
Practical and Employable Protocols for UC-Secure Circuit
Evaluation over Zn

?

Jan Camenisch1, Robert R. Enderlein1,2, and Victor Shoup3

1 IBM Research – Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
2 Department of Computer Science, ETH Zürich, CH-8092 Zürich, Switzerland
3 New York University, Courant Institute, NY 10012 New York, United States

Abstract. We present a set of new, efficient, universally composable two-party protocols for eval-
uating reactive arithmetic circuits modulo n, where n is a safe RSA modulus of unknown factor-
ization. Our protocols are based on a homomorphic encryption scheme with message space Zn,
zero-knowledge proofs of existence, and a novel “mixed” trapdoor commitment scheme. Our pro-
tocols are proven secure against adaptive corruptions (assuming secure erasures) under standard
assumptions in the CRS model (without random oracles). Our protocols appear to be the most
efficient ones that satisfy these security requirements. In contrast to prior protocols, we provide
facilities that allow for the use of our protocols as building blocks of higher-level protocols. An
additional contribution of this paper is a universally composable construction of the variant of the
Dodis-Yampolskiy oblivious pseudorandom function in a group of order n as originally proposed by
Jarecki and Liu.

Keywords: Two-party computation, Practical Protocols, UC-Security.

1 Introduction

Designing and proving secure large and complex cryptographic protocols is very challenging.
Today, the security proofs of most practical protocols consider only a single instance of the
protocol and therefore all security guarantees are lost if such a protocol is run concurrently
with other protocols or with itself, in other words, when used in practice. Better security guar-
antees can be obtained when using composability frameworks—Canetti’s Universal Compos-
ability (UC) [Can00], the similar GNUC [HS11] by Hofheinz and Shoup, or other frameworks
[PW01,Küs06,MR11]—which ensure that protocols proved secure in the framework remain se-
cure under arbitrary composition. This also simplifies the design of protocols: high-level protocols
can be composed from building block protocols and the security proofs of the high-level protocols
can be based on the security of the building blocks and so become modular and easier.

Unfortunately, protocols proven secure in such composability frameworks are typically an
order of magnitude less efficient than their traditional counterparts with “single-instance” secu-
rity. Moreover, most UC-secure schemes and protocols found in the literature can not be used as
building blocks for higher-level protocols because they do not offer the proper interfaces. That is,
unless one considers only multi-party protocols with honest majority, it is typically not possible
to ensure that a party’s output of one building block is used as the party’s input to another
building block. We note that the situation for two-party protocols is different from UC-secure
multi-party protocols with an honest majority where it is possible to secret-share all input and
output values and then, by the virtue of the majority’s honesty, it is ensured that the right
outputs are used as inputs to the next building block.

? This is the full version of a paper due to appear at the 18th European Symposium on Research in Computer
Security (ESORICS 2013). The final publication is available at link.springer.com.

In this paper we are therefore interested in practically useful UC-secure building block proto-
cols that provide interfaces so that parties in higher-level protocols can prove to each other that
their inputs to one building block protocol correspond to the outputs of another building block
protocol. More precisely, we provide a set of two-party protocols for evaluating an arithmetic cir-
cuit with reactive inputs and outputs. The protocols accept as (additional) inputs and provide as
(additional) outputs tailored commitment values which, in conjunction with UC zero-knowledge
proofs, make them a useful building block for higher-level protocols. We demonstrate the useful-
ness of our protocols by providing as example application an oblivious pseudorandom function
evaluation (see Section 8) and point out that our protocols can be used to implement the subpro-
tocols required by Camenisch et al.’s credential authenticated identification and key-exchange
protocols [CCGS10] (see Section 6.3 of their paper).

Apart from being the only protocols that allow for their use as building blocks, ours are also
more efficient than existing UC-secure two-party reactive circuit evaluation protocols [DN03]
[IPS09,DO10a,BDOZ11] which were designed to be used as standalone protocols.

Our contribution. Our main contribution is twofold: 1) we provide a mechanism for protocol
designers to easily integrate our arithmetic circuit functionality in their higher-level protocol
in a practical yet secure manner; and 2) we provide a concrete construction of the circuit
evaluation protocol that is in itself more efficient than prior work. We achieve the latter by
using cryptographic primitives that work very well together. Additionally, the tools we use in our
construction—especially our novel mixed trapdoor commitment scheme—may be of independant
interest.

Our protocols evaluate an arithmetic circuit modulo a composite number n, where n is a
product of two large safe primes that is assumed to be generated by a trusted third party, and
whose factorization remains otherwise unknown. We believe that in many practical cases, this
is a natural assumption.

Our protocols are universally composable and proven secure under standard assumptions
in a setting where parties can be corrupted at any time. It additionally assumes that secure
erasures are possible and that parties can agree on a common reference string (CRS). We
do not require random oracles. We strongly believe that achieving security against adaptive
corruptions is crucial in order to achieve any meaningful sense of security in the “real world”,
where computers are compromised on a regular basis. The assumption of secure erasures is a
pragmatic compromise: without it, obtaining a practical protocol seems unlikely; moreover, this
assumption does not seem that unrealistic. Likewise, as it is impossible to achieve universal
composability without some kind of setup assumption [CKL06], a CRS seems like a reasonable,
pragmatic compromise.

Our ideal functionality. We denote our basic ideal functionality for verifiably evaluating arith-
metic circuits modulo n by FABB (our functionality is similar to Nielsen’s arithmetic black
box [Nie03], hence the name). Parties compute the circuit step-by-step in a reactive manner by
sending identical instructions with identical common input to FABB. (For some instructions, one
party must additionally provide private input to FABB.) We assume that a higher-level protocol
orchestrates the steps the parties take.
FABB processes instructions from the two parties of the following types: Input: a party inserts

a value in Zn into the circuit; Linear Combination: a linear combination of values in the circuit
is computed; Multiplication: the product of two values in the circuit is computed; Output: a

2

value in the circuit is output to a party; Proof: a party can prove an arbitrary statement to the
other party in zero-knowledge involving values that she input in the circuit, values she got as
an output, and values external to the circuit.

A party can use the Proof instruction to prove that the value inside a commitment used in
the higher-level protocol is the same as a value in the circuit. This instruction thus makes it easy
and practical to compose FABB with a higher-level protocol. To input a committed value from a
higher-level protocol into the circuit, P would first use the Input instruction to set the value in
the circuit, and then use the Proof instruction to convince Q that the new value corresponds to
what was in the commitment. Similarly to transfer a value from the circuit to the higher-level
protocol, P would first get the value with the Output instruction, generate a commitment in the
higher-level protocol, and then use the Proof instruction to convince Q that the commitment
contains the value that was output by the circuit.

All of our results are presented in the GNUC framework [HS11]. This has two advantages.
First, the GNUC framework is mathematically consistent, and so our results have a clear math-
ematical meaning. Second, the GNUC framework supports the notion of a system parameter,
which is how we wish to model the modulus n (a system parameter is formally modeled as an
“ideal functionality”, to which all parties—including the environment—have direct access).

Additional features. Our framework can be extended with some features, such as generating ran-
dom values and computing multiplicative inverses modulo n, using standard techniques. Other
features require an extension of our ideal functionality. In Section 5 we add the following instruc-
tion to FABB: Exponentiated Output: given a group of order n, a generator g of that group, and
the identifier k of a previously assigned value x, the group element gx is output to a party. With
this feature, we can directly implement Jarecki and Liu’s two-party protocol for computing the
following oblivious pseudorandom function (OPRF) [JL09]:

fy(x) =

{
g1/(y+x) if gcd(y + x, n) = 1,

1 otherwise.

Here, P’s private input is x, Q’s private input is y, and P’s output is fy(x). As pointed out by
Jarecki and Liu, OPRF’s have many useful cryptographic applications.

Efficiency. Our protocols are quite practical; in particular, they do not require any expensive
“cut and choose” techniques. The complexity of our protocols can be summarized as follows: if
the circuits involved have t gates, the communication complexity is O(t) elements of Zn2 (and
groups of similar or smaller order) and the computational complexity is O(t) exponentiations in
Zn2 (and groups of similar or smaller order). We report on an experimental comparison of our
protocols with relevant prior work in Section 7.1. We show that our protocols are practical, and
that small circuits can be run in a few seconds—for examplethe OPRF computation above (for
a 1248-bit modulus) would run in 0.84 seconds on the authors’ laptop computers.

Roadmap. In Section 2 we introduce the notation used in this paper, recapitulate some fun-
damental theory, and present our new mixed trapdoor commitment scheme. We describe our
ideal functionality FABB for circuit evaluation in Section 3, and construct a concrete protocol
in Section 4. In Section 5 we add additional features to our functionality. We prove our protocol
secure in Section 6. In Section 7 we disucuss related work, and compare the efficiency of our
protocols with relevant related work. In Section 8 we show how one can easily construct an
OPRF using our protocol.

3

2 Preliminaries

In this section we will introduce the notation used throughout this paper and provide some
background on the UC model, zero-knowledge proofs of existence, and homomorphic encryption.
Finally we provide a new construction of a commitment scheme, which might be of independant
interest.

2.1 Notation

By Ni we denote the set of all natural numbers between 0 and (i − 1), by Zi we denote the
ring of integers modulo i. We use N∗i and Z∗i to denote Ni \ {0} and Zi \ {0}, respectively. If A
is a set, then a

$← A means we set a to a random element of that set. If A is a Probabilistic

Polynomial-Time (PPT) algorithm, then y
$← A(x) means we assign y to the output of A(x)

when run with fresh random coins on input x.
Let Σ denote a fixed, finite alphabet of symbols (for example Unicode codepoints). Through-

out this text we will use monospace fonts to denote characters in Σ, e.g.: P or Q. By Σ? we denote
the set of strings over Σ. We use the list-encoding function 〈·〉 like in the GNUC paper [HS11]:
If a1, . . . , an ∈ Σ?, then 〈a1, ..., an〉 is a string over Σ that encodes the list (a1, . . . , an) in some
canonical way.

If AP is a set, AP ← k is a shorthand notation for inserting k into it: AP ← AP ∪ k.
If V is an associative array, then V [k] ← v denotes the insertion of the value v into the

array under the identifier k. By v′ ← V [k], we denote the retrieval of the value associated with
identifier k, and storing that retieved value in the variable v′. In this paper, we will never insert
the same identifier twice in any array, and we will always use identifiers that were previously
input into the array when retrieving a value.
P and Q denote the two parties in an interactive protocol, and A the adversary.

2.2 UC and GNUC Models

Protocols constructed for and proven secure in a composability framework can be securely com-
posed in arbitrary ways. To date, there are five such frameworks: Universal Composability (UC)
by Canetti [Can00], the similar GNUC framework by Hofheinz and Shoup [HS11], Reactive
Simulatability by Pfitzmann and Waidner [PW01], IITMs by Küsters [Küs06], and Abstract
Cryptography by Maurer and Renner [MR11]. Even though the UC and GNUC frameworks
differ in their mathematical formalism, they are essentially the same [HS11]. To understand this
paper, it is sufficient to be familiar with either.

