, i.e., whether the password attempt is correct,
using the ChkPwd subprotocol. If the password is correct, the servers send their shares of the key back to the
user using the Reconstr subprotocol; if wrong, they send back ε. At the end of the Retrieve query, U outputs
〈Deliver, sid , qid , k′〉 to Z , and each server outputs 〈Delivered, sid , qid , b〉 to Z—where k′ = k and b = 1 if
the password attempt was correct, else k′ = ε and b = 0.

We now describe the two subprotocols that the Retrieve instruction uses. ChkPwd was already explained
in §4.2 and was depicted in Figure 2. Reconstr is depicted in Figure 7. In this subprotocol, each server sends
his share of the key (kP or kQ) and the corresponding opening to U . Both servers also send her the two
commitments to the shares of the key. The user checks that she received the same commitments from both

11

U .Retrieve(sid , qid , a)

a

a ?= p a ?= p
ChkPwd

Reconstr

4. Output k or ε 4. Output a ?= p

k or ε

shares, comm. or ε

shares, comm.

P .Retrieve(sid , qid) Q.Retrieve(sid , qid)

shares, comm.shares, comm.

shares, comm.

shares, comm. or ε

4. Output a ?= p

2.

3.

1. 1.

3. 3.

2.2.

1. Each serverR ∈ {P,Q} retrieves
(
cPp , c

P
k , c
Q
p , c
Q
k , p

R, kR, oRp , o
R
k

)
from his long-term storage.

2. U , P , andQ run a three-party protocol to determine if the password attempt is correct:(
ε; b := (a ?= p); b := (a ?= p)

) $←
〈
U .ChkPwd

(
a
)
,P.ChkPwd

(
cPp , c

Q
p , p

P , oPp
)
,Q.ChkPwd

(
cPp , c

Q
p , p

Q, oQp
)〉(

sid , qid
)
.

3. – If b = 1 (i.e., the password attempt was correct), the servers send the key k′ = k to U :(
k′; ε; ε

) $←
〈
U .Reconstr

()
,P.Reconstr

(
cPk , c

Q
k , k

P , oPk
)
,Q.Reconstr

(
cPk , c

Q
k , k

Q, oQk
)〉(

sid , qid
)
.

– Else if b = 0, the servers send a empty value k′ = ε instead:(
k′; ε; ε

) $←
〈
U .Reconstr

()
,P.Reconstr

(
ε, ε, ε, ε

)
,Q.Reconstr

(
ε, ε, ε, ε

)〉(
sid , qid

)
.

Fig. 6: Retrieve instruction: U retrieves the key k if she provides the correct password a = p.

U .Reconstr(sid , qid): P .Reconstr(sid , qid , cPk , c
Q
k , k

P , oPk): Q.Reconstr(sid , qid , cPk , c
Q
k , k

Q, oQk):

cPk , c
Q
k ,
[
kP , oPk

]
cPk , c

Q
k ,
[
kQ, oQk

]
Check that she received the same
(cPk , c

Q
k) from both servers.

If cPk 6= ε: Check cPk
?= Com(kP , oPk)

and cQk
?= Com(kQ, oQk).

Output k ← kP + kQ.

Else: Output ε.

Fig. 7: Subroutine Reconstr: the servers send their commitments and shares of the key to U so that she may
reconstruct her key k.

servers, that the shares and openings are correct, and reconstructs the key k := kP + kQ. The servers may send
ε instead to denote a failed password attempt; in that case U outputs ε.

In both the ChkPwd and the Reconstr subprotocols, U needs to send data in a non-committing and con-
fidential manner to P . Instead of generating the OTPs for each subprotocol separately, the two parties could
generate a single OTP of double the length in one operation and use the first half of the OTP during ChkPwd
and the second half during Reconstr. This optimization would save one key generation (for the CCA2-secure
cryptosystem), one encryption, and one decryption. The same optimization can be applied between U and Q.

The Refresh instruction. In the Refresh instruction, the servers re-randomize their shares and generate new
commitments to them. This ensures that A no longer has any knowledge about the internal state of a party
who recovered from corruption. Servers execute a Refresh query immediately after they formally recover from
corruption (see §3.4). Upon starting a Refresh query, the servers abort all running Setup and Retrieve queries
and stop accepting new ones. Upon completion of the Refresh query, they resume acceptance of new Setup and
Retrieve queries.

When a server receives an input 〈Refresh, sid , qid〉 with the same sid as during Setup from Z , he starts
the Refresh instruction. The Refresh protocol runs as follows and is depicted in Figure 8. The servers start by
recovering their internal state. The servers then re-randomize their shares of the password and key using the
ComRefr subprotocol. Finally both servers store their new internal state. At the end of the protocol, each server
outputs 〈RefreshDone, sid , qid〉 to Z .

12

P .Refresh(sid , qid) Q.Refresh(sid , qid)

ComRefr

old-shares, old-comm.

new-shares, new-comm.

old-shares, old-comm.

new-shares, new-comm.

old-shares, old-comm.

new-shares, new-comm.

old-shares, old-comm.

new-shares, new-comm.

1.

3.

2.

1.

3.

2.

1. Each serverR ∈ {P,Q} retrieves
(
cPp , c

P
k , c
Q
p , c
Q
k , p

R, kR, oRp , o
R
k

)
from his long-term storage.

2. The servers re-randomize their shares:(
(ĉPp , ĉ

P
k , ĉ
Q
p , ĉ
Q
k , p̂

P , k̂P , ôPp , ô
P
k); (ĉ

P
p , ĉ
P
k , ĉ
Q
p , ĉ
Q
k , p̂

Q, k̂Q, ôQp , ô
Q
k)
) $←〈

P.ComRefr
(
pP , kP , oPp , o

P
k

)
,Q.ComRefr

(
pQ, kQ, oQp , o

Q
k

)〉(
sid , qid , cPp , c

P
k , c
Q
p , c
Q
k

)
.

3. Each serverR ∈ {P,Q} stores
(
ĉPp , ĉ

P
k , ĉ
Q
p , ĉ
Q
k , p̂

R, k̂R, ôRp , ô
R
k

)
into his long-term storage.

Fig. 8: Refresh instruction: the servers re-randomize their internal state.

P .ComRefr(sid , qid , cPp , cPk , c
Q
p , c
Q
k , p

P , kP , oPp , o
P
k): Q.ComRefr(sid , qid , cPp , cPk , c

Q
p , c
Q
k , p

Q, kQ, oQp , o
Q
k):

po
$← Zq; (cop, oop)

$← Com(po).

ko
$← Zq; (cok, o

o
k)

$← Com(ko).
p̂P ← pP − po; (ĉPp , ôPp)

$← Com(p̂P).

k̂P ← kP − ko; (ĉPk , ô
P
k)

$← Com(k̂P).

cop, c
o
k, ĉ
P
p , ĉ
P
k ,
[
po, oop, k

o, ook
]
, π8(: pP, kP, po, ko, oPp , o

P
k , o

o
p, o

o
k)

Check: cop
?= Com(po, oop) and cok

?= Com(ko, ook).

p̂Q ← pQ + po; (ĉQp , ôQp)
$← Com(p̂Q).

k̂Q ← kQ + ko; (ĉQk , ô
Q
k)

$← Com(k̂Q).
ĉQp , ĉ

Q
k , π9 (: pQ, kQ, po, ko, oQp , o

Q
k , o

o
p, o

o
k)

Output (ĉPp , ĉPk , ĉ
Q
p , ĉ
Q
k , p̂

P , k̂P , ôPp , ô
P
k). Output (ĉPp , ĉPk , ĉ

Q
p , ĉ
Q
k , p̂

Q, k̂Q, ôQp , ô
Q
k).

Instantiation of zero-knowledge proofs:

π8 := Fgzk[sid , qid , c
P
p , c
P
k , c
Q
p , c
Q
k , 8]

{(
pP , kP ; ∃oPp , oPk , α, β

)
:

cPp = Com(pP , oPp) ∧ (ĉPp ∗ cop) = Com(pP , α) ∧ cPk = Com(kP , oPk) ∧ (ĉPk ∗ cok) = Com(kP , β)}
,where α := ôPp + oop and β := ôPk + ook.

π9 := Fgzk[sid , qid , c
o
p, c

o
k, ĉ
P
p , ĉ
Q
p , 9]

{(
p̂Q, k̂Q, ôQp ; ∃ôQk , α, β,

)
:

ĉQp = Com(p̂Q, ôQp) ∧ ĉQk = Com(k̂Q, ôQk) ∧ (cQp ∗ cop) = Com(p̂Q, α) ∧ (cQk ∗ c
o
k) = Com(k̂Q, β)}

,where α := oQp + oop and β := oQk + ook.

Fig. 9: Subroutine ComRefr: the servers generate new commitments and shares of the password and key based
on the old ones.

The Refresh instruction uses the ComRefr subprotocol, depicted in Figure 9, the goal of which is for both
servers P andQ to re-randomize their respective shares (pP , kP) and (pQ, kQ). P randomly selects two offsets
po and ko and subtracts them from his shares. P then commits to the offsets and his new shares. P proves to
Q that all operations were done correctly. As part of the proof, P sends all the commitments and a ciphertext
that contains the offsets and the corresponding openings encrypted under an OTP to Q. Q likewise updates his
shares and generates new commitments to them. Q proves to P that all operations were done honestly and that
he knows the opening ôQp corresponding to his new share of the password (for the same reason as in Share: S
needs ôQp when simulating BP in ChkPwd). As part of the proof, Q sends the new commitments to P .

4.4 Constructing a Multi-SessionΠ2pass with Constant-Size CRS

In order to handle multiple user accounts, one can run multiple independant sessions of Π2pass. With that first
approch, security is guaranteed by direct application of the UC composition theorem. Each session however
needs an independant copy of FG3

crs . In §D.4 we argue that using the same instance of FG3

crs for all the otherwise
independant sessions is secure as well. Informally, the second approach works because the CRS is used chiefly

13

by the HMT commitments, which are all bound to sid by the zero-knowledge proofs. Further, the JUC theo-
rem [15] guarantees that all instances in the realizations of Fgzk and F2v

gzk can use the same instance of Fgzk
crs .

4.5 Computational Complexity and Communication Rounds ofΠ2pass in the Standard Model
Our protocol is practical: the sum of the computation time of all parties for Setup, Retrieve, and Refresh
queries is less than 0.08, 0.16, and 0.09 seconds on modern computers, and the communication complexity is
5, 7, and 3 round trips (when combining messages wherever possible), respectively. Due to the fact that our
protocol is secure against adaptive corruptions, it is computationally more expensive than a standard-model
instantiation of the CLN protocol [10]: our Retrieve queries are about 10 and 2.6 times slower for users and
servers, respectively; however the number of round trips is identical. See §E.3 for a detailled analysis.

4.6 Construction ofΠ2pass in the Random Oracle Model
Our Π2pass can be improved in several ways when security in the random oracle model only is sufficient.
First, one can transform all interactive zero-knowledge proofs into non-interactive ones using the Fiat-Shamir
heuristic [21]. Second, one can replace our secureSend protocol by Nielsen’s NINCE [33]. Third, one can use
faster encryption and signature algorithms. This improves the computational complexity of our Setup, Retrieve,
and Refresh queries by only about 15%, 25%, and 6% but the number of communication rounds is now much
smaller: 3, 3, and 2 round trips, respectively. Compared to CLN [10], the computational complexity of our
Retrieve queries are then about 11 and 3.7 times larger for users and servers, respectively; the number of round
trips is the same. Compared to 1-out-of-2 CLLN [9], the computational complexity of our Retrieve queries are
about 2.6 and 4.1 times larger for users and servers, respectively, but need 2 round trips less: if the network
delay is large then our protocol is faster than CLLN. See §E.4 for a detailled analysis.

5 Proof Sketch

For reasons of space, we provide the security proof in §D and explain only the main ideas here.
We use the standard approach for proving the security of UC protocols: we construct a straight-line simu-

lator S such that for all polynomial-time bounded environments and all polynomial-time bounded adversaries
A it holds that the environment Z cannot distinguish its interaction with A and Π2pass in the (FG3

crs ,Fosac,Fac,
Fgzk,F2v

gzk)-hybrid real world from its interaction with S and F2pass in the ideal world. We prove this statement
by defining a sequence of intermediate hybrid worlds (the first one being the real world and the last one the
ideal world) and showing that Z cannot distinguish between any two consecutive hybrid worlds.

The main difficulties in constructing S (and accordingly in designing our protocol to allow us to address
those difficulties) are as follows: 1) S has to extract the inputs of all corrupted parties from the interaction with
them; 2) S has to compute and send commitments and ciphertexts to the corrupted parties on behalf of the
honest parties without knowing the latter’s inputs, i.e., S needs to commit and encrypt dummy values; 3) but
when an honest party gets corrupted mid-protocol, S has to provide A with the full non-erased intermediate
state of that party, in particular the opening of commitments that were sent out and the randomness used to
compute encryptions that were sent out (if these value need to be retained by a party).