In the UC/GNUC framework, an abstract specification—often called the ideal function-
ality—describing the input and output behaviour of the protocol is given. A cryptographic
protocol is then said to securely implement this ideal functionality, if an external adversary
cannot distinguish between a run of the actual protocol and a run where the ideal functionality
is performed by a trusted third party receiving the inputs and generating the ouputs for all
parties. The protocol can now be used instead of the ideal functionality in any arbitrary complex
system.

In this paper we make use of standard ideal functionalities: authenticated channels (Fach),
secure channels (Fsch), and zero-knowledge proofs (FZK) as described in Section 12.1 of the
GNUC paper [HS11]. The first two functionalities are essentially the same as Canetti’s [Can00].

4

The FZK functionality of GNUC differs from Canetti’s definition in that the instance of the
predicate to be proven is a private input of the prover, and is delivered to the verifier only in
the last message of the protocol: this enables the prover to securely erase her witnesses before
revealing the statement to be proven. We reproduce the formal definition of FZK in Appendix
A.1 for the reader’s convenience.

We follow the formalism of GNUC to model common reference strings and system parameters—
see Section 10 of the GNUC paper [HS11].

2.3 Zero-Knowledge Proofs of Existence

In the UC model, all proofs are necessarily proofs of knowledge. By embracing the extension
to the UC model proposed by Camenisch, Krenn, and Shoup [CKS11], it becomes possible to
perform proofs of existence in addition to proofs of knowledge. The former are computationally
significantly less expensive. To that effect, the paper introduced the gullible zero-knowledge
functionality FgZK. Roughly speaking, FgZK is similar to the well-known zero-knowledge proof
functionality FZK, except that not all the witnesses can be extracted. FgZK is not an ideal
functionality in the UC/GNUC sense, but abstracts a concrete zero-knowledge proof protocol
using secure channels Fsch and a CRS.

When specifying the predicate to be proven, we will use the notation introduced by Ca-
menisch, Krenn, and Shoup [CKS11] (which is very similar to the Camenisch-Stadler notation
[CS97]); for example:

K

α ∃β : y = gβ ∧ z = gαhβ is used for proving the existance of
the discrete logarithm of y to the base g, and of a representation of z to the bases g and h
such that the h-part of this representation is equal to the discrete logarithm of y to the base g.
Furthermore, knowledge of the g-part of the representation (discrete logarithm of the Elgamal
plaintext) is proven. Variables quantified by

K

can be extracted by the simulator in the security
proof, while variables quantified by ∃ cannot.

In this paper, we will be proving statements involving encryptions and commitments, all of
which can be easily translated into predicates of the form considered in Camenisch et al.’s paper
[CKS11]. For predicates of this type, FgZK can be efficiently realized in the CRS model.

Ideal functionality FgZK. In Camenisch et al’s paper, the FgZK ideal functionality was formally
defined for the UC model, but one can easily port it to the GNUC model. We provide here only
an informal description of FgZK; see Appendix A.2 or the Camenisch et al. paper for the formal
definition.

In the following we let R be a binary predicate that maps a triple (x,wk, we) to 0 or 1, where
x is called the instance and the pair (wk, we) the witness. FgZK is parametrized by R and a
leakage function ` (which for example reports the length of its input). The functionality also
expects an arbitrary label to distinguish different proof instances.

The common input to FgZK is an arbitrary label. The prover’s input is (x,wk, we) where
R(x,wk, we) = 1. Next, FgZK leaks the length of the instance and witness `(x,wk) to the
adversary A. After an acknowledgement by A, FgZK delivers the instance x to the verifier, while
simultaneously erasing the witness (wk, we). In the security proof, the simulator can extract
wk, but not we. Per convention, FgZK rejects malformed messages and messages with duplicate
labels.

5

2.4 Homomorphic Semantically Secure Encryption

Definition. We define the key generation function (pk, sk)
$← KeyGen(n), where n is a safe RSA

modulus of unknown factorization. We define the encryption function E ← Enc(v, pk, r) that
takes as input a plaintext v, a public key pk and some randomness r, and outputs a ciphertext

E. We will also use the shorthand notation (E, r)
$← Enc(v, pk) in which the randomness r is

chosen inside the Enc function. The corresponding decryption function v′ ← Dec(E, sk) takes as
input the ciphertext and secret key, and outputs the plaintext. We assume that the encryption
is homomorphic with respect to addition over Zn: ∀v1, v2 ∈ Zn, r1, r2 : (pk, sk) ∈ KeyGen(n) =⇒
Dec(Enc(v1, pk, r1) ∗ Enc(v2, pk, r2), sk) = v1 + v2.

We require that correctness of encryption and decryption be efficiently provable with FgZK,
and that it is possible to efficiently prove knowledge of sk given pk with FgZK. We will use a
shorthand notation to denote such proofs, e.g.:

K

sk, v : (pk, sk) ∈ KeyGen(n) ∧ v = Dec(E, sk).

Camenisch-Shoup encryption. An example of such an encryption scheme is the simplified version
of Camenisch-Shoup encryption [CS03,DJ03] with a short private key and short randomness,

described by Jarecki and Shmatikov [JS07]. The key generation function is: x
$← Zb√nc, g′

$← Z∗n2 ,

g← g′2n, y← gx; the secret key sk is x, and the public key pk is (g, y). To encrypt the message

v ∈ Zn: r
$← Zb√nc, u ← gr, e ← yr(n + 1)v (mod n2); the ciphertext E is (u, e). To decrypt:

v′′′ ← (e/ux)2, v′′ ← v′′′−1
n (over the integers), v′ ← v′′ · 2−1 (mod n); output v′. This scheme is

semantically secure if Paillier’s Decision Composite Residuosity Assumption [Pai99] holds.

2.5 Mixed Trapdoor Commitment Scheme

We now construct a commitment scheme which we will use instead of traditional UC commitment
schemes [CF01] in our circuit evaluation protocol. Our commitment scheme works well with
proofs of existence using FgZK, resulting in an efficiency gain in the overall protocol.4 To the
best of our knowledge, this is a novel scheme.

We define a mixed trapdoor commitment scheme to be a commitment scheme that is either:
perfectly hiding and equivocable; or statistically binding, depending on the distribution of the
CRS. Mixed trapdoor commitments are similar to UC commitments [CF01] in that 1) the
simulator can equivocate commitments in the security proof without being caught, even if he
has to provide all randomness used to generate the commitment to the adversary; and 2) the
simulator can use an adversary who equivocates commitments to solve a hard cryptographic
problem. However unlike UC commitments, in mixed trapdoor commitments 3) the simulator
does not need to extract the openings or the committed values from FgZK.

Definition. Let cpi
$← ComGeni(n) for i ∈ {0, 1} be functions that generate parameters for a

commitment scheme. If i = 0, the commitment scheme is perfectly hiding (computationally
binding), and if i = 1, the commitment scheme is statistically binding (computationally hiding).

For the perfect-hiding setting, we define the function (cp′0, t)
$← ComGen′0(n) that additionally

outputs a trapdoor t. We further require that cp0, cp′0, and cp1 are pairwise computationally
indistinguishable.

4 The efficiency gain due to using proofs of existence instead of proofs of knowledge outweighs the efficiency loss
due to the more complex commitment scheme.

6

We define the function (C, x)
$← Comcpi(v) that takes as input a value v ∈ Zn to be committed,

and outputs a commitment C and an opening x to the commitment. We will also use the notation
C← Comcpi(v, x), where the opening is chosen outside of the function. Conversely, we define the
verification function ComVfycpi(C, x, v) that checks whether the tuple (C, x) is one of the possible
values generated by Comcpi(v). The commitments are homomorphic with respect to addition over
Zn: ComVfycpi(C1, x1, v1) ∧ ComVfycpi(C2, x2, v2) =⇒ ComVfycpi(C1 ∗ C2, x1 + x2, v1 + v2). With
a trapdoor t it is possible to efficiently equivocate commitments in the perfect-hiding setting:
∀v′ ∈ Zn; x′ ← Trapdoorcp′0(t,C, x, v, v′): ComVfycp′0(C, x, v) =⇒ ComVfycp′0(C, x′, v′).

We require that verifying a commitment be efficient with FgZK.
In the sequel, we drop the subscript cpi if it clear which parameters need to be used.

Construction based on Elgamal. We now provide the construction of a mixed trapdoor commit-
ment scheme based on Elgamal encryption. We construct ComGen1 as follows: 1) find the first
prime p such that p = k · n + 1 for some k ∈ N— according to a heuristic5 by Wagstaff [WJ79]:
p < n · (log n)2; 2) find a generator g of a subgroup of Zp of order n; 3) select a, t,m at random
from Zn; 4) compute h← ga, y← gmht, u← gt, i.e., (y, u) is the Elgamal encryption of gm with
the public key (g, h); 5) output cp1 ← (p, g, h, y, u). In practice, where we want to select a random
common reference string cp1, it is also possible to randomly sample h, y, and u from the subgroup
generated by g. With high probability, we have that gcd(a, n) = gcd(m, n) = gcd(t, n) = 1, which
means that h, y, u are all of order n. We construct ComGen0 similarly, except that in step 3, we
set m← 0. The function ComGen′0 additionally outputs t.

To commit to v ∈ Zn, one sets x
$← Zn; C1 ← yvhx; C2 ← uvgx; and C← (C1,C2). The latter

is a re-randomized encryption of gm·v. Verification is trivial. Finally, if m = 0 and one knows the
trapdoor information t, one can open the commitment C to a different value v′ ∈ Zn by setting
x′ ← (v − v′) · t + x.

3 Our Ideal Functionality FABB

In this section, we will start by giving a short informal definition of the ideal functionality FABB

(arithmetic black box) for doing computation over Zn. We then provide the formal definition of
FABB using the notation of GNUC [HS11]. It is not necessary to read Subsections 3.2 and 3.3
to understand the construction of our scheme.

3.1 Informal Definition of FABB

The functionality FABB reacts to a set of instructions. Per convention, both parties must agree
on the instruction and the shared input before FABB executes it. An instruction may require
P and Q to send multiple messages to FABB in a specific order, however FABB may run other
instructions concurrently while waiting for the next message. More precisely P and Q can:
provide inputs to FABB; ask it do to a linear combination or multiplication of previous inputs or
intermediate results; ask it to output a value to one of them; and do an arbitrary zero-knowledge
proof involving inputs/outputs to/from the circuit and external witnesses. These instructions
can be arbitrarily interleaved, intermediate results output and new inputs be provided. The
input values provided by P and Q may depend on output values obtained. Following the GNUC

5 We confirmed this experimentally for 250 randomly generated 1248-bit safe RSA moduli.

7

formalism, each message sent to FABB is prefixed with a label which contains, among others,
the name of the instruction to execute, the current step in the instruction this message refers
to, and the shared input ϕ; the private inputs are always part of the message body.

State. The ideal functionality FABB is stateful. It maintains an associative array V , mapping
identifiers (in Σ?) to integer values (in Zn).

Instructions. These are the instructions supported by FABB:

• Input from P: P’s private input is the value v. FABB parses the shared input ϕ as 〈k〉, where
k will be the identifier associated to the value v, and sets V [k]← v.

• Input from Q: Q’s private input is v. FABB parses ϕ as 〈k〉, and sets V [k]← v.
• Linear combination: FABB parses ϕ as 〈m, k0, v0, 〈k1, v1〉, . . ., 〈km−1, vm−1〉〉 and sets: V [k0]←

v0 +
∑m−1

i=1 V [ki] · vi.
• Multiplication: FABB parses ϕ as 〈k0, k1, k2〉 and sets: V [k0]← V [k1] ·V [k2].
• Output to P: FABB parses ϕ as 〈k〉, and sends V [k] (as a delayed output) to P.
• Output to Q: FABB parses ϕ as 〈k〉, and sends V [k] (as a delayed output) to Q.
• Proof by P: This instruction can be used to prove a statement about values that were in-

put/output to/from from the circuit (FABB) and witnesses from a higher-level protocol. P’s
private input is 〈x,wk, 〈〉〉. FABB parses ϕ as 〈m, 〈k0, ..., km−1〉, R〉, where is R is a binary
predicate that is compatible with FgZK and which can involve 1) values that were input by P
to FABB, 2) values that were output to P from FABB, and 3) witnesses external to FABB; x
is an instance for R; wk is a list of witnesses that are external to the circuit whose knowledge
are proven; and k0, . . . , km−1 are identifiers of values in the circuit that were input by P or
output to P. FABB checks if the predicate holds, i.e., if R

(
x, wk∪ (V [k0], . . . ,V [km−1])

)
= 1;

and sends 〈x〉 (as a delayed output) to Q. In Section 3.3, we define an extention of FABB

denoted FgABB which also allows for proofs of existence inside the Proof functionality.
• Proof by Q: Similar to Proof by P , with the roles of P and Q reversed.
• Dynamic corruption: FABB accepts a special corrupt message from P or Q. From then on,

all input and output of the corrupted party is redirected to the adversary A, and A may
recover all of the corrupted party’s input (by asking FABB for it).

Treatment of invalid input. In case FABB receives a message it does not expect, a message that
it cannot parse, or a message with a label it has seen previously from the same party, it simply
ignores the message.

Comments. The value of n is not an input to FABB, nor is it modeled as a CRS. Rather, it is
modeled in the GNUC framework as a system parameter. Roughly speaking, this is a special
type of ideal functionality to which all parties, including the environment, have common access.
The value of n is generated by a trusted party, and no other party learns its factorization.
Furthermore, the modulus n can be re-used across different protocol instances. In the setting
of credential-authenticated identification [CCGS10] this is completely natural, as one can use a
modulus generated by the credential issuer. In a different context, we can also imagine using the
modulus n of a well-known and respected certificate authority (e.g., the modulus in Verisign’s
root certificate).

Our ideal functionality FABB shares some similarity with Nielsen’s arithmetic black box
(ABB) [Nie03], and Damg̊ard and Orlandi’s FAMPC [DO10a]. The major difference is that our

8

FABB includes the Proof instruction, allowing values from higher-level protocols to be input
and output securely. This instruction is crucial as it allows meaningful composition with other
protocols (see Introduction). Unlike FAMPC, we do not support random number generation in the
vanilla FABB for simplicity; see Section 5 of the full version [CES13] for an algorithm generating
these that uses only our core set of instructions.

3.2 Formal Definition of FABB

We now formally define the FABB functionality using the formalism of GNUC [HS11].
By 〈label, value1, value2, . . .〉 we denote an ideal message with label label and payload

value1, value2, By convention, if a party sends a message with the same label as a message
it has sent previously, FABB ignores the message.

System parameters. The safe RSA modulus n, which defines the ring Zn in which all the arith-
metic operations will be performed, and whose factorization is unknown to P, Q, and the
adversary A, is assumed to be part of the system parameters.

CRS. The CRS consists of the parameters cp of the commitment scheme.

State. The ideal functionality FABB is stateful, and maintains an associative array V , as well
as the sets KPP, KQP, KPQ, KQQ, AP, AQ, RP, and RQ. The associative array V maps
an identifier (in Σ?) to the corresponding value (in Zn) in the circuit. The set KPP contains
the list of identifiers corresponding to values that were either input by P or output to P, in
P’s view; these identifiers can be used in the Proof by P instruction. The sets KQP, KPQ,
KQQ are similar, but for Q’s values in P’s view, P’s values in Q’s view, Q’s values in Q’s view,
respectively. The set AP contains the list of identifiers which, in P’s view, have already been
used in the circuit; this set prevents parties from using the same identifier multiple times. The
set AQ is similar, but for Q’s view. The set RP contains the list of identifiers which, in P’s
view, are ready to be used in other instructions; this set prevents parties from using an identifier
where the corresponding value has not been properly initialized yet. The set RQ is similar, but
for Q’s view.

Instructions. In what follows, we let ϕ ∈ Σ? denote the command ID, a string which will be
part of the label. The command ID ϕ will contain all the common input to an instruction.

The ideal functionality FABB is composed of several instructions. By convention each step
may be triggered only once (re-use of an instruction requires a different command ID ϕ). A
logical expression in [...] : is a guard that must be satisfied in order to trigger the step.
Our ideal instructions are modelled closely after GNUC’s zero-knowledge and secure function
evaluation functionalities [HS11].

We take the convention that variables with an overbar, such as v̄, are global variables as-
sociated with the command ID ϕ, whose scope is the instruction they are defined in. All other
variables are local.

We also assume that the communication between the parties and FABB cannot be delayed by
A, this makes sure that in the case one party re-uses an output label k in several instructions,
the operation that will be ignored by FABB is clearly defined. The ideal functionality FABB

models message delays internally.

9

• Input from P: In this instruction, parse the command ID ϕ as 〈k〉 where k = 〈%〉 with
% ∈ Σ?.

– ip:send:ϕ : Accept 〈ip:send:ϕ, v〉 from P where v ∈ Zn and the identifier is not yet
assigned: k 6∈ AP. Mark the identifier as assigned: AP ← k. Set v̄ ← v. Send 〈ip:send:ϕ〉
to A.

– ip:ready:ϕ : Accept 〈ip:ready:ϕ〉 from Q, where the identifier is not yet assigned: k 6∈
AQ. Mark the identifier as assigned: AQ ← k. Send 〈ip:ready:ϕ〉 to A.

– ip:lock:ϕ [ip:send:ϕ ∧ ip:ready:ϕ] : Accept 〈ip:lock:ϕ〉 from A. Store the identifier-
value pair in the map V : V [k]← v̄. Send 〈〉 to A.

– ip:done:ϕ [ip:lock:ϕ] : Accept 〈ip:done:ϕ〉 from A. Mark the value as being ready to
be used by other instructions: RP ← k. Mark the value as being known to P: KPP ← k.
Send 〈ip:done:ϕ〉 to P.

– ip:deliver:ϕ [ip:lock:ϕ] : Accept 〈ip:deliver:ϕ〉 from A. Mark the value as being
ready to be used by other instructions: RQ ← k. Mark the value as being known to P:
KPQ ← k. Send 〈ip:deliver:ϕ〉 to Q.

– ip:reset:ϕ [¬ip:lock:ϕ∧corrupt:P] : Accept 〈ip:reset:ϕ, v〉 from A. Replace P’s input
by A’s: v̄ ← v. Send 〈〉 to A.

– ip:expose:ϕ [ip:send:ϕ∧corrupt:P] : Accept 〈ip:expose:ϕ〉 from A. Send 〈ip:expose:ϕ,
v̄〉 to A.

• Input from Q: This is similar to the previous instruction, with the roles of P and Q
reversed, and the label prefix is changed to iq. We do not formalize this instruction here.
• Output to P: In this instruction, parse ϕ as 〈k〉 where k ∈ Σ?.

– op:p:ϕ : Accept message 〈op:p:ϕ〉 from P, where the value is ready to be used: k ∈ RP.
Send 〈op:p:ϕ〉 to A.

– op:q:ϕ : Accept message 〈op:q:ϕ〉 from Q, where the value is ready to be used: k ∈ RQ.
Send 〈op:q:ϕ〉 to A.

– op:lock:ϕ [op:p:ϕ ∧ op:q:ϕ] : Accept 〈op:lock:ϕ〉 from A. Send 〈〉 to A.
– op:deliver:ϕ [op:lock:ϕ] : Accept 〈op:deliver:ϕ〉 from A. Mark the value as being

known to P: KPP ← k. Send 〈op:deliver:ϕ,V [k] 〉 to P.
– op:done:ϕ [op:lock:ϕ] : Accept 〈op:done:ϕ〉 from A. Mark the value as being known to
P: KPQ ← k. Send 〈op:done:ϕ〉 to Q.

• Output to Q: This is similar to the previous instruction, with the roles of P and Q reversed,
and the label prefix is changed to oq. We do not formalize this instruction here.

• Linear combination: In this instruction, parse ϕ as 〈m, k0, v0, 〈k1, v1〉, . . ., 〈km−1, vm−1〉〉
where m ∈ N∗, ∀i ∈ Nm : ki ∈ Σ?, vi ∈ Zn, and where k0 = 〈joint, %〉 with % ∈ Σ?.

– l:p:ϕ : Accept message 〈l:p:ϕ〉 from P where the zeroth (output) identifier is not yet
assigned: k0 6∈ AP, and the other identifiers are ready to be used: ∀i ∈ N∗m : ki ∈ RP.
Mark the output identifier as being assigned: AP ← k0. Send 〈l:p:ϕ〉 to A.

– l:q:ϕ : Accept message 〈l:q:ϕ〉 from Q where the zeroth (output) identifier is not yet
assigned: k0 6∈ AQ, and the other identifiers are ready to be used: ∀i ∈ N∗m : ki ∈ RQ.
Mark the output identifier as being assigned: AQ ← k0. Send 〈l:q:ϕ〉 to A.

– l:lock:ϕ [l:p:ϕ∧l:q:ϕ] : Accept message 〈l:lock:ϕ〉 from A. Store the result in the map
V : V [k0]← v0 +

∑m−1
i=1 V [ki] · vi. Send 〈〉 to A.