To address the first difficulty, recall that parties are required to perform proofs of knowledge of their shares
upon their first use in the protocol. S can therefore recover the inputs of all corrupted parties with the help of
Fgzk and F2v

gzk. The commitments and proofs of existence with Fgzk and F2v
gzk ensure that the corrupted parties

are unable to alter their inputs mid-protocol.
The second and third difficulty we address as follows. In general, S runs honest parties with random input

and adjusts their internal state as follows when it learns the correct values. When S is told by F2pass whether
the password attempt was correct in a Retrieve query, it can generate credible values BU , BP , and BQ in
the ChkPwd subroutine because S can recover the opening values op from dishonest servers through Fgzk and
F2v
gzk. When a user gets corrupted during Setup, or both servers get corrupted, S can recover the actual password

and key associated with the user account from F2pass and then needs to equivocate all relevant commitments
and encryptions sent earlier to the corrupted parties. This is also the case when a user gets corrupted during
Retrieve, where S is also allowed to recover the actual password attempt. S can equivocate such commitments,
with the help of the trapdoor, and equivocate the ciphertexts containing the openings of commitments it sent
between two honest parties by altering the one time pads. By the time a one time pad is used, the decryption keys
and randomness used to establish it have been erased and so they can be changed to equivocate. Additionally, S
never needs to reveal the randomness used inside the ChkPwd subroutine, in particular because Fgzk and F2v

gzk

14

allow for the erasure of witnesses before delivering the statement to be proven to the other party. The rest of the
security proof is rather straightforward.

6 Conclusion

We presented the first TPASS protocol secure against adaptive corruptions and where servers can recover from
corruptions in a provably secure way. Our protocol involves two servers, and security for the user is guaranteed
as long as at most one server is corrupted at any time. Our protocol is efficient enough for practical implementa-
tion. Our techniques do not trivially carry over to the t-out-of-n case; an efficient protocol in this more general
setting is an interesting open problem.

Acknowledgements. We are grateful to the anonymous reviewers of all earlier versions of this paper for their
comments, and thank Anja Lehmann for many helpful discussions. This work was supported by the European
Community through the Seventh Framework Programme (FP7), under grant agreement n◦321310 for the project
PERCY.

References

1. S. Babbage, D. Catalano, C. Cid, B. de Weger, O. Dunkelman, C. Gehrmann, L. Granboulan, T. Güneysu,
J. Hermans, T. Lange, A. Lenstra, C. Mitchell, M. Näslund, P. Nguyen, C. Paar, K. Paterson, J. Pelzl,
T. Pornin, B. Preneel, C. Rechberger, V. Rijmen, M. Robshaw, A. Rupp, M. Schläffer, S. Vaudenay, F. Ver-
cauteren, and M. Ward. ECRYPT II Yearly Report on Algorithms and Keysizes, 2011.

2. A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. Password-protected secret sharing. In ACM CCS 2011,
pages 433–444.

3. B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure Computation without Authentication. In
CRYPTO 2005, pages 361–377.

4. Donald Beaver and Stuart Haber. Cryptographic Protocols Provably Secure Against Dynamic Adversaries.
In EUROCRYPT 1991, pages 307–323.

5. J. Brainard, A. Juels, B. Kaliski, M. Szydlo. A new two-server approach for authentication with short
secrets. In USENIX SECURITY 2003, pages 201–214.

6. W. Burr, D. Dodson, E. Newton, R. Perlner, W. Polk, S. Gupta, E. Nabbus. Electronic authentication
guideline. NIST Special Publication 800-63-1, 2011.

7. J. Camenisch, R. Enderlein, V. Shoup. Practical and Employable Protocols for UC-Secure Circuit Evalua-
tion over Zn. In ESORICS 2013, pages 19–37.

8. J. Camenisch, S. Krenn, V. Shoup. A Framework for Practical Universally Composable Zero-Knowledge
Protocols. In ASIACRYPT 2011, pages 449–467.

9. J. Camenisch, A. Lehmann, A. Lysyanskaya, G. Neven. Memento: How to Reconstruct Your Secrets from
a Single Password in a Hostile Environment. In CRYPTO 2014, pages 256–275.

10. J. Camenisch, A. Lysyanskaya, G. Neven. Practical Yet Universally Composable Two-Server Password-
Authenticated Secret Sharing. In ACM CCS 2012, pages 525–536.

11. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. IACR Cryp-
tology ePrint Archive, 2000:67, 2000.

12. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. FOCS 2001,
pages 136–145.

13. R. Canetti, M. Fischlin. Universally Composable Commitments. In CRYPTO 2001, pages 19–40.
14. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally composable password-based key

exchange. In EUROCRYPT 2005, pages 404–421.
15. R. Canetti, T. Rabin. Universal Composition with Joint State. In CRYPTO 2003, pages 265–281.
16. R. Cramer, V. Shoup. A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen

Ciphertext Attack. In CRYPTO 1998, pages 13–25.
17. R. Cramer, V. Shoup. Signature Schemes Based on the Strong RSA Assumption. ACM Trans. Inf. Syst.

Secur., 3(3):161–185, 2000.
18. M. Di Raimondo, R. Gennaro. Provably secure threshold password-authenticated key exchange. In EU-

ROCRYPT 2003, pages 507–523.

15

19. T. Dierks, E. Rescorla. RFC 5246: The Transport Layer Security (TLS) protocol. The Internet Engineering
Task Force, 2008.

20. EMC Corporation. RSA Distributed Credential Protection. http://www.emc.com/security/
rsa-distributed-credential-protection.htm.

21. A. Fiat, A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Problems.
In CRYPTO, pages 186–194, 1986.

22. W. Ford and B. Kaliski. Server-assisted generation of a strong secret from a password. In IEEE Interna-
tional Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2000),
pages 176–180.

23. J. Gosney. Password cracking HPC. Passwordsˆ12 Conference, 2012.
24. A. Herzberg, S. Jarecki, H. Krawczyk M. Yung. Proactive secret sharing or: How to cope with perpetual

leakage. In CRYPTO’95, pages 339–352.
25. D. Hofheinz, V. Shoup. GNUC: A New Universal Composability Framework. IACR Cryptology ePrint

Archive, 2011:303, 2011.
26. D. Hofheinz. Possibility and impossibility results for selective decommitments. J. Cryptology, 24(3):470–

516, 2011.
27. D. Jablon. Password authentication using multiple servers. In CT-RSA 2001, pages 344–360.
28. J. Katz, P. MacKenzie, G. Taban, V. Gligor. Two-server password-only authenticated key exchange. In

ACNS 2005, pages 1–16.
29. S. Krenn. Bringing Zero-Knowledge Proofs of Knowledge to Practice. PhD thesis, 2012.
30. R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines. In IEEE Computer

Security Foundations Workshop, pages 309–320, 2006.
31. P. MacKenzie, T. Shrimpton, M. Jakobsson. Threshold password-authenticated key exchange. In

CRYPTO 2002, pages 385–400.
32. U. Maurer, R. Renner. Abstract Cryptography. In ICS, pages 1–21, 2011.
33. J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing

Encryption Case. In CRYPTO, pages 111–126, 2002.
34. T. P. Pedersen B. Pfitzmann, Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.

In CRYPTO 1991, pages 129–140.
35. B. Pfitzmann, M. Waidner. A Model for Asynchronous Reactive Systems and its Application to Secure

Message Transmission. In IEEE Security & Privacy 2001, pages 184–200.
36. N. Provos and D. Mazières. A future-adaptable password scheme. In USENIX 1999, FREENIX Track,

pages 81–91.
37. C. Rackoff, D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext At-

tack. CRYPTO 1991, pages 433–444.
38. V. Shoup. Sequences of Games: a Tool for Taming Complexity in Security Proofs. IACR Cryptology ePrint

Archive, 2004:332, 2004.
39. M. Szydlo, B. Kaliski Proofs for two-server password authentication. In CT-RSA 2005, pages 227–244.

16

A Our Ideal Functionality F2pass

In this section, we provide a full definition of our F2pass ideal functionality which we already briefly described
in §2. We use the GNUC [25] formalisms to define F2pass, but it is easy to adapt our ideal functionality to any
universal composability framework.

As we model the single-session variant of F2pass, the session id sid is fixed. Recall that sid comprises the
identity of the two servers pidP and pidQ, the description of a group (G, q, g) of prime order q, the name of
the user account uacc, and a suffix ssid . Each instance of F2pass checks that sid is of the correct format when
first invoked. Also, only messages with the correct sid = sid are accepted.

Interfaces. F2pass is a four-interface system:
– The network interface, connected to the ideal adversary/simulator.
– The U-interface, connected to the ideal peers of the users. This interface is multiplexed; we assume that

headers are added to all messages to enable proper routing.
– The P-interface, connected to the ideal peer of the first server P .
– The Q-interface, connected to the ideal peer of the second server Q.

State. The ideal functionality is stateful and maintains the following data structures. We underline these datas-
tructures to distinguish them from local variables.

– Seen: associative array between {0, 1}∗ and a subset of {0, 1}∗. Keeps track of which messages were
accepted per qid .

– Corrupted : a set of party ids (servers and users). Keeps track of who is currently corrupted.
– SetupDone: subset of {pidP , pidQ}. Keeps track of which server successfully completed the Setup query.
– JustRecovered : a subset of {pidP , pidQ}. Keeps track of which servers have formally recovered from

corruption, but not yet completed the subsequent Refresh query.
– Refreshing : a subset of {pidP , pidQ}. Keeps track of which servers have started doing a Refresh query.
– RefreshPeriodP and RefreshPeriodQ: integers. Keep track of the refresh period (the time between two

Refresh queries) of each server.
– QidPeriodP and QidPeriodQ: associative arrays between {0, 1}∗ and an integer. Keep track of which qids

belong to which refresh period.
– CorruptedIn: associative array between an integer and a subset of {pidP , pidQ}. Keeps track of which

servers where corrupted in a given refresh period.
– pP and pQ: elements of Zq ∪ {⊥,4}. The password stored by the user, in the view of the given server.

(Normally both values are equal. The values are unequal in case a server recovered from corruption in an
altered state. All queries including the Refresh query will be blocked if the values are unequal. The symbol
4 is represents the fact that the simulator does not yet know the value of the stored password, however it
must provide a concrete value before the end of the Refresh query.)

– kP and kQ: elements of Zq ∪ {⊥,4}. The key stored by the user, in the view of the given server. (Same
comments as for pP and pQ.)

– a: associative array between {0, 1}∗ and an element of Zq ∪ {⊥}. The password attempts per qid .
– k ′: associative array between {0, 1}∗ and an element of Zq ∪ {⊥, ε}. The key to be returned to the user per

qid , where ε means the user input an incorrect password attempt.
– U : associative array between {0, 1}∗ and a user in the system. Keeps track of which user initiated a query. If
U [qid] = A, Fosac sends/receives messages on the network interface instead of the U-interface as written
for the query qid .

The default value of these are as follows: associative arrays are initially empty. If no value is associated to a
given key in an array, then ⊥ is returned. Sets are initially empty. Integers are initially 0. All other values are
initially ⊥.

Aborting all queries during a refresh. In F2pass, we enforce that once an honest server R ∈ {P,Q}
starts a Refresh query, all other queries are aborted. To simplify the exposition, we define the following
predicates: let AcceptNewQid(qid ,R) denote the predicate (pidR ∈ Corrupted ∨ (pidR /∈ Refreshing ∧
pidR /∈ JustRecovered ∧ QidPeriodR[qid] = ⊥)) and let AcceptQid(qid ,R) denote the predicate (pidR ∈
Corrupted ∨ (pidR /∈ Refreshing ∧ pidR /∈ JustRecovered ∧ QidPeriodR[qid] = RefreshPeriodR)). The
first predicate checks that qid has not yet been seen by a server R. The second predicate checks that qid has
already been seen, and that there was no Refresh query between now and the moment qid was first seen. Both

17

predicates also check that R is not currently blocking new queries due to recently formally recovering from
corruption or due to currently running a Refresh query. Both predicates can be overriden by a corruptR.

Reacting to Messages. Our F2pass reacts to messages as follows.

Setup instruction. Recall that the Setup instruction allows a user to store her password and key in the ideal
functionality. The user starts by privately inputing her key and password to F2pass (Message 1). The servers
have to state that they are ready to execute a Setup query by notifying F2pass (Message 2). (Messages 1 and 2
can happen in any order.) After these two steps, F2pass sends a public delayed acknowledgement to the servers
(Message 3), and finally sends a public delayed acknowledgement to the user (Message 4).

1. Receive 〈Setup, sid , qid , p, k〉 on U (from a user pidU),
where qid = “Setup”, p ∈ Zq, and k ∈ Zq,
such that {“Setup”, “Retrieve”} ∩ Seen[qid] = ∅:

Insert “Setup” into Seen[qid].
Record the user: U [qid]← pidU . Save the user’s input: pP ← p, pQ ← p, kP ← k, and kQ ← k.
Send 〈Setup, sid , qid , U〉 on network.

2. Receive 〈ReadySetup:R, sid , qid〉 onR ,
whereR ∈ {P,Q}, qid = “Setup”, and AcceptNewQid(qid ,R) ,
such that {“ReadySetup:R”, “ReadyRetrieve:R”, “Refresh:R”} ∩ Seen[qid] = ∅:

Insert “ReadySetup:R” into Seen[qid].
Set QidPeriodR[qid]← RefreshPeriodR.
Send 〈ReadySetup:R, sid , qid〉 on network.

3. Receive 〈Done:R, sid , qid〉 on network,
whereR ∈ {P,Q} and AcceptQid(qid ,R) ,
such that {“Done:R”} ∩ Seen[qid] = ∅,
and {“Setup”, “ReadySetup:P”, “ReadySetup:Q”} ⊂ Seen[qid]:

Insert “Done:R” into Seen[qid].
Insert pidRinto SetupDone .
Send 〈Done:R, sid , qid〉 onR.

4. Receive 〈Done, sid , qid〉 on network,
such that {“Done”} ∩ Seen[qid] = ∅
and {“Done:P”, “Done:Q”} ⊂ Seen[qid]:

Insert “Done” into Seen[qid].
Send 〈Done, sid , qid〉 on U (to user U [qid]).

Retrieve instruction. Recall that the Retrieve instruction allows a user to recover the key stored in F2pass

provided she knows the correct password. The user starts by privately inputing her password attempt to F2pass

(Message 5). The servers have to state that they are ready to execute a Retrieve query and willing to service the
user’s query by notifying F2pass (Message 6). (Messages 5 and 6 can happen in any order.) The adversary is the
first to learn of the result of the password check: by sending a lock message to F2pass, the latter tells the former
the result of that check (Message 7). After these two steps, F2pass sends a public delayed message to the servers
with the result of the check (Message 8), and finally sends a public delayed message to the user containing the
key or an empty message in case the password was wrong (Message 9).

5. Receive 〈Retrieve, sid , qid , a〉 on U (from user pidU),
where a ∈ Zq,
such that {“Retrieve”, “Setup”} ∩ Seen[qid] = ∅:

18

Insert “Retrieve” into Seen[qid].
Record the user: U [qid]← U . Save the user’s input: a[qid]← a.
Send 〈Retrieve, sid , qid , U〉 on network.

6. Receive 〈ReadyRetrieve:R, sid , qid〉 onR ,
whereR ∈ {P,Q}, AcceptNewQid(qid ,R), and pidR ∈ (SetupDone ∪ Corrupted) ,
such that {“ReadyRetrieve:R”, “ReadySetup:R”, “Refresh:R”} ∩ Seen[qid] = ∅:

Insert “ReadyRetrieve:R” into Seen[qid].
Set QidPeriodR[qid]← RefreshPeriodR.
Send 〈ReadyRetrieve:R, sid , qid〉 on network.

7. Receive 〈Lock, sid , qid〉 on network,
where pP = pQ, kP = kQ, pP 6= 4, and kP 6= 4,
such that {“Lock”} ∩ Seen[qid] = ∅,
and {“Retrieve”, “ReadyRetrieve:P”, “ReadyRetrieve:Q”} ⊂ Seen[qid]:

Insert “Lock” into Seen[qid].
If a[qid] = pP , then set b← 1 and k ′[qid]← kP ; else set b← 0 and k ′[qid]← ε.
Send 〈Lock, sid , qid , b〉 on network.

8. Receive 〈Delivered:R, sid , qid〉 on network,
whereR ∈ {P,Q} and AcceptQid(qid ,R) ,
such that {“Delivered:R”} ∩ Seen[qid] = ∅,
and {“Lock”} ⊂ Seen[qid]:

Insert “Delivered:R” into Seen[qid].
If k ′[qid] 6= ε, then set b← 1; else set b← 0.
Send 〈Delivered:R, sid , qid , b〉 onR.

9. Receive 〈Deliver, sid , qid〉 on network,
such that {“Deliver”} ∩ Seen[qid] = ∅
and {“Delivered:P”, “Delivered:Q”} ⊂ Seen[qid]:

Insert “Deliver” into Seen[qid].
Send 〈Deliver, sid , qid , k ′[qid]〉 on U (to user U [qid]).

Refresh instruction. Recall that the Refresh instruction allows the servers to jointly re-randomize their internal
states and thereby clear the residual knowledge that A might have. The servers have to state that they are
ready to execute a Refresh query by publicly notifying F2pass (Message 10). Afterwards, F2pass sends a public
delayed acknowledgement to the servers (Message 11). We note that while Refresh is active, F2pass accepts no
other queries and drops all incomplete queries.

10. Receive 〈Refresh:R, sid , qid〉 onR ,
whereR ∈ {P,Q}, pidR ∈ (SetupDone ∪ Corrupted), and pidR /∈ Refreshing ,
such that {“Refresh:R”, “ReadySetup:R”, “ReadyRetrieve:R”} ∩ Seen[qid] = ∅:

Insert “Refresh:R” into Seen[qid].
Insert pidRinto Refreshing . If Corrupted 6= ∅, then CorruptedIn[RefreshPeriodR + 1] ←
CorruptedIn[RefreshPeriodR].
Send 〈Refresh:R, sid , qid〉 on network.

11. Receive 〈RefreshDone:R, sid , qid〉 on network,
whereR ∈ {P,Q}, pP = pQ, kP = kQ, pP 6= 4, and kQ 6= 4,
such that {“RefreshDone:R”} ∩ Seen[qid] = ∅,
and {“Refresh:P”, “Refresh:Q”} ⊂ Seen[qid]:

Insert “RefreshDone:R” into Seen[qid].
Increment RefreshPeriodR by 1. Remove pidRfrom Refreshing and JustRecovered .
Send 〈RefreshDone:R, sid , qid〉 onR.

19

Corruption. We now present all instructions that have to do with corruption, hijacking, and recovery from
corruption. Servers (Message 12) and users (Message 13) can be corrupted if F2pass receives a special corrupt
message from the environment. In our protocol, the first message of the user can be hijacked byA; inF2pass this
is modelled by allowingA to take over the query and the user doesn’t continue with the query (Messages 14 and
15). F2pass allows A the following behaviour. If the user is corrupt, A can recover her input (Messages 16 and
17). If both servers were corrupt in the same refresh period (between Refresh queries), then the user’s password
and key are exposed (Message 18). If both servers are corrupt at the same time, thenAmay make F2pass return
whatever it wants during Retrieve (Message 19). If a server is corrupt,A can modify its internal state (Message
20)—note that unless that state is consistent across both servers, none of the queries will work—, here we note
that A may set the state to a special symbol 4 instead of providing a value directly. If a server’s state is 4, A
may set the real state at a later point in time (Message 21). This models the fact that S may not know the value
of the saved password or key if A sets the servers to an inconsistent state. Note that F2pass will not complete
any queries while in that state. Finally, the environment may uncorrupt servers by sending a special Recover
message (Message 22). We note that A has had the chance to specify the internal state of the recovered server
before Recover is called with the previous messages.

12. Receive 〈Corrupt, sid〉 onR ,
whereR ∈ {P,Q} and pidR /∈ Corrupted :

Insert pidRinto Corrupted and into CorruptedIn[RefreshPeriodR].
If pidR ∈ Refreshing , then CorruptedIn[RefreshPeriodR + 1]← CorruptedIn[RefreshPeriodR].
Send 〈Corrupt, sid ,R〉 on network.

In the GNUC model, F2pass also sends out invitations for all applicable ExposeSetup messages on
network. This is due to the modelling of the runtime of Turing machines in GNUC. In other models,
this is not necessary.

13. Receive 〈CorruptUser, sid〉 on U (from a user pidU),
where U /∈ Corrupted :

Insert pidU into Corrupted .
Send 〈CorruptUser, sid , pidU 〉 on network.

In the GNUC model, F2pass also sends out invitations for all applicable ExposeUserSetup and Ex-
poseUserRetrieve messages on network.

To simplify the presentation, we do not allow users to become uncorrupted.

14. Receive 〈HijackSetup, sid , qid , p, k〉 on network,
such that {“HijackSetup”, “Done:P”, “Done:Q”} ∩ Seen[qid] = ∅
and {“Setup”} ⊂ Seen[qid]:

Insert “HijackSetup” into Seen[qid].
Change U [qid]← A. Change the input: pP ← p, pQ ← p, kP ← k, and kQ ← k.
Send 〈HijackSetup, sid , qid〉 on network.

15. Receive 〈HijackRetrieve, sid , qid , a〉 on network,
such that {“HijackRetrieve”, “Lock”} ∩ Seen[qid] = ∅
and {“Retrieve”} ⊂ Seen[qid]:

Insert “HijackRetrieve” into Seen[qid].
Change U [qid]← A. Change the input: a[qid]← a.
Send 〈HijackRetrieve, sid , qid〉 on network.

20

16. Receive 〈ExposeUserSetup, sid , qid〉 on network,
where U [qid] ∈ Corrupted ,
such that {“ExposeUserSetup”, “Done:P”, “Done:Q”} ∩ Seen[qid] = ∅,
and {“Setup”} ⊂ Seen[qid]:

Insert “ExposeUserSetup” into Seen[qid].
Send 〈ExposeUserSetup, sid , qid , pP , kP〉 on network.

17. Receive 〈ExposeUserRetrieve, sid , qid〉 on network,
where U [qid] ∈ Corrupted ,
such that {“ExposeUserRetrieve”, “Lock”} ∩ Seen[qid] = ∅,
and {“Retrieve”} ⊂ Seen[qid]:

Insert “ExposeUserRetrieve” into Seen[qid].
Send 〈ExposeUserRetrieve, sid , qid , a[qid]〉 on network.

18. Receive 〈ExposeSetup, sid , qid〉 on network,
where RefreshPeriodP = RefreshPeriodQ, CorruptedIn[RefreshPeriodP] = {pidP , pidQ}, pP = pQ,
and kP = kQ,

such that {“ExposeSetup”} ∩ Seen[qid] = ∅,
and {“Setup”} ⊂ Seen[qid]:

Insert “ExposeSetup” into Seen[qid].
Send 〈ExposeSetup, sid , qid , pP , kP〉 on network.

19. Receive 〈ModifyRetrieveResponse, sid , qid , k〉 on network,
where Corrupted = {pidP , pidQ} and k ∈ Zq ∪ {ε}:

Replace: k ′[qid]← k.
Send 〈ModifyRetrieveResponse, sid , qid〉 on network.

20. Receive 〈ModifySetup:R, sid , p, k, b〉 on network,
whereR ∈ {P,Q}, pidR ∈ Corrupted , p ∈ Zq ∪ {⊥,4}, k ∈ Zq ∪ {⊥,4}, and b ∈ Z2:

Replace: pR ← p, kR ← k. If b = 1 then add pidRto SetupDone; else remove pidRfrom SetupDone .
Send 〈ModifySetup:R, sid〉 on network.

21. Receive 〈FalseMemory:R, sid , qid , p, k〉 on network,
whereR ∈ {P,Q}, pR = 4, kR = 4, p ∈ Zq, and k ∈ Zq:

Replace: pR ← p, kR ← k.
Send 〈FalseMemory:R, sid〉 on network.

22. Receive 〈Recover, sid ,R〉 onR ,
whereR ∈ {P,Q} and pidR ∈ Corrupted :

If Corrupted = {pidP , pidQ}, then let b ← max(RefreshPeriodP ,RefreshPeriodQ) + 1,
RefreshPeriodP ← b, RefreshPeriodQ ← b, and CorruptedIn[b]← {pidP , pidQ}.
Remove pidRfrom Corrupted and from Refreshing .
If pidR ∈ SetupDone , then insert pidRinto JustRecovered ; else remove pidRfrom JustRecovered .
Send 〈Recover, sid ,R〉 on network.

To simplify the presentation, we chose not to model the fact that the recovered server might accept qids
he has seen already or reject qids that he has not yet seen. Fixing this issue is tedious but not difficult.
In practice where qids are chosen at random by a protocol preceeding ours, this issue is moot.

21

B Auxilliary Ideal Functionalities

In this section, we recall the definition of the ideal functionalities we use as subroutines in our realization
Π2pass, namely: the common reference string ideal functionality (FDcrs), the ideal functionalities for authenti-
cated channels (Fac) and for one-sided–authenticated channels (Fosac), and the special ideal functionality for
zero-knowledge proofs of existence for one verifier (Fgzk) and two verifiers (F2v

gzk). We adapted some of the
functionalities found in the litterature to the GNUC model, and modified some other functionalities to suit the
needs of our protocol.