– l:done:p:ϕ [l:lock:ϕ] : Accept 〈l:done:p:ϕ〉 from A. Mark the output identifier as being
ready to be used by other instructions: RP ← k0. Send 〈l:done:p:ϕ〉 to P.

10

– l:done:q:ϕ [l:lock:ϕ] : Accept 〈l:done:q:ϕ〉 from A. Mark the output identifier as being
ready to be used by other instructions: RQ ← k0. Send 〈l:done:q:ϕ〉 to Q.

• Multiplication: In this instruction, parse ϕ as 〈k0, k1, k2〉 where k1, k2 ∈ Σ? and k0 =
〈joint, %〉 with % ∈ Σ?.

– m:p:ϕ : Accept message 〈m:p:ϕ〉 from P where the zeroth (output) identifier is not yet
assigned: k0 6∈ AP, and the other identifiers are ready to be used: ∀i ∈ N∗3 : ki ∈ RP.
Mark the output identifier as being assigned: AP ← k0. Send 〈m:p:ϕ〉 to A.

– m:q:ϕ : Accept message 〈m:q:ϕ〉 from Q where the zeroth (output) identifier is not yet
assigned: k0 6∈ AQ, and the other identifiers are ready to be used: ∀i ∈ N∗3 : ki ∈ RQ.
Mark the output identifier as being assigned: AQ ← k0. Send 〈m:q:ϕ〉 to A.

– m:lock:ϕ [m:p:ϕ∧m:q:ϕ] : Accept message 〈m:lock:ϕ〉 from A. Store the result in the map
V : V [k0]← V [k1] ·V [k2]. Send 〈〉 to A.

– m:done:p:ϕ [m:lock:ϕ] : Accept 〈m:done:p:ϕ〉 from A. Mark the output identifier as being
ready to be used by other instructions: RP ← k0. Send 〈m:done:p:ϕ〉 to P.

– m:done:q:ϕ [m:lock:ϕ] : Accept 〈m:done:q:ϕ〉 from A. Mark the output identifier as being
ready to be used by other instructions: RQ ← k0. Send 〈m:done:q:ϕ〉 to Q.

• Proof by P: In this instruction, parse ϕ as 〈m, 〈k0, ..., km−1〉, R〉, where m ∈ N, ∀i ∈ Nm :
ki ∈ Σ?, and where is R is a binary predicate that is compatible with FgZK.

– pp:send:ϕ : Accept 〈pp:send:ϕ, x, m̃, wk, 0, 〈〉〉 from P where x is an instance for R, m̃ ∈
N, wk = 〈wk,0, . . ., wk,m̃−1〉 is a list of external witnesses whose knowledge is proven,
R
(
x, (wk,0, . . . , wk,m̃−1)∪(V [k0], . . . ,V [km−1])

)
= 1, and where all values in the common

list are known to P: ∀i ∈ Nm : ki ∈ KPP. Store the instance and all witnesses: x̄ ← x
and w̄k ← wk. Send 〈pp:send:ϕ, `(x,wk)〉 to A.

– pp:ready:ϕ : Accept 〈pp:ready:ϕ〉 from Q, where all values in the common list are known
to P: ∀i ∈ Nm : ki ∈ KPQ. Send 〈pp:ready:ϕ〉 to A.

– pp:lock:ϕ [pp:send:ϕ ∧ pp:ready:ϕ] : Accept 〈pp:lock:ϕ〉 from A. Send 〈〉 to A.

– pp:done:ϕ [pp:lock:ϕ] : Accept 〈pp:done:ϕ〉 from A. Send 〈pp:done:ϕ〉 to P.

– pp:deliver:ϕ [pp:lock:ϕ] : Accept 〈pp:deliver:ϕ,L〉 from A, where L = `(x̄, w̄k) ∨
[corrupt:Q]. Send 〈pp:deliver:ϕ, x̄〉 to Q.

– pp:reset:ϕ [¬pp:lock:ϕ∧corrupt:P] : Accept 〈pp:reset:ϕ, x, m̃, wk, 0, 〈〉〉 from A where
x is an instance for R, m̃ ∈ N, wk = 〈wk,0, . . ., wk,m̃−1〉 is a list of witnesses, and where
R
(
x, (wk,0, . . . , wk,m̃−1)∪(V [k0], . . . ,V [km−1])

)
= 1. Store the instance and all witnesses:

x̄← x and w̄k ← wk. Send 〈〉 to A.

– pp:expose:ϕ [pp:send:ϕ∧¬pp:lock:ϕ∧corrupt:P] : Accept 〈pp:expose:ϕ〉 from A. Send
〈pp:expose:ϕ, x̄, w̄k〉 to A.

• Proof by Q: This is similar to the previous instruction, with the roles of P and Q reversed,
and the label prefix is changed to pq. We do not formalize this instruction here.

• Dynamic corruption:

– corrupt:P : Accept a special 〈corrupt〉 message from P. Send 〈corrupt:P〉 to A together
with an invitation for the messages 〈ip:expose:ϕ〉 (for all ϕ where the ip:send:ϕ step
has been processed already) and 〈pp:expose:ϕ〉 (for all ϕ where the pp:send:ϕ step has
been processed already).

– corrupt:Q : Analogously, but for Q.

11

Invalid input. In case FABB receives a message it does not expect, a message that it cannot
parse, or a message with a label it has seen previously from the same party, it simply ignores
the message.

3.3 Allowing proof of existence of external variables: FgABB

To improve the efficiency of higher-level protocols, protocol designers may wish to perform proofs
of existence of external witnesses in the Proof instruction. This efficiency gain comes at the cost
of additional complexity, this is why we decided to define a separate ideal functionnality called
FgABB that allows that feature.

Similarily to FgZK, FgABB is not a proper ideal functionality in the UC sense, but rather a
gullible ideal functionality as described by Camenisch et al. [CKS11]. This means that FgABB

does not check the correctness of the predicate inside the Proof instruction. The intended func-
tionality of FgABB is thus only guaranteed for so-called nice environments, i.e., environments
which never ask FgABB to prove a false statement. Roughly speaking, the special composition
theorm of Camenisch et al. guarantees that when in a higher-level protocol FgABB is replaced
by the intended realization ΠgABB, the higher-level protocol is secure against all environments.

Informal definition of FgABB. The high-level description of the Proof instructions of FgABB is
the following:
• Proof by P: P’s private input is now 〈x,wk, we〉, where we is a lists of witnesses that are

external to the circuit whose existence is proven. The predicate is said to hold if R
(
x, wk ∪

we ∪ (V [k0], . . . ,V [km−1])
)

= 1. However, FgABB, being a gullible functionality, does not
check if the predicate holds.

• Proof by Q: Similar to Proof by P , with the roles of P and Q reversed.
All other instructions are identical to the ones of FABB.

Formal definition of FgABB. The formal definition of the Proof instructions of FgABB is the
following:

• Proof by P: In this instruction, parse ϕ as 〈m, 〈k0, ..., km−1〉, R〉, where m ∈ N, ∀i ∈ Nm :
ki ∈ Σ?, and where is R is a binary predicate that is compatible with FgZK.

– pp:send:ϕ : Accept 〈pp:send:ϕ, x, m̃, wk, m̂, we〉 from P where x is an instance for R,
wk = 〈wk,0, . . ., wk,m̃−1〉 is the list of external witnesses whose knowledge is proven, we =
〈we,0, . . ., we,m̂−1〉 is the list of external witnesses whose existence is proven, and where all
values in the common list are known to P: ∀i ∈ Nm : ki ∈ KPP. The ideal functionality
FgABB, being gullible, does not check if the predicate holds. Store the instance and all
witnesses quantified by

K

: x̄← x and w̄k ← wk. Send 〈pp:send:ϕ, `(x,wk)〉 to A.
– pp:ready:ϕ : Accept 〈pp:ready:ϕ〉 from Q, where all values in the common list are known

to P: ∀i ∈ Nm : ki ∈ KPQ. Send 〈pp:ready:ϕ〉 to A.
– pp:lock:ϕ [pp:send:ϕ ∧ pp:ready:ϕ] : Accept 〈pp:lock:ϕ〉 from A. Send 〈〉 to A.
– pp:done:ϕ [pp:lock:ϕ] : Accept 〈pp:done:ϕ〉 from A. Send 〈pp:done:ϕ〉 to P.
– pp:deliver:ϕ [pp:lock:ϕ] : Accept 〈pp:deliver:ϕ,L〉 from A, where L = `(x̄, w̄k) ∨

[corrupt:Q]. Send 〈pp:deliver:ϕ, x̄〉 to Q.
– pp:reset:ϕ [¬pp:lock:ϕ∧corrupt:P] : Accept 〈pp:reset:ϕ, x, m̃, wk, m̂, we〉 fromA, where
x is an instance for R, wk = 〈wk,0, . . ., wk,m̃−1〉, and we = 〈we,0, . . ., we,m̂−1〉. The ideal

12

functionality FgABB, being gullible, does not check if the predicate holds. Store the in-
stance and all witnesses quantified by

K

: x̄← x and w̄k ← wk. Send 〈〉 to A.

– pp:expose:ϕ [pp:send:ϕ∧¬pp:lock:ϕ∧corrupt:P] : Accept 〈pp:expose:ϕ〉 from A. Send
〈pp:expose:ϕ, x̄, w̄k〉 to A.

• Proof by Q: This is similar to the previous instruction, with the roles of P and Q reversed,
and the label prefix is changed to pq. We do not formalize this instruction here.

4 Construction

We now show how to construct a protocol ΠABB for circuit evaluation modulo n. Our protocol
uses two ideal functionalities: Fach (authenticated channels) and FgZK (zero-knowledge proofs).
Additionally, we make use of a system parameter, the modulus n of unknown factorization; and
a CRS, consisting of the output of ComGen1 (statistically-binding commitment).

High-level idea. The high-level idea of our construction is that P and Q generate additive shares
of all the values (inputs and intermediate results) in the circuit. Identifiers are used to keep track
of the values and the cryptographic objects associated with them. Like for FABB, parties agree on
the instruction to be performed by sending a message containing an identical instruction name
and identical common input to the protocol ΠABB. The instructions of ΠABB are implemented
as follows: Input is achieved by one party setting her share to the input, and generating a
commitment to that share; the other party sets his share to zero. Output is achieved by one
party sending her share to the other party. For the Linear combination instruction, each party
does a linear combination of their shares locally. For the Multiplication instruction, we make use
of two instances of a 2-party subroutine Πmul: on P’s input a, and Q’s input b, Πmul outputs u
to P and v to Q such that u+ v = a · b. The Proof instruction can be done with the help of a
zero-knowledge proof functionality FgZK. To ensure security against malicious adversaries, both
parties update the commitments to the shares in each instruction, and prove in zero-knowledge
that all their computations were done honestly.