B.1 Common Reference Strings FD
crs

Here we describe the ideal functionality for common reference strings FDcrs for a distribution D. Recall that
we make use of two distributions in this paper: FG3

crs outputs a CRS uniformly distributed over G3 and Fgzk
crs

outputs a CRS according to the distribution required by Camenisch et al.’s protocol π for zero-knowledge proofs
of existance [8]. The structure of FDcrs is the same as what is defined in Canetti’s UC paper [11], but adapted to
the GNUC model:

Interfaces. FDcrs is a two-interface system:
– The network interface, connected to the ideal adversary/simulator.
– The U-interface, connected to the ideal peers of all the parties. This interface is multiplexed; we assume

that headers are added to all messages to enable proper routing.

State. The ideal functionality is stateful and maintains the following data structures:
– Seen: a subset of {0, 1}∗. Keeps track of which messages were accepted.
– x : the stored CRS, initially x = ⊥.

We model the single-session variant of FDcrs, the session id sid = sid is thus fixed.

Reacting to messages. FDcrs reacts to messages as follows.

1. Receive 〈GetCRS:pid , sid〉 on U (from a party pid),
such that {“GetCRS:pid”} ∩ Seen = ∅:

Insert “GetCRS:pid” into Seen .
If x = ⊥, then randomly choose x according to distribution D.
Send 〈GetCRS:pid , sid , x 〉 on network.

2. Receive 〈Deliver:pid , sid〉 on network,
such that {“Deliver:pid”} ∩ Seen = ∅
and {“GetCRS:pid”} ⊂ Seen:

Insert “Deliver:pid” into Seen .
Send 〈Deliver:pid , sid , x 〉 on U (to party pid).

B.2 Authenticated Channels Fac

Here we describe the ideal functionality for single-use authenticated channels Fac. The structure is the same as
the one defined in Hofheinz and Shoup’s GNUC paper [25]:

Interfaces. Fac is a three-interface system:
– The network interface, connected to the ideal adversary/simulator.
– The P-interface, connected to the ideal peer of the sender.
– The Q-interface, connected to the ideal peer of the receiver.

State. The ideal functionality is stateful and maintains the following data structures:
– Seen: a subset of {0, 1}∗. Keeps track of which messages were accepted.
– x : the message that is to be sent, where x ∈ {0, 1}∗.

We model the single-session variant of Fac, the session id sid = sid is thus fixed.

22

Reacting to messages. Fac reacts to messages as follows.

1. Receive 〈Send, sid , x〉 on P ,
such that {“Send”} ∩ Seen = ∅:

Insert “Send” into Seen .
Store the message: x ← x.
Send 〈Send, sid , x 〉 on network.

2. Receive 〈Ready, sid〉 on Q ,
such that {“Ready”} ∩ Seen = ∅:

Insert “Ready” into Seen .
Send 〈Ready, sid〉 on network.

3. Receive 〈Done, sid〉 on network,
such that {“Done”} ∩ Seen = ∅
and {“Send”, “Ready”} ⊂ Seen:

Insert “Done” into Seen .
Send 〈Done, sid〉 on P .

4. Receive 〈Deliver, sid , x〉 on network,
where x = x ,
such that {“Deliver”} ∩ Seen = ∅,
and {“Send”, “Ready”} ⊂ Seen:

Insert “Deliver” into Seen .
Send 〈Deliver, sid , x 〉 on Q.

5. Receive 〈Corrupt:R, sid〉 onR ,
where R ∈ {P,Q} ,
such that {“Corrupt:R”} ∩ Seen = ∅:

Insert “Corrupt:R” into Seen .
Send 〈Corrupt:R, sid〉 on network.

6. Receive 〈Reset, sid , x〉 on network,
such that {“Reset”} ∩ Seen = ∅
and {“Corrupt:P”} ⊂ Seen:

Insert “Reset” into Seen .
Store a new message: x ← x.
Send 〈Reset, sid〉 on network.

B.3 One-Sided–Authenticated Channels Fosac

Here we describe our ideal functionality for multi-use one-sided–authenticated channels Fosac. The structure
is similar to the regular Fac with the obvious extensions for multi-use, but we added an additional Hijack
instruction to model the fact that the first message from the user is not authenticated.

Interfaces. Fosac is a three-interface system:
– The network interface, connected to the ideal adversary/simulator.
– The U-interface, connected to the ideal peers of the users. This interface is multiplexed; we assume that

headers are added to all messages to enable proper routing.
– The Q-interface, connected to the ideal peer of the initial receiver.

23

State. The ideal functionality is stateful and maintains the following data structures:
– Seen: a subset of {0, 1}∗. Keeps track of which messages were accepted.
– xc: an associative array between an integer and the message that is to be sent to the server.
– xs: an associative array between an integer and the message that is to be sent to the user.
– U : a user in the system. Keeps track of which user initiated a query. If U = A, Fosac sends/receives

messages on the network interface instead of the U-interface as written.
We model the single-session variant of Fosac, the session id sid = sid is thus fixed.

Reacting to messages. Fosac reacts to messages as follows.

Message from user to server. For messages that the user sends to the server, Fosac proceeds similarily to a
multi-session Fac, except that the first message might be hijacked by A.

1. Receive 〈Send:c:0, sid , x〉 on U (from a user pidU),
such that {“Send:c:0”} ∩ Seen = ∅:

Insert “Send:c:0” into Seen .
Store the message: xc[0]← x. Record the user: U ← pidU .
Send 〈Send:c:0, sid , x〉 on network.

2. Receive 〈Send:c:qid , sid , x〉 on U (from the user U),
where qid ∈ N∗,
such that {“Send:c:qid”} ∩ Seen = ∅,
and {“Done:c:(qid − 1)”} ⊂ Seen:

Insert “Send:c:qid” into Seen .
Store the message: xc[qid]← x.
Send 〈Send:c:qid , sid , x〉 on network.

3. Receive 〈Ready:c:0, sid〉 on Q ,
such that {“Ready:c:0”} ∩ Seen = ∅:

Insert “Ready:c:0” into Seen .
Send 〈Ready:c:0, sid〉 on network.

4. Receive 〈Ready:c:qid , sid〉 on Q ,
where qid ∈ N∗,
such that {“Ready:c:qid”} ∩ Seen = ∅,
and {“Deliver:c:(qid − 1)”} ⊂ Seen:

Insert “Ready:c:qid” into Seen .
Send 〈Ready:c:qid , sid〉 on network.

5. Receive 〈Done:c:qid , sid〉 on network,
such that {“Done:c:qid”} ∩ Seen = ∅
and {“Send:c:qid”, “Ready:c:qid”} ⊂ Seen:

Insert “Done:c:qid” into Seen .
Send 〈Done:c:qid , sid〉 on U (to the user U).

6. Receive 〈Deliver:c:qid , sid , x〉 on network,
where x = xc[qid] ,
such that {“Deliver:c:qid”} ∩ Seen = ∅,
and {“Send”, “Ready”} ⊂ Seen:

Insert “Deliver:c:qid” into Seen .
Send 〈Deliver:c:qid , sid , xc[qid]〉 on Q.

24

Message from server to user. For messages that the server sends to the user, Fosac proceeds similarly as for a
multi-session Fac, i.e., there is no hijack. The server can start sending messages to the user only after it received
the first message from the user.

7. Receive 〈Send:s:0, sid , x〉 on Q ,
such that {“Send:s:0”} ∩ Seen = ∅
and {“Deliver:c:0”} ⊂ Seen:

Insert “Send:s:0” into Seen .
Store the message: xs[0]← x.
Send 〈Send:s:0, sid , x〉 on network.

8. Receive 〈Send:s:qid , sid , x〉 on Q ,
where qid ∈ N∗,
such that {“Send:s:qid”} ∩ Seen = ∅,
and {“Done:s:(qid − 1)”} ⊂ Seen:

Insert “Send:s:qid” into Seen .
Store the message: xs[qid]← x.
Send 〈Send:s:qid , sid , x〉 on network.

9. Receive 〈Ready:s:0, sid〉 on U (from the user U),
such that {“Ready:s:0”} ∩ Seen = ∅
and {“Done:c:0”} ⊂ Seen:

Insert “Ready:s:0” into Seen .
Send 〈Ready:s:0, sid〉 on network.

10. Receive 〈Ready:s:qid , sid〉 on U (from the user U),
where qid ∈ N∗,
such that {“Ready:s:qid”} ∩ Seen = ∅,
and {“Deliver:s:(qid − 1)”} ⊂ Seen:

Insert “Ready:s:qid” into Seen .
Send 〈Ready:s:qid , sid〉 on network.

11. Receive 〈Done:s:qid , sid〉 on network,
such that {“Done:s:qid”} ∩ Seen = ∅
and {“Send:s:qid”, “Ready:s:qid”} ⊂ Seen:

Insert “Done:s:qid” into Seen .
Send 〈Done:s:qid , sid〉 on Q.

12. Receive 〈Deliver:s:qid , sid , x〉 on network,
where x = xs[qid] ,
such that {“Deliver:s:qid”} ∩ Seen = ∅,
and {“Send”, “Ready”} ⊂ Seen:

Insert “Deliver:s:qid” into Seen .
Send 〈Deliver:s:qid , sid , xs[qid]〉 on U (to user U).

25

Corruption. Fosac reacts to corruption, reset, and hijack messages as follows.

13. Receive 〈Corrupt:Q, sid〉 on Q ,
such that {“Corrupt:Q”} ∩ Seen = ∅:

Insert “Corrupt:Q” into Seen .
Send 〈Corrupt:Q, sid〉 on network.

14. Receive 〈Corrupt:U , sid〉 on U (from the user U),
such that {“Corrupt:U”} ∩ Seen = ∅
and {“Send:c:0”} ⊂ Seen:

Insert “Corrupt:U” into Seen .
Send 〈Corrupt:U , sid〉 on network.

15. Receive 〈Reset:c:qid , sid , x〉 on network,
where qid ∈ N ,
such that {“Reset:c:qid”} ∩ Seen = ∅,
and {“Corrupt:U”} ⊂ Seen:

Insert “Reset:c:qid” into Seen .
Store a new message: xc[qid]← x.
Send 〈Reset:c:qid , sid〉 on network.

16. Receive 〈Reset:s:qid , sid , x〉 on network,
where qid ∈ N ,
such that {“Reset:s:qid”} ∩ Seen = ∅,
and {“Corrupt:Q”} ⊂ Seen:

Insert “Reset:s:qid” into Seen .
Store a new message: xs[qid]← x.
Send 〈Reset:s:qid , sid〉 on network.

17. Receive 〈Hijack, sid , x〉 on network,
such that {“Hijack”, “Done:c:0”, “Deliver:c:0”} ∩ Seen = ∅
and {“Send:c:0”} ⊂ Seen:

Insert “Hijack” into Seen .
Change U [qid]← A. Store a new message: xc[qid]← x.
Send 〈Hijack, sid , x〉 on network.

Realization. Fosac can be realized given a certificate authority, a CCA-2 secure public-key cryptosystem, an
existentially unforgeable message authentication code (MAC), and insecure channels. We do not provide a
realization here, as we consider it out of scope. A realization of Fosac might be reminiscent of the TLS protocol
[19] with server certificates.

We note that the parties perform the following expensive operations: the client does one encryption using
the CCA-2 cryptosystem, and the server one decryption.

26

B.4 Zero-Knowledge Proofs of Existence for One Verifier Fgzk

The functionality Fgzk is a tool which allows one to simplify the security proof of protocols which use zero-
knowledge proofs of existence. This functionality was proposed by Camenisch, Krenn, and Shoup [8]. The two
major differences between Fgzk and the traditional functionality for zero-knowledge proofs of knowledge (e.g.,
the one defined by Hofheinz and Shoup [25] in the GNUC model) is that the former 1) does not check its inputs
and 2) does not allow the adversary to extract the witnesses quantified by ∃.

One must be careful with this functionality, since it is not intended to be used like a regular ideal function-
ality. Indeed the functionality is quite useless by itself. However, by using the special composition theorem by
Camenisch, Krenn, and Shoup, one can prove that if the Fgzk-hybrid protocol is secure against a weak class of
environments called nice environments, and the protocol is such that honest provers never try to prove incorrect
statements, then the modified protocol in which all instances of Fgzk have been replaced by the zero-knowledge
protocol π described by Camenisch, Krenn, and Shoup is secure in the UC-sense.

In the definition here, unlike the definition of Camenisch et al., the adversary learns the statement that was
proven, i.e., authenticated (or one-sided–authenticated) channels are sufficient in the realization of π. We note
that the special composition theorem of Camenisch et al. still holds despite this change and the translation to
the GNUC framework.
Fgzk is designed to be used in a setting where adaptive corruption with erasures are allowed; and Fgzk is

parameterized by a binary predicate R :
(
x, (w ,w∃)

)
7→ {0, 1}, and a leakage function ` : (x,w) 7→ {0, 1}∗.

Interfaces. Fgzk is a three-interface system:
– The network interface, connected to the ideal adversary/simulator.
– The P-interface, connected to the ideal peer of the prover.
– The Q-interface, connected to the ideal peer of the verifier.

State. The ideal functionality is stateful and maintains the following data structures:
– Seen: a subset of {0, 1}∗. Keeps track of which messages were accepted.
– x : the statement that is to be proven. This can be used as the first argument to the binary predicate R.
– w : the witnesses whose knowledge is proven. This and the witnesses whose existence is proven can be

used as the second argument to the binary predicate R.
We model the single-session variant of Fgzk, the session id sid = sid is thus fixed.

Reacting to messages. Fgzk reacts to messages as follows.

1. Receive 〈Send, sid , x, w ,w∃〉 on P ,
such that {“Send”} ∩ Seen = ∅:

Insert “Send” into Seen .
Store the instance and all witnesses quantified by : x ← x and w ← w .
Send 〈Send, sid , `(x,w)〉 on network.

The ideal functionalityFgzk, being gullible, does not check if the predicate holds, i.e., ifR
(
x, (w ,w∃)

)
?=

1. Usually in an Fgzk-hybrid protocol, the environment is restricted to being nice, and the honest parties
never prove false statements, so Fgzk should never see false statements.

2. Receive 〈Ready, sid〉 on Q ,
such that {“Ready”} ∩ Seen = ∅:

Insert “Ready” into Seen .
Send 〈Ready, sid〉 on network.

3. Receive 〈Lock, sid〉 on network,
such that {“Lock”} ∩ Seen = ∅
and {“Send”, “Ready”} ⊂ Seen:

Insert “Lock” into Seen .
Send 〈Lock, sid , x 〉 on network.

27

4. Receive 〈Done, sid〉 on network,
such that {“Done”} ∩ Seen = ∅
and {“Lock”} ⊂ Seen:

Insert “Done” into Seen .
Send 〈Done, sid〉 on P .

5. Receive 〈Deliver, sid , x , L〉 on network,
where L = `(x ,w) ∨ “Corrupt:Q” ∈ Seen ,
such that {“Deliver”} ∩ Seen = ∅,
and {“Lock”} ⊂ Seen:

Insert “Deliver” into Seen .
Send 〈Deliver, sid , x 〉 on Q.

6. Receive 〈Corrupt:R, sid〉 onR ,
where R ∈ {P,Q} ,
such that {“Corrupt:R”} ∩ Seen = ∅:

Insert “Corrupt:R” into Seen .
Send 〈Corrupt:R, sid〉 on network.

In the GNUC model, forR = P , Fgzk also sends an invitation for the Expose message if applicable.

7. Receive 〈Reset, sid , x, w ,w∃〉 on network,
such that {“Reset”, “Lock”} ∩ Seen = ∅
and {“Corrupt:P”} ⊂ Seen:

Insert “Reset” into Seen .
Store the instance and all witnesses quantified by : x ← x and w ← w .
Send 〈Reset, sid〉 on network.

8. Receive 〈Expose, sid〉 on network,
such that {“Expose”, “Lock”} ∩ Seen = ∅
and {“Send”, “Corrupt:P”} ⊂ Seen:

Insert “Expose” into Seen .
Send 〈Expose, sid , x ,w 〉 on network.

B.5 Zero-Knowledge Proofs of Existence for Two Verifiers F2v
gzk

Our functionality F2v
gzk is very similar toFgzk. It is intended to be used when the prover needs to simultaneously

prove the same statement to two different verifiers (and erase the same values in both proofs). An honest
execution of F2v

gzk is similar to running two sessions of Fgzk in parallel with the same statement and with two
different verifiers, except that both sessions share a single Lock message. Of course, if the prover is corrupted,
he can prove different statements to the two verifiers.

Interfaces. F2v
gzk is a four-interface system:

– The network interface, connected to the ideal adversary/simulator.
– The U-interface, connected to the ideal peer of the prover.
– The P-interface, connected to the ideal peer of the first verifier.
– The Q-interface, connected to the ideal peer of the second verifier.

28

State. The ideal functionality is stateful and maintains the following data structures:
– Seen: a subset of {0, 1}∗. Keeps track of which messages were accepted.
– xP , xQ: the statement that is to be proven. This can be used as the first argument to the binary predicate R.
– wP ,wQ: the witnesses whose knowledge is proven. This and the witnesses whose existence is proven can

be used as the second argument to the binary predicate R.
We model the single-session variant of F2v

gzk, the session id sid = sid is thus fixed.

Reacting to messages. F2v
gzk reacts to messages as follows.

1. Receive 〈Send:R, sid , x, w ,w∃〉 on U ,
whereR ∈ {P,Q},
such that {“Send:R”} ∩ Seen = ∅:

Insert “Send:R” into Seen .
Store the instance and all witnesses quantified by : xR ← x and wR ← w .
Send 〈Send:R, sid , `(x,w)〉 on network.

The ideal functionalityF2v
gzk, being gullible, does not check if the predicate holds, i.e., ifR

(
x, (w ,w∃)

)
?=

1. Usually in an F2v
gzk-hybrid protocol, the environment is restricted to being nice, and the honest parties

never prove false statements, so F2v
gzk should never see false statements.

2. Receive 〈Ready:R, sid〉 onR ,
whereR ∈ {P,Q},
such that {“Ready:R”} ∩ Seen = ∅:

Insert “Ready:R” into Seen .
Send 〈Ready:R, sid〉 on network.

3. Receive 〈Lock:R, sid〉 on network,
where R ∈ {P,Q} ∧

(
({“Send:P”, “Send:Q”, “Ready:P”, “Ready:Q”} ⊂ Seen ∧ xP = xQ) ∨

(“Corrupt:U” ∈ Seen)
)
,

such that {“Lock:R”} ∩ Seen = ∅,
and {“Send:R”, “Ready:R”} ⊂ Seen:

Insert “Lock:R” into Seen .
Send 〈Lock:R, sid , xR〉 on network.

When the user is honest, we make sure here that the two protocols are synchronized. This way, in the
realization, the user can erase data in both protocols simultaneously.

4. Receive 〈Done:R, sid〉 on network,
whereR ∈ {P,Q} ∧

(
({“Lock:P”, “Lock:Q”} ⊂ Seen) ∨ (“Corrupt:U” ∈ Seen)

)
,

such that {“Done:R”} ∩ Seen = ∅,
and {“Lock:R”} ⊂ Seen:

Insert “Done:R” into Seen .
Send 〈Done:R, sid〉 on U .

5. Receive 〈Deliver:R, sid , xR, L〉 on network,
where R ∈ {P,Q} ∧ L = `(xR,wR) ∨ “Corrupt:R” ∈ Seen ∧

(
({“Lock:P”, “Lock:Q”} ⊂ Seen) ∨

(“Corrupt:U” ∈ Seen)
)
,

such that {“Deliver:R”} ∩ Seen = ∅,
and {“Lock:R”} ⊂ Seen:

29

Insert “Deliver:R” into Seen .
Send 〈Deliver:R, sid , xR〉 onR.

6. Receive 〈Corrupt:T , sid〉 on T ,
where T ∈ {U ,P,Q} ,
such that {“Corrupt:T ”} ∩ Seen = ∅:

Insert “Corrupt:T ” into Seen .
Send 〈Corrupt:T , sid〉 on network.

In the GNUC model, for T = U , F2v
gzk also sends an invitation for the Expose message if applicable.

7. Receive 〈Reset:R, sid , x, w ,w∃〉 on network,
where R ∈ {P,Q} ,
such that {“Reset:R”, “Lock”} ∩ Seen = ∅,
and {“Corrupt:U”} ⊂ Seen:

Insert “Reset:R” into Seen .
Store the instance and all witnesses quantified by : xR ← x and wR ← w .
Send 〈Reset:R, sid〉 on network.

8. Receive 〈Expose:R, sid〉 on network,
where R ∈ {P,Q} ,
such that {“Expose:R”, “Lock”} ∩ Seen = ∅,
and {“Send”, “Corrupt:U”} ⊂ Seen:

Insert “Expose:R” into Seen .
Send 〈Expose:R, sid , xR,wR〉 on network.

Realization. F2v
gzk is realized by running two independent instances of the π protocol by Camenisch, Krenn, and

Shoup [8]—one instance with each verifier. However, the prover waits until he got a reply from both verifiers
before erasing the witnesses and sending out the last message in each proof instance.

C Homomorphic Mixed Trapdoor Commitments

We now recall the definition and a construction of the homomorphic mixed trapdoor (HMT) commitment
scheme [7], which we use in our protocol as a building block for constructing UC commitment schemes [13].
This scheme works well with proofs of existence using Fgzk, resulting in an efficiency gain in the overall
protocol. We adapt Camenisch et al.’s definition and construction of HMT commitments in a group of composite
order [7] to work instead in a group G of prime order q (with generator g) where the decision Diffie-Hellman
(DDH) problem is hard.

An HMT commitment scheme is a commitment scheme that is either perfectly hiding and equivocable
or statistically binding, depending on the distribution of the CRS. When used with zero-knowledge proofs,
HMT commitment schemes are similar to UC commitments based on Pedersen commitments [13] in that 1)
the simulator S can equivocate commitments in the security proof without being caught, even if he has to
provide all randomness used to generate the commitment to the adversary; and 2) S can use an adversary who
equivocates commitments4 to solve a hard cryptographic problem. However, unlike UC commitments based
on Pedersen commitments, in HMT commitments 3) S does not always need to extract the openings or the
committed values from Fgzk.

4 As the commitment scheme is malleable, the protocol designer must take into account that the adversary might base his commitments
on the simulator’s commitments. Such problems can usually be avoided by requiring that for all new commitments, a proof of
knowledge of the committed value is performed.

30

Definition. Let crs i
$← CRSGeni(G, q, g) for i ∈ {0, 1} be two PPT algorithms that generate parameters for

a commitment scheme. If i = 0, the commitment scheme is perfectly hiding (computationally binding) and, if
i = 1, the commitment scheme is statistically binding (computationally hiding). For the perfect-hiding setting,
let (crs ′0, t)

$← CRSGen′0(G, q, g) be the function that additionally outputs a trapdoor t and such that crs0 and
crs ′0 have the same distribution. It is required that crs0 and crs1 are computationally indistinguishable.

Let (c, o)
$← Comcrsi(s) be the function that takes as input a value s ∈ Zq to be committed, and

outputs a commitment c and an opening o ∈ Zq to the commitment. We will also use the notation c ←
Comcrsi(s, o), where the opening is chosen outside the function. We denote the verification of a commitment
by c ?= Comcrsi(s, o). The commitments are homomorphic with respect to addition over Zq: i.e., c ∗ c′ =
Comcrsi(s+ s′, o+ o′). With the trapdoor t it is possible to efficiently equivocate commitments in the perfect-
hiding setting: Comcrsi(s, o) = Comcrsi(s

′, (s− s′) ∗ t+ o).
In the sequel, we drop the subscript crs i of Com if it is clear which parameters need to be used.

Construction. In the construction based on Elgamal, CRSGeni runs as follows: select x, µ, and t at random
from Zq; compute h ← gx, y ← gi∗µht, and w ← gt; and finally output crs i ← (h, y, w). The function
CRSGen′0 is like CRSGen0 but additionally outputs t. Thus for i = 1, (y, w) is an Elgamal encryption of gµ

with respect to the public key (g, h), and for i = 0, (y, w) is an encryption of g0. In practice, for i = 1 it is
possible to randomly sample h, y, and w from G or to obtain (h, y, w) from FG3

crs .
The commitment function Comcrsi(s) is constructed as follows: select o at random from Zq and compute

c ← (ysho, wsgo). The commitment is a re-randomized encryption of gi∗µ∗s. Notice that the first element of c
is a Pedersen commitment to s; we denote the extraction of that commitment pc as follows: pc ← PedC(c) :=
ysho.

D Security Proof

In this section we prove that our protocol Π2pass securely realizes the ideal functionality F2pass. We proceed as
follows: we start by stating the main theorem and a number of lemmas, and then prove the main theorem. We
then proceed to prove the main lemma in two steps: first, we describe the construction of a simulator S, and
then prove that S meets the requirements of the main lemma. Finally, we comment on multi-session realizations
of F2pass that use a constant-size CRS.