The Πmul subroutine makes use of a homomorphic (modulo n), semantically secure, public-
key encryption scheme, along with our mixed trapdoor commitment scheme. To achieve security
against adaptive corruptions, new encryption/decryption keys need to be generated for every
multiplication. To do this in a practical way, we use the semantically secure version of Camenisch-
Shoup encryption [CS03,DJ03,JS07] with a short private key and short randomness, as described
in Section 2.4. One key feature of this scheme is that key generation is fast: just a single ex-
ponentiation modulo n2. Another key feature is that many encryption/decryption keys can be
used in conjunction with the same n, which is crucial. Our commitment scheme is also used
extensively in the overall protcol. We use the construction presented in Section 2.5 and work
in the group of integers modulo a prime of the form k · n + 1. The homomorphic properties of
the commitment scheme makes this choice of prime particularly useful and practical. Another
tool we make heavy use of is UC zero-knowledge. Because of the proposed implementations of
encryption and commitment schemes, these proof systems can all be implemented using the ap-
proach proposed by Camenisch et al. [CKS11]. Because the encryption and commitment schemes
are both homomorphic modulo n, all of our cryptographic tools work very well together, and
yield quite practical protocols. We also stress that our protocols are designed in a modular way:
they only make use of these abstract primitives, and not of ad hoc algebraic constructions.

13

P proceeds as follows:
P’s input is 〈ϕ, v〉 with v ∈ Zn.

Q proceeds as follows:
Q’s input is 〈ϕ〉.

Parse ϕ as 〈k〉 with k ∈ Σ?. Abort if k ∈ AP.
Mark the identifier as assigned: AP ← k.
Set shares: SP[k]← v and SQ[k]← 0.

Commit to share: (CP[k],XP[k])
$← Com(v).

Parse ϕ as 〈k〉 with k ∈ Σ?. Abort if k ∈ AQ.
Mark the identifier as assigned: AQ ← k.
Set own share: SQ[k]← 0.
Commit: CQ[k]← Com(0, 0);XQ[k]← 0.

P proves the following to Q using FgZK with label 〈ip,ϕ〉:

K

v ∃XP[k] : ComVfy(CP[k],XP[k], v) .

The value CP[k] is delivered to Q via FgZK.
Set other’s commitment: CQ[k]← Com(0, 0).
Mark value as ready: RP ← k.
Mark it as known: KP ← k.

Mark value as ready: RQ ← k.
Mark it as known by P: KP ← k.

Fig. 1: Input from P.

4.1 Realizing ΠABB

P and Q each maintain the following global state: several associative arrays mapping the iden-
tifier of a value in the circuit (in Σ?) to a variety of cryptographic objects: SP and SQ map
to the shares of P and Q of the values in the circuit (in Zn), respectively; CP and CQ map
to the commitment of the corresponding shares; XP (maintained by P only) and XQ (Q only)
map to the opening of the commitments. For the Proof functionality, both parties maintain lists
of identifiers corresponding to values that are known to P and Q: KP and KQ, respectively.
Additionally, to ensure “thread-safety”, they also maintain: lists of assigned identifiers AP (P
only) and AQ (Q only) to avoid assigning the same identifier to several variables; and lists of
identifiers RP (P only) and RQ (Q only) corresponding to values that are ready to be used in
other instructions. The array that one would obtain by summing the entries of SP and SQ corre-
sponding to values that are ready (i.e., {(k, v)|k ∈ RP ∩RQ ∧ v = SP[k] +SQ[k]}), corresponds
to the array V of the ideal functionality, that maps identifiers to values in the circuit.

All other variables that we will introduce are local to one instance of a instruction or an
instance of the Πmul subroutine. Several instructions may be active at the same time, however
we assume (following the GNUC model) that all operations performed during an activation (the
time interval between starting to process a new input message and sending a message to another
functionality) happen atomically.

Input from P. In this instruction, P inputs a value v into the circuit and associates it with the
identifier k: P sets her own share to v, and Q sets his share to 0. Then P generates a commitment
to her share, which she sends (along with proof) to Q. See Figure 1 for the construction.

Input from Q. Similar to the previous instruction, with the roles of P and Q reversed.

Output to Q. In this instruction, Q retrieves the value identified by k from the circuit: P sends
her share to Q together with a proof of correctness. See Figure 2.

Output to P. Similar to the previous instruction, with the roles of P and Q reversed.

Linear combination. In this instruction, a linear combination of values in the circuit (plus an
optional constant) is computed: V [k0]← v0 +

∑m−1
i=1 V [ki] · vi. Concretely, both parties perform

local operations on their shares. Additionally, P sends an empty message to Q to ensure that
both parties agree on the shared input ϕ. See Figure 3.

14

P proceeds as follows: Q proceeds as follows:

Both parties’ input is 〈ϕ〉. It is parsed as ϕ = 〈k〉 with k ∈ Σ?.

Wait until k ∈ RP. Wait until k ∈ RQ.

P proves the following to Q using FgZK with label 〈oq,ϕ〉:
∃XP[k] : ComVfy(CP[k],XP[k], SP[k]) .

The value SP[k] is delivered to Q via FgZK.
Mark value as known to Q: KQ ← k. Save SP[k], and mark as known: KQ ← k.

Q returns (SP[k] + SQ[k]).

Fig. 2: Output to Q.

P proceeds as follows: Q proceeds as follows:

Both parties’ input is 〈ϕ〉. It is parsed as ϕ = 〈m, k0, v0, 〈k1, v1〉, . . ., 〈km−1, vm−1〉〉 with m ∈ N∗,
∀i ∈ Nm : ki ∈ Σ? and ∀i ∈ Nm : vi ∈ Zn.

Abort if k0 ∈ AP. Mark identifier: AP ← k0.
Wait until ∀i ∈ Nm : ki ∈ RP. Update
own share: SP[k0]← v0 +

∑m−1
i=1 SP[ki] · vi;

com.: CP[k0]←Com(v0, 0) ∗
∏m−1
i=1 CP[ki]

vi ;
opening: XP[k0]←

∑m−1
i=1 XP[ki] · vi;

Q’s commitment: CQ[k0]←
∏m−1
i=1 CQ[ki]

vi .

Abort if k0∈AQ. Mark identifier: AQ←k0.
Wait until ∀i ∈ Nm : ki ∈ RQ. Update
own share: SQ[k0]←

∑m−1
i=1 SQ[ki] · vi;

commitment: CQ[k0]←
∏m−1
i=1 CQ[ki]

vi ;
opening: XQ[k0]←

∑m−1
i=1 XQ[ki] · vi;

P’s c.: CP[k0]←Com(v0, 0)∗
∏m−1
i=1 CP[ki]

vi .

P sends the empty string to Q using Fach with label 〈l,ϕ〉 to ensure that they agree on ϕ.
Mark value as ready: RP ← k0. Mark value as ready: RQ ← k0.

Fig. 3: Linear combination.

Multiplication. In this instruction, the product of two values in the circuit is computed: V [k0]←
V [k1] ·V [k2]. We can rewrite this as:

SP[k0] + SQ[k0]← SP[k1]·SP[k2]︸ ︷︷ ︸
p̂

+SP[k1]·SQ[k2]︸ ︷︷ ︸
(ũ+ṽ)

+SQ[k1]·SP[k2]︸ ︷︷ ︸
(u+v)

+SQ[k1]·SQ[k2]︸ ︷︷ ︸
q̂

where we introduce p̂, q̂, ũ, ṽ, u, v to simplify the discussion. The idea of this protocol is for P
and Q to compute p̂ and q̂, respectively, using their private shares. They then jointly compute
ũ and ṽ using the Πmul subroutine, which we introduce for clarity and which we describe in
Section 4.3. Afterwards, u and v are computed using a second instantiation of Πmul. Finally, P
sets SP[k0]← p̂+ ũ+ u and Q sets SQ[k0]← q̂ + ṽ + v. See Figure 4 for the construction.

One can optimize the protocol in Figure 4 by using the same homomorphic encryption key
for both instances of Πmul and merging the proofs inside and outside of Πmul whenever possible.6

We can thus save one proof of correctess for the encryption key, and save on some overhead in
FgZK.

Proof by P. In this instruction, P proves to Q in zero-knowledge some statement involving 1)
witnesses outside of the circuit, 2) values that P input into the circuit, and 3) values that P
got as an output from the circuit. Since we cannot do proofs of existence of external variables
in ΠABB, we require that the list we of witnesses whose existence is proven is empty. This list
will be used only in ΠgABB. See Figure 5 for the construction.

Proof by Q. Similar to the previous instruction, with the roles of P and Q reversed.

6 Concretely, one would merge the proofs with the following labels: 1) 〈m5,ϕ〉, 〈cm1,〈m7,ϕ〉〉 and 〈cm1,〈m8,ϕ〉〉; 2)
〈m6,ϕ〉, 〈cm2,〈m7,ϕ〉〉, and 〈cm2,〈m8,ϕ〉〉; 3) 〈cm3,〈m7,ϕ〉〉 and 〈cm3,〈m8,ϕ〉〉; 4) 〈cm4,〈m7,ϕ〉〉 and 〈cm4,〈m8,ϕ〉〉.

15

P proceeds as follows: Q proceeds as follows:

Both parties’ input is 〈ϕ〉. It is parsed as ϕ = 〈k0, k1, k2〉 with k0, k1, k2 ∈ Σ?.

Abort if k0 ∈ AP. Mark identifier as assigned: AP ←
k0. Wait until k1, k2 ∈ RP.

p̂← SP[k1] · SP[k2]; (Cp̂, xp̂)
$← Com(p̂).

Abort if k0 ∈ AQ. Mark identifier as assigned: AQ←k0.
Wait until k1, k2 ∈ RQ.

q̂ ← SQ[k1] · SQ[k2]; (Cq̂, xq̂)
$← Com(q̂).

The instructions in the next four rows can be run in parallel in multiple threads.

P proves the following to Q using FgZK with label 〈m5,ϕ〉:
∃xp̂,SP[k1], SP[k2],XP[k1],XP[k2] :

ComVfy(Cp̂, xp̂, SP[k1] · SP[k2]) ∧ ComVfy(CP[k1],XP[k1], SP[k1]) ∧ ComVfy(CP[k2],XP[k2], SP[k2]) .
The value Cp̂ is delivered to Q via FgZK.

Q proves the following to P using FgZK with label 〈m6,ϕ〉:
∃xq̂, SQ[k1],SQ[k2],XQ[k1],XQ[k2] :

ComVfy(Cq̂, xq̂,SQ[k1] · SQ[k2]) ∧ ComVfy(CQ[k1],XQ[k1],SQ[k1]) ∧ ComVfy(CQ[k2],XQ[k2],SQ[k2]) .
The value Cq̂ is delivered to P via FgZK.

Run Πmul with Q with input
(P, SP[k1],CP[k1],XP[k1],CQ[k2], 〈m7,ϕ〉)
and get (ũ,Cũ, xũ,Cṽ) as output.

Run Πmul with P with input
(Q, SQ[k2],CQ[k2],XQ[k2],CP[k1], 〈m7,ϕ〉)
and get (ṽ,Cṽ, xṽ,Cũ) as output.

Run Πmul with Q with input
(P, SP[k2],CP[k2],XP[k2],CQ[k1], 〈m8,ϕ〉)
and get (u,Cu, xu,Cv) as output.

Run Πmul with Q with input
(Q, SQ[k1],CQ[k1],XQ[k1],CP[k2], 〈m8,ϕ〉)
and get (v,Cv, xv,Cu) as output.

Wait until all four threads are done before proceeding.

Compute own share: SP[k0]← p̂+ ũ+ u;
commitment: CP[k0]← Cp̂ ∗ Cũ ∗ Cu;
opening: XP[k0]← xp̂ + xũ + xu .
Q’s commitment: CQ[k0]← Cq̂ ∗ Cṽ ∗ Cv .
Mark value as ready: RP ← k0.

Compute own share: SQ[k0]← q̂ + ṽ + v;
commitment: CQ[k0]← Cq̂ ∗ Cṽ ∗ Cv;
opening: XQ[k0]← xq̂ + xṽ + xv .
P’s commitment: CP[k0]← Cp̂ ∗ Cũ ∗ Cu .
Mark value as ready: RQ ← k0.

Fig. 4: Multiplication. The subroutine Πmul is defined in Section 4.3 and Figure 6.

4.2 Realizing ΠgABB

The ΠgABB protocol (the realization of FgABB) adds the possibility of doing a proof of existence
of external variables inside the Proof functionality. In the Proof functionality of ΠgABB, P may
now specify a non-empty list we of witnesses whose existence is proven. See Figure 5.

4.3 The Πmul Subroutine for Multiplication of Committed Inputs

We now give the construction of the 2-party FgZK-hybrid protocol Πmul for multiplication of
committed inputs, which we use as a subroutine in ΠABB in the multiplication instruction. In a
nutshell: on P’s private input a and Q’s private input b, Πmul outputs shares to the product: u
to P and v to Q, such that u+ v = a · b.

The protocol draws on ideas from Ishai et al’s π̃OT protocol—defined in Appendix A.2 of the
full version of their paper [IPS08]—and uses a similar approach as many two-party computation
protocols (e.g., Damg̊ard and Orlandi’s πmul protocol [DO10b]). We fleshed out the details of
Ishai et al.’s protocol to make it secure against active adversaries, improve its efficiency, and
integrate it into our overall protocol.

The basic idea of the protocol is for P and Q to first obtain shares y and (−t) on the product
of two random values w and s, respectively: y − t = w · s; second to erase all intermediate state
used in the previous step; third to exchange the values σ = (a−w) and δ = (b− s); and finally
to obtain shares on the product of the actual input values a and b by outputting u = δ · a + y

16

P proceeds as follows: Q proceeds as follows:

P’s input is 〈ϕ, x, m̃, wk, m̂, we〉.
She parses ϕ like Q; x is an instance for R; m̃ ∈ N;
m̂ ∈ N; wk = 〈wk,0, . . ., wk,m̃−1〉 and we = 〈we,0, . . .,
we,m̂−1〉 are lists of witnesses. For ΠABB, we require
that m̂ = 0, i.e., we is an empty list. When constructing
ΠgABB, the realization of FgABB, we may be non-empty.

Q’s input is 〈ϕ〉, where
ϕ = 〈m, 〈k0, . . ., km−1〉, R〉;
R is a predicate that is compatible with FgZK;
m ∈ N; and ∀i ∈ Nm : ki ∈ Σ?.

Wait until ∀i ∈ Nm : ki ∈ KP. Wait until ∀i ∈ Nm : ki ∈ KP.

P proves the following to Q using FgZK parametrized with R and with label 〈pp,ϕ〉:

K

wk,0, . . . , wk,m̃−1 ∃we,0, . . . , we,m̂−1,V [k0], . . . ,V [km−1],XP[k0], . . . ,XP[km−1] :∧m−1
i=0 ComVfy(CP[ki],XP[ki],V [ki]− SQ[ki]) ∧

R
(
x, (wk,0, . . . , wk,m̃−1) ∪ (we,0, . . . , we,m̂−1) ∪ (V [ki], . . . ,V [km−1])

)
= 1 .

The instance of the statement to be proven, x, is delivered to Q via FgZK.
P erases her private inputs before delivering x.

Q returns x.

Fig. 5: Proof by P.

and v = σ · b− t, respectively. Commitments and relevant proofs are used during all steps. We
refer to Figure 6 for the construction.

The erasure in Step 2 is needed to ensure security against adaptive adversaries: since the
encryption scheme used in our protocol is not receiver–non-committing [CHK05], the simulator
cannot produce a convincing view of the first step for any other value of w. In fact, there are
no known practical receiver–non-committing schemes that satisfy our requirements. By erasing
state in Step 2, the simulator is dispensed with producing that view in Step 3.

4.4 Efficiency Considerations for the Zero-Knowledge Proofs in ΠABB

Careful design enables us to achieve a very efficient and practical construction. In particular,
we minimize the amount of computation required inside the realization π of the zero-knowledge
proof functionality FgZK, which accounts for the majority of the runtime of our protocol, as
follows.

1) Instead of using the Paillier encryption scheme as in Camenisch et al. [CKS11] to verifiably
encrypt the witnesses whose knowledge is proven in π, we use the Camenisch-Shoup encryption
scheme with short keys, short randomness, and with modulus n2. Paillier encryption implies the
use of a different modulus, since the simulator needs to know its factorization to extract the
witnesses.

2) We use homomorphic commitment and encryption schemes that work with groups of the
same order n. Most of the witnesses used in FgZK therefore live in a group of known order n,
and most operations inside π stay inside groups of order n. We therefore do not need to encrypt
values larger than n in π, and can avoid expensive integer commitments in π [CKS11].

3) We use the cheaper proofs of existence [CKS11] instead of proofs of knowledge wherever
possible. This reduces the number of verifiable encryptions needed inside π.

4) Finally, we use an encryption scheme in Πmul where the proof of correctness of key gen-
eration is cheap. (For Camenisch-Shoup encryption with full key length and Paillier encryption,
this proof is very expensive.)

17

P proceeds as follows:
P’s input is (P, a,Ca, xa,Cb, λ).

Q proceeds as follows:
Q’s input is (Q, b,Cb, xb,Ca, λ).

(pk, sk)
$← KeyGen(n); w

$← Zn;

(Ew, rw)
$← Enc(w, pk) .

s
$← Zn; t

$← Zn;

(Cs, xs)
$← Com(s); (Ct, xt)

$← Com(t) .

P proves the following to Q using FgZK with label 〈cm1,λ〉:

K

w ∃sk : (pk, sk) ∈ KeyGen(n) ∧ w = Dec(Ew, sk) .

The values Ew, pk are delivered to Q via FgZK after P securely erases rw.

σ ← a− w . (Et, rt)
$← Enc(t, pk); Ey ← (Ew)s ∗ Et .

Q proves the following to P using FgZK with label 〈cm2,λ〉:

K

s ∃t, xs, xt, rt : ComVfy(Cs, xs, s) ∧ ComVfy(Ct, xt, t) ∧ Ey = (Ew)s ∗ Enc(t, pk, rt) .

The values Cs, Ct and Ey are delivered to P via FgZK after Q securely erases rt.

y ← Dec(Ey, sk); (Cy, xy)
$← Com(y) . δ ← b− s; xδ ← xb − xs .

P proves the following to Q using FgZK with label 〈cm3,λ〉:
∃y, w, xy, xa, sk : ComVfy(Cy, xy, y) ∧ y = Dec(Ey, sk) ∧ w = Dec(Ew, sk)∧

(pk, sk) ∈ KeyGen(n) ∧ ComVfy(Ca, xa, w + σ) .
The values Cy, σ are delivered to Q via FgZK after P securely erases sk.

Q proves the following to P using FgZK with label 〈cm4,λ〉:
∃xδ : ComVfy(Cb ∗ (Cs)

−1, xδ, δ) .

The value δ is delivered to P via FgZK.
Compute own share: u← δ · a+ y;
opening: xu ← xa · δ + xy;
and commitment: Cu ← (Ca)δ ∗ Cy.
Compute Q’s commitment: Cv←(Cs)

σ∗(Ct)−1.

Compute own share: v ← σ · s− t;
opening: xv ← xs · σ − xt;
and commitment: Cv ← (Cs)

σ ∗ (Ct)
−1.

Compute P’s commitment: Cu←(Ca)δ ∗ Cy.
P returns (u,Cu, xu,Cv). Q returns (v,Cv, xv,Cu).

Fig. 6: The Πmul protocol.

5 Additional Instructions for FABB

We will start this section by showing how one can create a FABB-hybrid protocol that includes
additional instructions for generating random numbers, random bits, inverting, and doing several
other useful operations. Certain useful instructions however require that the FABB functionality
itself is modified and not just used as a building block: we show here a new output instruction
for FABB that returns a value exponentiated by a certain group element g instead of reveal-
ing the value directly; we will use that instruction in Section 8 for constructing an oblivious
pseudorandom function that is secure against dynamic corruptions in the UC model.

5.1 Instructions as Part of a Higher-Level Protocol

Random integers. A random value can be shared as follows: P and Q each choose a random

number a
$← Zn and b

$← Zn, respectively, input it into FABB, and finally sum their inputs
c ← a + b using the Linear Combination instruction. Provided that at least one of the two is
honest, the value c is uniformly distributed in Zn.

Random bits. P and Q can share a random bit as follows: P and Q each choose a random
number a

$← {−1, 1} and b
$← {−1, 1}, respectively, and input it to FABB. They then compute

a2 and b2 using the Multiplication instruction, and reveal the result to each other. The protocol
aborts if a2 6= 1 or b2 6= 1. They then compute c← a ·b. The value c is now uniformly distributed

18

in {−1, 1}, provided that at least one of the two parties is honest and the factorization of n is
unknown to both of them. To adjust the random value to Z2, they can compute d ← c · (1/2
(mod n)) + (1/2 (mod n)).

Inversion. This algorithm is based on a technique by Bar-Ilan and Beaver [BIB89]:
1. Let V [k1] denote the value to invert.
2. P and Q choose a random integer V [k2] as shown earlier in this section.
3. They multiply both values: V [k3]← V [k1] ·V [k2].
4. The product is output first to P, and then to Q: v3 ← V [k3].
5. They invert the value: v4 ← v−1

3 (mod n) (abort if v3 is not invertible.);
6. and compute the result: V [k5]← V [k2] · v4 = V [k2] · (V [k1] ·V [k2])−1 = (V [k1])−1.
As long as V [k1] is invertible mod n, this protocol aborts with negligible probability, is correct,
and perfectly preserves the privacy of V [k1]. If V [k1] = 0, this fact will be revealed. As we
assumed the factorization of n to be unknown, we can safely ignore the case where V [k1] is a
multiple of a non-trivial factor of n.