D.1 Security Proof

Recall that Π2pass is a (FG3

crs ,Fgzk,F2v
gzk,Fosac,Fac)-hybrid protocol. Let Ππ/Fgzk

2pass be the (FG3

crs ,F
gzk
crs ,Fosac,

Fac)-hybrid protocol in which every instance of Fgzk and F2v
gzk in Π2pass has been replaced by the zero-

knowledge protocol π described in Camenisch, Krenn, and Shoup’s paper [8]. To prove our scheme secure,
we need to prove the following theorem:

Theorem 1. There exists a simulator S, such that for all polynomial-time-bounded environments Z and the
dummy adversary A:

Exec(Π
π/Fgzk

2pass ,A,Z) ≈ Exec(F2pass,S,Z).

In the theorem above, Exec(Ππ/Fgzk

2pass ,A,Z) denotes the binary random variable given by the output of

Z when interacting with A and Ππ/Fgzk

2pass in the (FG3

crs ,F
gzk
crs ,Fosac,Fac)-hybrid world, and where the random-

ness is taken over the random coins of Z and the random coins internal to Π
π/Fgzk

2pass ; and analogously for
Exec(F2pass,S,Z) in the ideal world. The symbol ≈ means statistically close. The setting can be visualized
in Figure 10.

To prove the theorem, we need the following two definitions and lemmas:

Definition 1. A nice environment is an environment that never asks A to submit a false statement to Fgzk and
F2v
gzk [8].

Definition 2. A Fgzk-friendly protocol is a protocol in which honest parties acting as provers only prove true
statements with Fgzk and F2v

gzk [29].

31

Z

S

≈

F2pass

Z

A Π2pass

Fig. 10: A visualization of Theorem 1.

Lemma 1. There exists a simulator S that does not extract the witnesses quantified by ∃ in any Fgzk and in
any F2v

gzk, such that for all polynomial-time-bounded nice environments Z and the dummy adversary A:

Exec(Π2pass,A,Z) ≈ Exec(F2pass,S,Z).

Lemma 2. Π2pass is a Fgzk-friendly protocol.

Proof of Lemma 1. In §D.2 we construct a simulator S , and in §D.3 we prove that is satisfies the requirements
of Lemma 1.

Proof of Lemma 2. One can see by inspection that Π2pass is a Fgzk-friendly protocol, i.e., that honest parties
only prove true statements with Fgzk and F2v

gzk.

Proof of Theorem 1. Since we prove in §D.2 that the simulator S we construct in §D.2 satisfies the require-
ments of Lemma 1 and because Lemma 2 holds, we apply the special composition theorem of Camenisch et
al. [8, 29]. (Note: this composition theorem was not proven for F2v

gzk or for the GNUC model, but it is easy to
adapt their proof to handle that case.)

Conclusion. From Theorem 1, we can conclude that the (FG3

crs ,F
gzk
crs ,Fosac,Fac)-hybrid protocol Ππ/Fgzk

2pass is a
secure realization of the ideal functionality F2pass, and is universally composable.

D.2 Construction of the Simulator
Notation and Modelling. We adopt the convention that the ideal functionalities in the (FG3

crs ,Fosac,Fac,Fgzk,

F2v
gzk)-hybrid “real” world (and which are controlled by S) are surrounded by quotes: “FG3

crs ”, “Fosac”, “Fac”,
“Fgzk”, “F2v

gzk”. Note that S does not have to run these ideal functionalities honestly, it just needs to ensure that
the messages it sends on their behalf are indistinguishable from an honest execution.

Simulator. The simulator S is an ten-interface system, with five external and five internal interfaces. We also
use quotes to designate internal interfaces of S. These interfaces are the Z-, A-, P-, Q-, and U-interfaces on
one hand, and the “Z”-, “A”-, “P”-, “Q”-, and “U”-interfaces on the other hand. See Figure 11.

The simulator S runs one instance of the adversary A internally. S connects to the environment through
its external Z-interface. It communicates with F2pass through four external interfaces: the A-, the P-, the
Q-, and the (multiplexed) U-interfaces. The A-interface is connected to the network interface of F2pass, it is
through this interface that S sends the messages in the role of the ideal adversary to F2pass and expects to
receive the messages destined to the ideal adversary. The latter three interfaces are connected to the ideal peer
of the respective party; such an interface becomes active only when the corresponding party is corrupted. The
simulator interacts with A through its five internal interfaces: the “Z”-, the “A”-, the “P”-, the “Q”-, and the
(multiplexed) “U”-interfaces. Through the “Z” interface, S must simulate the messages from the environment.
Through the “A” interface, the simulator must simulate all traffic between A and the network interface of
“FG3

crs ”, “Fosac”, “Fac”, “Fgzk”, and “F2v
gzk”. Through the latter three interfaces, the simulator must simulate

the ideal peers of the respective parties; similarly to above, such an interface becomes active only when the
corresponding party is corrupted.

Ideal peers. Each ideal peer is a three-interface system. The IO-interface of the ideal peer is connected to
the environment in the ideal world. S also simulates ideal peers for each of the ideal subroutines of Π2pass

for the sake of A, the IO-interface of these ideal peers is then connected to Π2pass. The subroutine-interface
is connected to an ideal functionality. The network interface is connected to the adversary or the simulator.

32

S

F2pass

Z

“P” interface.

A
Simulated

“FG3

crs”

Simulated
protocol machine
and ideal peers

“P”

Simulated
protocol machine
and ideal peers

“Q”

Simulated
protocol machine
and ideal peers

“U”

Ideal peer

P

Ideal peer

Q

Ideal peer

U

U interface.
P interface.
Q interface.
A interface.

Z interface.

“Z” interface.
“U” interface.

“Q” interface.
“A” interface.

Simulated
“Fgzk”

Simulated
“F2v

gzk”

Simulated
“Fosac”

Simulated
“Fac”

Fig. 11: The interfaces of the simulator S.

When the party corresponding to the ideal peer is honest, the ideal peer fowards all messages between the IO-
interface to the subroutine-interface in both directions, i.e., the environment/protocol communicates directly
with the ideal functionality. When the party is corrupted, the ideal peer forwards all messages from the IO-
interface and the subroutine-interface to the network interface, and forwards all messages from the network
interface to either the IO-interface or the subroutine-interface (we assume that there is some sort of header
that indicates where the message must be routed to); i.e., the adversary/simulator has direct access to the ideal
functionality, learns the input of the ideal peer, and provides the output.

When an ideal peer receives a special 〈Corrupt, . . .〉 message from the IO-interface, it forwards this mes-
sage on the subroutine-interface and considers itself corrupted. When a corrupted ideal peer receives a special
〈Recover, . . .〉 message from the network interface, it forwards this message on the subroutine-interface and
considers itself formally recovered.

Protocol machines. A protocol machine is a multi-interface system. The IO-interface of the protocol machine
is connected to the environment or another protocol machine. Each of zero or more subroutine-interfaces is
connected to an ideal peer or a protocol machine. The network interface is connected to the adversary. Protocol
machines excute the code of honest parties. When they receive a special corrupt message from the IO-interface
they send a message containing their internal state on the network interface; thereafter they act as forwarders
between the network interface and the IO- and subroutine-interfaces as for the ideal peers (the adversary is
then supposed to send a corrupt message via that corrupted machine to all its subroutines). The adversary
may request to change the internal state of corrupted protocol machines through the network interface in case
machines recover from corruption. When they receive a special recovery message from the IO-interface, they
stop forwarding traffic for the adversary and resume normal operation; however the protocol machines must
use a new set of ideal peers and ideal functionalities in case the latter donot support recovery from corruption.

We now describe how to construct S.

Environment interface. S forwards all messages between its Z-interface and its “Z”-interface in both direc-
tions, i.e., it relays all messages between Z and A.

Party interfaces. When a party is honest, no messages are sent through the party interfaces. When a party
becomes corrupted, and after S has handed the (simulated) internal state of that party toZ , S relays all messages
coming from the external interface (e.g., the P-interface) to the internal corresponding interface (e.g., the “P”-
interface), and relays all messages from the internal interface destined for the environment to the external
interface; this means that A receives the party’s input and provides the party’s output directly to Z .

33

Common reference string. Upon the first query to “FG3

crs ”, S chooses a common reference string with CRSGen′0,
so that S knows the trapdoor Trap which will enable it to equivocate all commitments it makes on behalf of
“U”, “P” and “Q”.

General behavior of S. In general, S simulates the ideal functionalities “Fac”, “Fosac”, “Fgzk”, and “F2v
gzk”

honestly, and simulates the ideal peers and protocol machines “U”, “P”, and “Q” honestly. In fact, when S
knows the correct input of the parties (which we can get either though the ideal peers in the ideal world or
by extracting information from “Fgzk”/“F2v

gzk”), it is easy to see how S proceeds. We emphasize that S never
needs to send any input to “Fgzk”/“F2v

gzk” on behalf of parties it controls, i.e., S can make proofs of false
statements with “Fgzk”/“F2v

gzk” or do proofs of knowledge even though it doesn’t know the correct witnesses.
In the remainder of this subsection, we will describe what S does when it doesn’t know the correct inputs of
the parties and is forced to lie.

Adjustements when S doesn’t know the parties’ input. When S does not know the input of some parties
and must nevertheless produce output that depends on said input, S performs the following adjustments:

Setup.
– Everybody honest: S proceeds as if the user’s input was random.
– one serverR corrupt (R ∈ {P,Q}), others honest: S proceeds as if the user’s input was random.
– (P and Q corrupt, U honest: S learns the user’s input by sending 〈ExposeSetup, · · ·〉 to F2pass.)
– (U corrupt, others honest: S runs Setup queries honestly. S recovers U’s input during Share.)
– (U and one serverR corrupt (R ∈ {P,Q}), other server honest: S runs Setup queries honestly. In Share,
S recovers one of U’s shares directly, the other through “Fgzk”.)

– (U , P and Q corrupt: The simulation is internal to the adversary.)

Retrieve. Upon receiving 〈Lock, · · ·〉 from F2pass, S knows whether δ = 0 or not.
– Everybody honest: In general, S proceeds as if the user’s input was random. S sends out random values
AU , BU , AP , BP , and AQ. If δ = 0, S sends out BQ = g0, otherwise S sends out a random BQ.

– P corrupt, others honest: In general, S proceeds as if the user’s input was random. S sends out random
values AU , BU , and AQ. If δ = 0, S sends out BQ = g0, otherwise S sends out a random BQ.

– Q corrupt, others honest: In general, S proceeds as if the user’s input was random. S sends out random
values AU , BU , AP , and AQ. If δ = 0, S sends out BP = (AP)s

UQ+sPQ−oQp on behalf of P (at this point,
S knows the value of oQp through “Fgzk[· · · , 2]” from Share in the Setup query or through “Fgzk[· · · , 9]”
from ComRefr in the Refresh query), otherwise S sends out a random BP .

– P and Q corrupt, U honest: Upon receiving 〈Lock, · · ·〉 from F2pass, S knows whether δ = 0 or not.
S sends out a random value AU . If δ = 0, S sends out BU = (AU)s

UP+sUQ−oPp −oQp on behalf of U (at
this point, S knows the value of oPp and oQp because of the earlier “Fgzk[· · · , 3]” and “Fgzk[· · · , 4]” in
ChkPwd), otherwise S sends out a random BU .

– U corrupt, others honest: S sends out random values AP , BP , and AQ. If δ = 0, S sends out BQ = g0,
otherwise S sends out a random BQ.

– U and P corrupt, Q honest: S sends out a random value AQ. If δ = 0, S sends out BQ = g0, otherwise S
sends out a random BQ.

– U andQ corrupt,P honest: S sends out a random valueAP . If δ = 0, S sends outBP = (AP)s
UQ+sPQ−oQp

(at this point, S knows the value of oQp through “Fgzk[· · · , 2]” from Share in the Setup query or through
“Fgzk[· · · , 9]” from ComRefr in the Refresh query), otherwise S sends out a random BP .

– (U , P and Q corrupt: The simulation is internal to the adversary.)

Refresh. S can run Refresh queries honestly, even if it doesn’t know the correct value of the shares of the
servers.

Adjustements upon corruption of U . When a user U gets corrupted, S needs to perform the following
adjustments, depending at which point in the simulation the corruption happened.

Share after 1st Send of “Fosac”. No adjustments needed, since most of the state was erased.

ChkPwd after Lock of “F2v
gzk[· · · , 5]”. No adjustments needed, since most of the state was erased.

34

Reconstr after 1st Deliver of “Fosac”. If not done already, immediately send 〈Deliver, · · ·〉 on the U interface
to recover output.

– P and Q honest: adjust kQ to match output of U . S will need to adjust oQk (with help of trapdoor), and the
OTP used to transmit it.

– P corrupt, Q honest: adjust kQ to match output of U . S will need to adjust oQk (with trapdoor), and the
OTP used to transmit it.

– P honest, Q corrupt: adjust kP to match output of U . S will need to adjust oPk (with trapdoor), and the
OTP used to transmit it.

– P and Q corrupt: there is nothing to adjust.
We note that the values kP , kQ, oPk , and oQk are fixed after the corruption of the first user in the Retrieve query
that succeeded in retrieving the key. When re-adjusting these values after a subsequent corruption of a user in
the Retrieve query, the values will not change again.

Adjustments upon corruption of P . When P gets corrupted, S needs to perform the following adjustments,
depending at which point in the simulation the corruption happened.

Share after Deliver of “Fosac”.
– U was honest during setup, U was always honest during retrieve, Q honest: No adjustments needed.
– U was honest during setup, U was always honest during retrieve, Q corrupt: Adjust pP and kP to match
U’s input. S also needs to adjust oPp and oPk (with help of trapdoor) and the OTPs used to transmit those.

– U was honest during setup, U was corrupted at least once during retrieve, Q honest: S needs to adjust
the OTP used to transmit the shares of the key. The values kP and oPk were already adjusted when U was
corrupted during Retrieve.

– U was honest during setup, U was corrupted at least once during retrieve, Q corrupt: Adjust pP to match
U’s input. The values kP and oPk were already adjusted when U was corrupted during Retrieve. S also
needs to adjust oPp (with help of trapdoor) and the OTPs used to transmit messages between Alice and Bob.

– U was corrupt during setup: No adjustments needed.

ChkPwd after Deliver of “F2v
gzk[· · · , 5]”.

– U and Q honest: Nothing to adjust.
– U corrupted: Nothing to adjust.
– U honest, Q corrupted: If δ = 0: adjust sUP so that BU = (AU)s

UP+sUQ−oPp −oQp . S also needs to adjust
oUPs (with trapdoor) and the OTP used to transmit it.

ChkPwd after Deliver of “Fgzk[· · · , 6]”.
– Q honest: Nothing to adjust, since parts of the state were erased.
– Q corrupted: Nothing to adjust.

Reconstr after Send of “Fosac”.
– U and Q honest: Nothing to adjust.
– U corrupted: Nothing to adjust.
– U honest, Q corrupted: Adjust kP to match correct output of U . S will need to adjust oPk (with trapdoor)

and the OTP used to transmit it.

Adjustments upon corruption of Q. When Q gets corrupted, S needs to perform the following adjustments,
depending at which point in the simulation the corruption happened.

Share after Deliver of “Fosac”. Similar as for P .

ChkPwd after Deliver of “F2v
gzk[· · · , 5]”.

– U honest, P corrupted: If δ = 0: adjust sUQ so that BU = (AU)s
UP+sUQ−oPp −oQp . S also needs to adjust

oUQs (with trapdoor) and the OTP used to transmit it.
– Other cases: Nothing to adjust.

ChkPwd after Deliver of “Fgzk[· · · , 6]”.
– P honest: Nothing to adjust.
– P corrupted: If δ = 0: adjust sPQ so that BP = (AP)s

UQ+sPQ−oQp . S also needs to adjust oPQs (with
trapdoor) and the OTP used to transmit it.

35

Reconstr after Send of “Fosac”. Similar as for P .

D.3 Proof of Indistinguishability
In this subsection, we prove that the ideal world with S as defined above and the real world with an arbitrary
adversary are indistinguishable.

We are going to define a sequence of games Game1 to Game8, as described by Shoup [38]. In the first
game, everything is distributed as in the protocol Π2pass, whereas in the last game everything is distributed
as in the ideal world F2pass. By the piling-up lemma, the advantage of the environment Z in distinguishing
between the first and the last game is less than the sum of the advantages in distinguishing consecutive games
Gamei and Gamei+1. We are going to prove that Z has only a negligible advantage in the latter, based either
on a reduction to a hard cryptographic problem, or by failure events happening with negligible probability. As
the number of games we consider is polynomial w.r.t. the security parameter, the overall advantage of Z in
distinguishing between the real world and ideal world setting is negligible.

We must stress that in all intermediate games, the simulator Si receives the input of all honest parties. We
only require that the simulator of the last game does not make use of these inputs, so that it may also be used in
the ideal world setting.

As we mentioned earlier, we also note that Si is not allowed to extract the witnesses whose existence is
proven (i.e., witnesses quantified by ∃) from “Fgzk”/“F2v

gzk”.

Game1. As observed in the previous paragraph, S1 receives the input of all honest parties. S1 runs all parties
honestly, and runs “FG3

crs ”, “Fosac”, “Fac”, “Fgzk”, and “F2v
gzk” honestly. By construction, this setting is perfectly

indistinguishable from the (FG3

crs , Fosac, Fac, Fgzk, F2v
gzk)-hybrid real world Π2pass.

Game2. S2 runs like S1 , except that it aborts if the adversary manages to open a commitment to two different
values. S2 detects that case when:

– A corrupt P uses a different share pP or kP in any “Fgzk” with a honest party, than the value it received
from honest U .

– A corrupt P uses a different values of shares pP or kP in subsequent runs of “Fgzk”.
– A corrupt Q uses a different share pQ or kQ in any “Fgzk” with a honest party, than the value it received

from honest U .
– A corrupt Q uses a different values of shares pQ or kQ in subsequent runs of “Fgzk”.
– A corrupt U sends a value BU in “F2v

gzk[· · · , 5]” to an honest P orQ that is incompatible with sUP or sUQ,
respectively. (Here S2 doesn’t need to extract those values, it can simply decrypt BU and see if δ is equal
or not equal to zero as expected.)

– A corrupt P sends a value BP to honest Q in “Fgzk[· · · , 6]” that is incompatible with sUP or sPQ or pP .
(Here S2 doesn’t need to extract those values, it can simply decrypt BP and see if δ is equal or not equal
to zero as expected.)

– A corrupt Q sends a value BQ to an honest P in “Fgzk[· · · , 7]” that is incompatible with sUQ or sPQ or
pQ. (Here S2 doesn’t need to extract those values, it can simply see if δ is equal or not equal to zero as
expected.)

The probability that S2 aborts is at most the probability that the commitment was not binding after all (recall
that the ideal functionalities Fgzk and F2v

gzk provide perfect soundness), which is negligible.

Game3. S3 runs like S2 , except that when secureSend is run between two honest parties, the parties use a
different one-time-pad than the one that was encrypted in eT . Recall that both honest parties have deleted the
randomness and decryption key for that ciphertext by the time the one-time-pad is first put into use.

The advantage ofZ in distinguishing between Game3 and Game2 is at most the advantage of a polynomial-
time environment in the CCA-2 security game of Enc, which is negligible.

Game4. S4 runs like S3 , except that when ChkPwd is run by an honest U and whenever δ 6= 0, S4 chooses
AU and BU at random from G. S4 will make proofs of false statements with F2v

gzk.
We now argue that the advantage that Z has in distinguishing between Game4 and Game3 is negligible

under the DDH assumption. We do this by running a hybrid arguments over all retrieve queries.
In the hybrid j, the simulator S3,j behaves like S4 for the first j queries, and like S3 for the following

queries.
We now construct a distinguisher S that operates with an environment which tries to distinguish between

hybrid j − 1 and j: the simulator S gets a tuple (h, y, Y, Z) ∈ G4 where either:

36

– all four elements are randomly sampled (left setting); or
– the four elements form a DDH tuple (right setting), i.e. Y = hr

U
and Z = yr

U
.

S chooses w at random, and sets the CRS to (h, y, w). In the first j − 1 Retrieve queries, S behaves like S4 .
In queries j + 1 and following, S behaves like S3 . In jth query, whenever δ 6= 0 and whenever U is honest,
S recovers oPp from “Fgzk[· · · , 3]” if needed, recovers oQp from “Fgzk[· · · , 4]” if needed, sets AU ← Y −1, sets

BU ← Zδ(AU)s
UP+sUQ−oPp −oQp , and makes a proof of a false statement in the subsequent Fgzk. S then outputs

whatever the environment outputs. Notice how in the left setting, the distribution of all values is like in hybrid
j, and in the right setting, the distribution of all values is like in the hybrid j − 1. Also note that since rU is
erased before the last message of “F2v

gzk[· · · , 5]”, S4 will not get into trouble if U is corrupted.
The advantage of S in the DDH-game is therefore equal or better than the advantage of the environment in

distinguishing between the two hybrids. The former being negligible by assumption, the latter must also be neg-
ligible. Since the number of queries is polynomial, the overall advantage of the environment in distinguishing
between Game4 and Game3 is negligible.

Game5. S5 runs like S4 , except that when ChkPwd is run by an honest P and whenever δ 6= 0, S5 chooses
AP and BP at random from G. S5 will make proofs of false statements with Fgzk.

We now argue that the advantage that Z has in distinguishing between Game5 and Game4 is negligible
under the DDH assumption. We do this by running a hybrid arguments over all retrieve queries.

In the hybrid j, the simulator S4,j behaves like S5 for the first j queries, and like S4 for the following
queries.

We now construct a distinguisher S that operates with an environment which tries to distinguish between
hybrid j − 1 and j: the simulator S gets a tuple (h, y, Y, Z) ∈ G4 where either:

– all four elements are randomly sampled (left setting); or
– the four elements form a DDH tuple (right setting), i.e. Y = hr

UrP and Z = yr
UrP .

S chooses w at random, and sets the CRS to (h, y, w). In the first j − 1 Retrieve queries, S behaves like S5 .
In queries j + 1 and following, S behaves like S4 . In jth query, whenever δ 6= 0 and whenever P is honest,
S recovers sUQ from “F2v

gzk[· · · , 5]” if needed, (oQp was recovered in “Fgzk[· · · , 2]” in Share during Setup or

in “Fgzk[· · · , 9]” in ComRefr during Refresh) sets AP ← Y −1, sets BP ← Zδ(AP)s
PQ+sUQ−oQp , and makes

a proof of a false statement in the subsequent Fgzk. S then outputs whatever the environment outputs. Notice
how in the left setting, the distribution of all values is like in hybrid j, and in the right setting, the distribution of
all values is like in the hybrid j− 1. Also note that since rP is erased before the last message of “Fgzk[· · · , 6]”,
S5 will not get into trouble if P is corrupted.

The advantage of S in the DDH-game is therefore equal or better than the advantage of the environment in
distinguishing between the two hybrids. The former being negligible by assumption, the latter must also be neg-
ligible. Since the number of queries is polynomial, the overall advantage of the environment in distinguishing
between Game5 and Game4 is negligible.

Game6. S6 runs like S5 , except that when ChkPwd is run by an honest Q and whenever δ 6= 0, S6 chooses
AQ and BQ at random from G. S6 will make proofs of false statements with Fgzk.

We now argue that the advantage that Z has in distinguishing between Game6 and Game5 is negligible
under the DDH assumption. We do this by running a hybrid arguments over all retrieve queries.

In the hybrid j, the simulator S5,j behaves like S6 for the first j queries, and like S5 for the following
queries.

We now construct a distinguisher S that operates with an environment which tries to distinguish between
hybrid j − 1 and j: the simulator S gets a tuple (h, y, Y, Z) ∈ G4 where either:

– all four elements are randomly sampled (left setting); or
– the four elements form a DDH tuple (right setting), i.e. Y = hr

UrPrQ and Z = yr
UrPrQ .

S chooses w at random, and sets the CRS to (h, y, w). In the first j − 1 Retrieve queries, S behaves like S6 .
In queries j + 1 and following, S behaves like S5 . In jth query, whenever δ 6= 0 and whenever Q is honest, S
sets AQ ← Y −1, sets BQ ← Zδ, and makes a proof of a false statement in the subsequent Fgzk. S then outputs
whatever the environment outputs. Notice how in the left setting, the distribution of all values is like in hybrid
j, and in the right setting, the distribution of all values is like in the hybrid j − 1. Also note that since rQ is
erased before the last message of “Fgzk[· · · , 7]”, S6 will not get into trouble if Q is corrupted.

37

The advantage of S in the DDH-game is therefore equal or better than the advantage of the environment in
distinguishing between the two hybrids. The former being negligible by assumption, the latter must also be neg-
ligible. Since the number of queries is polynomial, the overall advantage of the environment in distinguishing
between Game6 and Game5 is negligible.
Game7. S7 runs like S6 , except that now it chooses the CRS with CRSGen′0 instead of CRSGen1 upon the
first query to “FG3

crs ”. The commitment scheme is now perfectly hiding, and S7 can now efficiently equivocate
commitments using the trapdoor information.

The advantage that Z has in distinguishing between Game7 and Game6 is equal to its advantage in
breaking the semantic security game of Elgamal encryption, which is negligible by assumption.
Game8. S8 runs like S described in §D.2.

This is a purely conceptual change, so Z has no advantage in distinguishing between Game8 and Game7

.

qed.

D.4 Multi-Session Realization with Constant-Size CRS
If one wants to support multiple user accounts with our system, one can simply run multiple copies of Π2pass.
However, in that case each instance of Π2pass must run with a different instance of the CRS. In this subsection
we argue that running multiple copies of Π2pass with the same CRS, which we will write as Π̂2pass, is actually
secure as well, i.e., Π̂2pass realizes F̂2pass, the multi-session version of F2pass.