Other useful operations. Our protocol is almost compatible with the algorithms by Damg̊ard,
Fitzi et al. [DFK+06] for performing comparisons (including inequalities), bit decompositions,
modular reduction, modular exponentiation, etc. of the values in the circuit. Their setting as-
sumed that the values in the circuit are in a prime order group, but in our scheme n is composite.
Fortunately the only operation that they use in their paper that cannot be performed in a com-
posite order group—finding a square root modulo n—is needed only for generating random bits;
by replacing that algorithm by the version presented earlier, no more problems remain.

5.2 Modifying FABB to Add New Instructions

Unfortunately there are some useful instructions that cannot be added “on top of” FABB as
described in the previous subsection, but have to be included “inside” FABB: the UC composition
theorem can therefore not be applied, and the security proof has to be redone. We give here an
example of such an instruction: it is a variant of the output instruction that outputs not V [k]
but gV [k], where 〈g〉 = G is some abelian group (written multiplicatively) of order n.

Informal definition of the ideal functionality. The high-level description of the additional in-
structions is the following:
• Exponentiated output to P: FABB parses the common input ϕ as 〈k,G, g〉 where G is the

description of some group (written multiplicatively) of order n, and g ∈ G is a generator of
G. FABB delivers gV [k] to P.

• Exponentiated output to Q: Idem, with the roles of P and Q reversed.

Formal definition of the ideal functionality. The formal definition of the additional instructions
is the following:

• Exponentiated output to P: In this instruction, parse ϕ as 〈k,G, g〉 where k ∈ Σ?, G is
the description of some group (written multiplicatively) of order n, and g ∈ G is a generator
of G.

– ep:p:ϕ : Accept message 〈ep:p:ϕ〉 from P, where the identifier is ready to be used: k ∈ RP.
Send 〈ep:p:ϕ〉 to A.

19

P proceeds as follows: Q proceeds as follows:

Both parties’ input is (ϕ). It is parsed as ϕ = 〈k,G, g〉 with k ∈ Σ?, G the description of a group of order n,
and g a generator of G.

Wait until k ∈ RP.
Exponentiate share: v ← gSP[k].

Wait until k ∈ RQ.

P proves the following to Q using FgZK with label 〈eq,ϕ〉:
∃XP[k],SP[k] : ComVfy(CP[k],XP[k], SP[k]) ∧ v = gSP[k] .

The value v is delivered to Q via FgZK.

Q returns gSQ[k] · v.

Fig. 7: Exponentiated output to Q.

– ep:q:ϕ : Accept message 〈ep:q:ϕ〉 fromQ, where the identifier is ready to be used: k ∈ RQ.
Send 〈ep:q:ϕ〉 to A.

– ep:lock:ϕ [ep:p:ϕ ∧ ep:q:ϕ] : Accept 〈ep:lock:ϕ〉 from A. Send 〈〉 to A.

– ep:deliver:ϕ [ep:lock:ϕ] : Accept 〈ep:deliver:ϕ〉 from A. Send 〈ep:deliver:ϕ, gV [k]〉
to P.

– ep:done:ϕ [ep:lock:ϕ] : Accept 〈ep:done:ϕ〉 from A. Send 〈ep:done:ϕ〉 to Q.

• Exponentiated output to Q: This is similar to the previous instruction, with the roles of
P and Q reversed, and the label prefix is changed to eq. We do not formalize this instruction
here.

Construction of exponentiated output to Q. Q retrieves an exponentiated value gV [k], where G
and g ∈ G can be chosen freely. Concretely, P exponentiates her share and sends it to Q together
with a proof of correctness. See Figure 7 for the construction.

6 Security Proof

In this section we start with a description of the main ideas of the security proof. The proof
proceeds in two steps: we first prove that our protocol is secure when run with nice environments.
We then apply the special composition theorem of Camenisch et al. [CKS11] to prove that our
protocol is secure against all environments.

6.1 Main Ideas

We use the standard approach for proving the security of protocols in the UC or GNUC models:
we construct a straight-line simulator S such that for all polynomial-time–bounded environments
Z and all polynomial-time–bounded adversaries A, the environment Z cannot distinguish a
protocol execution with A and ΠABB in the (Fach, FgZK)-hybrid “real” world from a protocol
execution with S and FABB in the “ideal” world. We prove that Z cannot distinguish these
two worlds by defining a sequence of intermediate “hybrid” worlds (the first one being the real
world and the last one the ideal world) and showing that Z cannot distinguish between any two
consecutive hybrid worlds in that sequence. We follow the formalism of the GNUC framework
to deal with CRS’s and system parameters (see Section 10 of the GNUC paper [HS11]).

The main difficulties in constructing the simulator S are as follows: 1) S has to extract the
inputs of all corrupted parties; 2) S has to compute and send commitments and ciphertexts on

20

behalf of the honest parties without knowing their inputs, i.e., S cannot commit and encrypt the
right values; 3) when an honest party gets corrupted mid-protocol, S has to provide to A the
full non-erased intermediate state of the party, in particular the opening of the commitments
and the randomness of the encryptions.

To address the first difficulty, recall that the parties are required to perform a proof of
knowledge of all new inputs to the circuit. The simulator S can therefore recover the input
of all corrupted parties with the help of FgZK. In the first few hybrid worlds, the statistically
binding commitments ensure that the values in the circuit stay consistent with the inputs. In the
subsequent hybrid worlds, the computational indistinguishability of the two types of CRS ensure
that the adversary cannot equivocate commitments even when S uses the perfectly-hiding CRS
with trapdoor.

We now address the second and third difficulty. Upon corruption of a party, S is allowed
to recover the original input of that party from FABB. By using the perfectly-hiding CRS with
trapdoor, S can equivocate all commitments it made so far to ensure that the committed values
are consistent with the view of the adversary. By construction, S never needs to reveal the
randomness used for an encryption for which it does not know the plaintext. Recall that in Πmul,
the parties first encrypt a random offset, then erase the decryption key and the randomness used
to encrypt, and only then deliver the encryption of the offset plus party’s input to the adversary
(recall that FgZK allows the erasure of witnesses before delivering the statement to be proven
to the other party). The simulator S can adjust the offset so that the view delivered to the
adversary is consistent. See also Appendix A.2 of Ishai et al.’s paper [IPS08].

The rest of the security proof is now straightforward.

6.2 Security Proof

Let Π
π/FgZK

ABB be the (Fsch,Fach)-hybrid protocol in which every instance of FgZK in ΠABB has
been replaced by the zero-knowledge protocol described in Camenisch et al.’s paper [CKS11].
To prove our scheme secure, we need to prove the following theorem:

Theorem 1. There exists a simulator S, such that for all polynomial-time-bounded environ-
ments Z and all polynomial-time-bounded adversaries A:

Exec(Π
π/FgZK

ABB ,A,Z) ≈ Exec(FABB,S,Z).

In the theorem above, Exec(Π
π/FgZK

ABB ,A,Z) denotes the binary random variable given by the

output of Z when interacting with A and Π
π/FgZK

ABB in the (Fach,FgZK)-hybrid world, and anal-
ogously for Exec(FABB,S,Z) in the ideal world. The symbol ≈ means statistically close.

To prove the theorm, we first need to prove the following lemma:

Lemma 1. There exists a simulator S that does not extract the witnesses quantified by ∃ in any
FgZK, such that for all polynomial-time-bounded nice environments Z and all polynomial-time-
bounded adversaries A:

Exec(ΠABB,A,Z) ≈ Exec(FABB,S,Z).

A nice environment is an environment that never asks A to submit a false statement to FgZK

[CKS11].

21

Proof of Lemma 1. In Section 6.3, we construct a simulator S and prove that is satisfies the
requirements of the Lemma 1.

Proof of Theorem 1. Since the simulator we constructed in Section 6.3 satisfies the requirements
of Lemma 1, we can apply the special composition theorem of Camenisch et al. [CKS11], to
conclude that the simulator also satisfies the requirements of Theorem 1.

Conclusion. From Theorem 1, we can conclude that the (Fsch,Fach)-hybrid protocol Π
π/FgZK

ABB is a
secure realization of the ideal functionality FABB, and is universally composable. This concludes
the security proof.

6.3 Proof of Lemma 1

Notation. We adopt the convention that the ideal functionalities in the (FgZK,Fach)-hybrid
“real” world (and which are controlled by S) are surrounded by quotes: “FgZK” and “Fach”. Note
that S does not have to run these ideal functionalities honestly, it just needs to ensure that the
messages S sends on their behalf are indistinguishable from an honest execution. Furthermore,
we denote the parties in the real world as “P” and “Q”. When such a party is honest, it is
controlled by S; when that party is corrupted, it is controlled by the adversary A.

The simulator S is a six-interface system. The simulator S communicates with FABB through
3 interfaces: the S-interface (where FABB sends data to and receives data from the ideal adver-
sary), the P-interface (which is active only after P becomes corrupted, and where FABB sends
data to and receives data from the corrupted P) and the Q-interface (idem but for Q). The
simulator S runs one instance of the real-world adversary A. It relays all messages between Z
and A. The simulator S communicates with A through 3 interfaces: the “A”-interface (con-
nected to the adversary interfaces of all “FgZK” and “Fach” used in the protocol execution),
the “P”-interface (which is active only after P becomes corrupted, and which is connected to
the P-interface of all “FgZK” and “Fach” used in the protocol execution), and the “Q” interface
(idem for Q). See Figures 8, 9, 10, and 11 for a schematic representation of the construction of
S in the cases where no parties are corrupted, P is corrupted, Q is corrupted, and all parties
are corrupted, respectively.

Initialization. Before running A for the first time, S programs the CRS using ComGen′0 so
that commitments are perfectly hiding, and so that S knows the trapdoor t which will enable it
to equivocate all commitments it makes on behalf of “P” and “Q”.

Since n is part of the system parameters, S does not know its factorization.

P and Q honest. When P and Q are both honest, A sees only status messages without any
content. The construction of S is therefore straightforward. See Figure 8. For completeness,
we will show the behaviour of S for the Input from P and Multiplication instructions. The
behaviour of S for all other instructions is similar to its behaviour for Input from P .

Input from P. Upon receiving 〈ip:send:ϕ〉 from FABB (through the S-interface), send 〈send,
`(. . .)〉 to A (through the “A”-interface). The length of the statement and witnesses is fixed, so
S knows what value `(. . .) to send.

22

FABB

PS

Z“FgZK”

Q

A S-interface
“A”-interface

Fig. 8: Construction of S in case all parties are honest. For simplicity, we chose to represent
only one ideal functionality in the construction of S.