It’s easy to see that most steps of the proof in the previous subsection carry over to the multi-session case as
well: the simulator simply has to run simulations for all the sessions in parallel. The proof of indistinguishability
is similar as well: the hop between Game 6 and 7 remains the same; for all other game hops, we can use a hybrid
argument over each session to prove indistinguishability between consecutive games.

We note that even though the plain HMT commitments are malleable, a party never accepts a commitment
unless it has verified a zero-knowledge proof that the committer knows the value that was committed to; the
adversary can thus not base any of its commitments on commitments made by the simulator without causing
the simulation to abort.

Finally we note that the session id never appears explicitly in the proof in the previous section. This is
actually not a problem in the multi-session case: the session id appears implicitly as part of the sid of ideal
functionalities used as subroutines; there is thus no danger of confusing sessions.

E Comparison with Related Work
In this section, we compare the ideal functionalities, the protocol constructions, and the runtime of our protocol
against those by Camenisch, Lysyanskaya, and Neven (CLN) [10] and by Camenisch, Lehmann, Lysyanskaya,
and Neven (CLLN) [9]. For the t-out-of-n CLLN protocol, we consider the special case that (t, n) = (1, 2).

E.1 Comparison of Ideal Functionalities
In the following, we compare our ideal functionality F2pass with those of the CLN and CLLN protocols. On a
high level, our F2pass is similar to both functionalities, in that we also model Setup and Retrieve instructions
and let A hijack queries. We note the following differences: 1) Our F2pass allows for adaptive corruptions and
recovery from corruption, not just static corruptions. 2) Our F2pass on one hand and the CLN- and CLLN-
F2pass on the other all give the servers the option to refuse to service a Retrieve request, but model this option
differently. In CLN- and CLLN-F2pass, the servers are activated by the ideal functionality whenever a user
wants to perform a retrieval; the servers then contact the environment and ask for permission to continue. In
our F2pass, the ideal functionality does not activate the servers directly as required by the GNUC conventions:5

instead, the servers activate F2pass. In order to allow the environment to decide whether the servers should
service the request, the servers in our F2pass don’t need to explicity send a message to the environment to ask
for permission to continue: the environment can simply refuse to provide the input that activates the server. 3)
Finally, similarly to the CLLN model but unlike the CLN one, the user’s password attempt is protected during
Retrieve in our F2pass no matter the corruption status of the servers. Thus, if the user by mistake talks to the
wrong servers for Retrieve, she is still safe, while the CLN functionality in this case hands the password over
the adversary.

5 In the GNUC model, ideal functionalities are not allowed to activate a party from which they never received a message. In practice,
a higher-level protocol will take care of notifying the servers of incoming messages.

38

E.2 Comparison of our Construction
Comparison with the CLN-protocol. As we already pointed out in §2, the Setup and Retrieve instructions in
both follow a similar structure, and we will thus mainly focus on the differences between the two.

In the CLN-protocol, the user’s password and key are group elements instead of integers. This allows for
an efficient way to enable the simulator S to extract the user’s input from commitments sent by the user. Unlike
the CLN protocol, our protocol must perform more expensive zero-knowledge that allow the simulator S to
extract that input.

In the CLN-protocol, the user never performs any zero-knowledge proofs. This means that unlike our pro-
tocol (and the CLLN-protocol), the user’s password attempt is not protected in case he contacts two corrupted
servers.

The CLN-protocol [10] is secure against static corruptions only, while our protocol allows for adaptive
corruptions. Due to the selective decommitment problem, which affects only protocols secure against adaptive
corruptions, our protocol and the CLN-protocol further differ on three counts: 1) in our protocol, parties need
to establish OTPs among themselves, which is not needed in the CLN-protocol. We need this extra step to be
able to encrypt in a non-committing way. 2) In the CLN-protocol, the user and the servers communicate using
perfectly-binding commitments. The servers don’t need to prove knowledge of their shares to each other like
we do at the end of Share, as S can extract the password and key from the perfectly-binding commitments. 3)
Our ChkPwd subroutine is different than the corresponding protocol in CLN, since we cannot allow the servers
to send committing ciphertexts to each other.

Comparison with the CLLN-protocol. The recent CLLN-protocol [9] is also secure against static corrup-
tions only, and thus the points in the previous paragraph also apply. Their protocol uses non-interactive zero-
knowledge proofs extensively, and it is not clear how to instantiate their protocol in the standard model without
resorting to impractical generic non-interactive zero-knowledge proofs. Furthermore, their protocol needs ad-
ditional communication rounds compared to the random-oracle–version of our protocol.

E.3 Comparison of Computational Complexity for the Standard Model Constructions
In Table 1 we provide an estimate of the computational complexity of our protocol and compare it with the
complexity of the CLN-protocol (adapted to the standard model) [10]. We re-did the estimation for CLN using
a slightly different way of counting multi-exponentiations, so our numbers are slightly different from those
provided in the original paper.

We also provide an estimate of the computation time when run with the “smallest general purpose” security
level of the Ecrypt-II recommendations [1] (η = 80, log2 q = 2η = 160, log2 n = 1248, where n = p′ ∗ p′′
is a safe RSA modulus) on a standard laptop with a 64-bit operating system using the GMP Multiple Precision
Library.

We used the following runtime estimates for the basic building blocks, and assume the runtime of exponen-
tiations scales linearly depending on the bitlength of the exponent:

– Let exp.G be the runtime of exponentiation in G per bit of the exponent. For η = 80 and for a subgroup of
the integers modulo a large prime, we use the estimate exp.G = 1.42 µs (i.e., a full exponentiation takes
2η · exp.G = 227 µs).

– Let exp.n be the runtime per bit of exponentiation modulo n. For η = 80 we use the estimate exp.n =
1.42 µs (i.e., a full exponentiation takes log2 n · exp.n = 1820 µs).

– Let exp.p be the runtime per bit of exponentiation modulo p′ or p′′. For η = 80 we use the estimate exp.p =
0.42 µs (i.e., an RSA decryption with Chinese remainder theorem takes 2((log2 n)/2 · exp.p) = 538 µs).

– Let exp.n2 be the runtime per bit of exponentiation modulo n2. For η = 80 we use the estimate exp.n2 =
5.14 µs (i.e., a Paillier encryption (n+ 1)xrn (mod n2) takes time log2 n · exp.n2 = 6580 µs).

– Let tprime.2η be the average runtime to generate a prime of size 2η. For η = 80 we use the estimate
tprime.2η = 329 µs.
We did not consider the optimizations that are possible when running multibase exponentiations, or using

precomputations for fixed bases. We chose to ignore the runtime of “fast” operations: additions, multiplications,
inversions, and symmetric cryptographic operations. We also ignored the network delay: our Setup protocol
requires one additional roundtrip than the CLN’s, and both our and the CLN’s Retrieve protocol have the same
number of roundtrips. We also do not consider the various setup costs, such as generating a fresh RSA modulus
for the signature, which need to be done once only and can be done ahead of time.

We chose the following standard-model implementations of primitives:

39

– For CCA-2 secure encryption in both our and the CLN-protocol, we use the Cramer-Shoup cryptosystem
[16].

– For the signature scheme in the CLN-protocol, we use the Cramer-Shoup signature scheme [17].
We treated all zero-knowledge proofs in the CLN-protocols as proofs of existence, since S can extract

the key and password from the El-Gamal ciphertexts. For the zero-knowledge proofs of knowledge we use
in our protocol, we fit up to three witnesses into the plaintext of the verifiable encryption: Given witnesses
0 ≤ a, b, c < q, we encrypt (a + q2b + q4c); by adding a range proofs that −q2/2 < a, b, c < q2/2 to the
statement of the zero-knowledge proof and by recalling that q6 < n, one is ensured that S can always recover
a, b, and c; this range proof is essentially for free since the verifier simply needs to check the bit length of the
responses in the zero-knowledge proof; this trick allows us to save on the very expensive operations modulo
n2, which are by far the dominant cost in the proofs.

Finally, we note that for efficiency reasons it does not make sense to use generic multi-party computations
protocols to implement Π2pass: the computational complexity of just a single multiplication in the best two-
party computation protocol UC-secure against adaptive corruptions is (90η + 200log2 n) · exp.n + (66η +
40.5log2 n) · exp.n2 [7], corresponding to a computation time of 660 ms at η = 80, i.e., more than 3.7 times
slower than our entire Retrieve protocol.

E.4 Comparison of Computational Complexity for the Random Oracle Model Constructions
In Table 2 we provide an estimate of the computational complexity of our ROM-based protocol, the CLN-
protocol [10] and the CLLN-protocol [9] (for t = 1, n = 2). Again, as we use a different method to count the
exponentiations than the CLN and CLLN protocols, our numbers might be different than theirs.

For the ROM-based construction, we use the Fiat-Shamir heuristic [21] to transform our interactive proofs
of knowledge into non-interactive ones. For the CCA2-secure encryption, we use ElGamal with Fujisaki-
Okamoto padding, as recommended by CLLN. For signatures, we use Schnorr signatures.

40

CLN-protocol [10] Our protocol
Adaptive corruptions no yes, and servers can recover
Computation user 0log2nexp.p + 32ηexp.n + 40ηexp.G + 0tprime.2η 8 ms (16 η + 0 log2n)·exp.n + 92ηexp.G + (0η + 0log2n)·exp.n2 12 ms

time of P 2log2nexp.p + 20ηexp.n + 18ηexp.G + 2tprime.2η 6 ms (30 η + 3 log2n)·exp.n + 90ηexp.G + (1η + 3log2n)·exp.n2 39 ms

Setup Q 1log2nexp.p + 14ηexp.n + 18ηexp.G + 1tprime.2η 5 ms (32 η + 3 log2n)·exp.n + 90ηexp.G + (1η + 3log2n)·exp.n2 39 ms

Computation user 0log2nexp.p + 32ηexp.n + 36ηexp.G + 0tprime.2η 8 ms (68 η + 6 log2n)·exp.n + 188ηexp.G + (2η + 6log2n)·exp.n2 79 ms

time of P 2log2nexp.p + 20ηexp.n + 125ηexp.G + 2tprime.2η 18 ms (26 η + 3 log2n)·exp.n + 175ηexp.G + (1η + 3log2n)·exp.n2 48 ms

Retrieve Q 2log2nexp.p + 20ηexp.n + 125ηexp.G + 2tprime.2η 18 ms (26 η + 3 log2n)·exp.n + 166ηexp.G + (1η + 3log2n)·exp.n2 47 ms

Comp. time P — (36 η + 4 log2n)·exp.n + 136ηexp.G + (0η + 4log2n)·exp.n2 52 ms

of Refresh Q — (26 η + 2 log2n)·exp.n + 138ηexp.G + (2η + 2log2n)·exp.n2 36 ms

Table 1. Estimate of the computation time per party for the standard-model instantiation of our protocol and the CLN-protocol. The
computation time in milliseconds is an estimate for η = 80 on a standard laptop.

CLN-protocol [10] CLLN-protocol [9] Our protocol
Adaptive corruptions no no yes, and servers can recover
Computation user 44ηexp.G 5 ms 70ηexp.G 8 ms (0 η + 0 log2n)·exp.n + 52ηexp.G + (0η + 0log2n)·exp.n2 6 ms

time of P 20ηexp.G 2 ms 40ηexp.G 5 ms (30 η + 3 log2n)·exp.n + 62ηexp.G + (1η + 3log2n)·exp.n2 35 ms

Setup Q 18ηexp.G 2 ms 40ηexp.G 5 ms (32 η + 3 log2n)·exp.n + 62ηexp.G + (1η + 3log2n)·exp.n2 36 ms

Computation user 40ηexp.G 5 ms 166ηexp.G 19 ms (37 η + 4 log2n)·exp.n + 100ηexp.G + (2η + 4log2n)·exp.n2 49 ms

time of P 98ηexp.G 11 ms 88ηexp.G 10 ms (26 η + 3 log2n)·exp.n + 116ηexp.G + (1η + 3log2n)·exp.n2 41 ms

Retrieve Q 100ηexp.G 11 ms 88ηexp.G 10 ms (26 η + 3 log2n)·exp.n + 118ηexp.G + (1η + 3log2n)·exp.n2 41 ms

Comp. time P — — (36 η + 4 log2n)·exp.n + 98ηexp.G + (0η + 4log2n)·exp.n2 48 ms

of Refresh Q — — (26 η + 2 log2n)·exp.n + 130ηexp.G + (2η + 2log2n)·exp.n2 35 ms

Table 2. Estimate of the computation time per party for random-oracle-model–instantiations of our protocol, the CLN-protocol, and
the 1-out-of-2 CLLN-protocol. The computation time in milliseconds is an estimate for η = 80 on a standard laptop.

41