Upon receiving 〈ip:ready:ϕ〉 from FABB, send 〈ready〉 to A.
Upon receiving 〈lock〉 from A, send 〈ip:lock:ϕ〉 to FABB. Wait for 〈〉 from FABB, and send

〈〉 to A.
Upon receiving 〈deliver〉 from A, send 〈ip:deliver:ϕ〉 to FABB.
Upon receiving 〈done〉 from A, send 〈ip:done:ϕ〉 to FABB.

Multiplication. This instruction is more complex than all others, since it contains several in-
dependant instances of “FgZK”. We divide the “A”-interface into m sub-interfaces (numbered
from 1 to m), one for each instance of “FgZK”. To simplify the discussion, we only consider
the “single-thread” case, i.e., we assume the four “threads” in the multiplication instruction of
ΠABB run sequentially, one after the other.

Upon receiving 〈m:p:ϕ〉 from FABB, send 〈send, `(. . .)〉 to A via the first sub-interface (of the
“A”-interface). The length of the statement and witness is fixed, so S knows what value `(. . .)
to send.

Upon receiving 〈m:q:ϕ〉 from FABB, send 〈ready〉 to A via the first sub-interface.
Upon receiving 〈lock〉 from A via the ith sub-interface, where i 6= m, send 〈〉 to A via the

ith sub-interface.
Upon receiving 〈lock〉 from A via the mth sub-interface, send 〈m:lock:ϕ〉 to FABB. Wait for

〈〉 from FABB, and send 〈〉 to A via the mth sub-interface.
Upon receiving 〈done〉 from A via the ith sub-interface, where i 6= m, send 〈ready〉 to A via

the (i+ 1)st sub-interface.
Upon receiving 〈deliver〉 from A via the ith sub-interface, where i 6= m, send 〈send, `(. . .)〉

to A via the (i+ 1)st sub-interface. The length `(. . .) is easy for S to determine.
Upon receiving 〈done〉 from A via the mth sub-interface, send 〈m:done:p:ϕ〉 to FABB.
Upon receiving 〈deliver〉 from A via the mth sub-interface, send 〈m:done:q:ϕ〉 to FABB.

P corrupted first. Without loss of generality, we may assume that whenever P gets corrupted,
all of her subroutines are immediately corrupted as well. We only need to show how S operates in
the case that P starts out corrupted: if P gets corrupted later, S starts by recovering P’s input

23

FABB

S

Z“FgZK”

Q

A

“P” P-interface

S-interface
“A”-interface

“P”-interface

Fig. 9: Construction of S in case P is corrupted.

by sending one 〈ip:expose:ϕ〉 message to FABB for each Input by P instruction that has already
processed the 〈ip:send:ϕ〉 message. The simulator S also recovers P’s external witnesses from
each Proof by P instruction that has processed the 〈pp:send:ϕ〉 message but not the 〈pp:lock:ϕ〉
message by sending 〈pp:expose:ϕ〉 to FABB. Now, S internally restarts the simulation of “P”
from the beginning until the point where she was corrupted. For all instructions except the
Proof by P that have already processed the 〈pp:lock:ϕ〉 message, S can perfectly re-create
“P”’s input. For the Proof by P instructions that have processed the 〈pp:lock:ϕ〉 message, S
can use arbitrary input (of the correct length!) for “P”, since that input will be erased by “P”
and since it does not affect the remainder of the protocol. Finally, S hands over the internal
state of “P” to A. This state is perfectly consistent with A’s view so far. Of course, we will have
to deal with the possibility that Q is corrupted later on, which we tackle later in this section.

Overview. Recall that when P is corrupted, S must play P for FABB based on the actions of
“P” (assumed by A), and must play “Q” for A without knowing the correct input of Q . See
Figure 9.

In constructing the simulator, we maintain the invariant that S knows the value of “P”’s
shares SP[k] when these are ready to be used, i.e., k ∈ RP.

Input from P. For this instruction, S simply needs to extract the input of “P” from the messages
flowing on the “P”-interface or the “A”-interface. We show here the exact behaviour of S for
completeness.

Upon receiving 〈send, 〈CP[k]〉, 〈v〉, ...〉 through the “P”-interface, save v as SP[k]. Send
〈send〉 through the “A”-interface.

Upon receiving 〈reset, 〈CP[k]〉, 〈v〉, ...〉 through the “A”-interface, update SP[k] with the
new value of v. Send 〈〉 through the “A”-interface.

Upon receiving 〈expose〉 through the “A”-interface, send 〈expose, 〈CP[k]〉, 〈SP[k]〉〉 through
the “A”-interface.

Upon receiving 〈ip:ready:ϕ〉 through the S-interface, send 〈ready〉 through the “Q”-
interface.

24

Upon receiving 〈lock〉 through the “A”-interface, send 〈ip:send:ϕ,SP[k]〉 through the
P-interface. Wait for 〈ip:send:ϕ〉 through the S-interface, send 〈ip:lock:ϕ〉 through the S-
interface. Wait for 〈〉 through the S-interface, send 〈〉 through the “A”-interface.

Upon receiving 〈deliver, `〉 through the “A”-interface, send 〈ip:deliver:ϕ〉 through the
S-interface.

Upon receiving 〈done〉 through the “A”-interface, send 〈ip:done:ϕ〉 through the S-interface.
Wait for 〈ip:done:ϕ〉 through the P-interface, send 〈done〉 through the “P”-interface.

Input from Q. For this instruction, S needs to generate an equivocable commitment to Q’s
input, which S doesn’t know.

The construction of S in response to the send, ready, lock and done messages is straight-
forward.

Upon receiving 〈deliver, `〉 through the “A”-interface, commit to 0 using an equivocable

commitment: (SQ[k],XQ[k])
$← Com(0), and send 〈deliver, 〈SQ[k]〉〉 through the “P”-interface.

Output to P. In this instruction, S recovers the value that is output from the circuit from FABB

just in time to be able to play “Q” in a consistent manner.
The construction of S in response to the q, ready, and done messages is straightforward.
Upon receiving 〈lock〉 through the “A”-interface, S sends 〈op:lock:ϕ〉 through the S-

interface and expects 〈〉 through the S-interface. Then, S sends 〈op:deliver:ϕ〉 through the
S-interface, and expects 〈op:deliver:ϕ,V [k]〉 through the P-interface, thereby recovering V [k].

Upon receiving 〈deliver, `〉 through the “A”-interface, S sends 〈deliver,V [k]− SP[k]〉
through the “P” interface.

Exponentiated output to P. For this instruction, S behaves similarily than for the Output to P
instruction. The difference is that it receives 〈ep:deliver:ϕ, gV [k]〉 through the P-interface, and
sends 〈deliver, gV [k]/gSP[k]〉 through the “P”-interface.

Output to Q. The simulation of this instruction is straightforward.

Exponentiated output to Q. The simulation of this instruction is straightforward.

Linear combination. The simulation of this instruction is straightforward. Additionally, S com-
putes “P”’s share SP[k0] based on the values of SP[ki] (which S knows).

Proof by P. The simulation of this instruction is also relatively straightforward. Futhermore,
we explain why S also works properly in the security proof of ΠgABB, the realization of FgABB

which allows one to prove the existence of external witnesses.
S’s reaction to the ready, done, and deliver messages is straightforward.
Upon receiving 〈send, x, wk, ...〉 through the “P”-interface, save x and wk (for ΠgABB, S

does not save we). Send 〈send, `(x,wk)〉 through the “A” interface.
Upon receiving 〈reset, x, wk, ...〉 through the “A”-interface, save the updated x and wk

(again, for ΠgABB, S does not save we). Send 〈〉 through the “A” interface.
Upon receiving 〈expose〉 through the “A”-interface, send 〈expose, x, wk〉 through the “A”-

interface (for ΠgABB: recall that wk is not sent to A).
Upon receiving 〈lock〉 through the “A” interface, send 〈pp:send:ϕ, x, |wk|, wk, 0, 〈〉〉 through

the P-interface. (For ΠgABB, no modifications are necessary: recall that FgABB does not check

25

if the predicate is satisfied; sending a wrong we to FgABB is indistinguishable from sending
the correct we.) Expect 〈pp:send:ϕ, `〉 through the S-interface. Send 〈pp:lock:ϕ〉 through the
S-interface, expect 〈〉 through the S-interface. Send 〈〉 through the “A”-interface.

Proof by Q. The simulation of this instruction is straightforward.

Multiplication. See the next paragraph for the behaviour of S inside Πmul: S recovers “P”’s
private outputs ũ and u. The simulation of the remainder of this instruction is straightforward.
Additionally, S computes “P”’s share SP[k0] based on the values of SP[k1], SP[k2], ũ and u
(which S knows).

Πmul. Recall that S knows “P”’s input a from the Multiplication instruction. The construction
of the simulator is straightforward, expect for three changes where S deviates from the honest
execution.

First, when receiving 〈send, 〈Ew, pk〉, w, . . .〉 through the 〈cm1,λ〉 sub-interface of the “P”-
interface, S saves the value w instead of discarding it.

Second, instead of sending the correct 〈deliver, 〈Cs,Ct,Ey〉〉 message through the 〈cm2,λ〉
sub-interface of the “P”-interface, S chooses a random y, encrypts it (Ey, ry)

$← Enc(y), and
delivers the inconsistent Ey. Note that S will never have to show ry, since “Q” would have
erased that value already.

Third, instead of sending the correct 〈deliver, δ〉 message through the 〈cm4,λ〉 sub-interface
of the “P”-interface, S chooses a random δ, and delivers it.

Finally, S recovers “P”’s output as follows: u← δ · a+ y (with the values of y and δ that S
chose). Notice that S did not use “Q”’s input b.

FABB

PS

Z“FgZK”A

“Q” Q-interface

S-interface
“A”-interface

“Q”-interface

Fig. 10: Construction of S in case Q is corrupted.

Q corrupted first. This case is similar to the case where P was corrupted first. For all
instructions except Πmul, S’s behaviour can be inferred from its behaviour in the case where P
was corrupted first. See Figure 10.

26

Πmul. Recall that S knows “Q”’s input b from the Multiplication instruction. The construction
of the simulator is straightforward, expect for two changes where S deviates from the honest
execution.

First, when receiving 〈send, 〈Cs,Ct,Ey〉, s, . . .〉 through the 〈cm2,λ〉 sub-interface of the “Q”-
interface, S saves the value s instead of discarding it.

Second, instead of sending the correct 〈deliver, 〈Cy, σ〉〉 message through the 〈cm3,λ〉 sub-
interface of the “Q”-interface, S chooses a random σ, and delivers that. S will never have to
show sk, since “P” would have erased that value already.

Finally S recovers “Q”’s output v as follows: s← b− δ; t← y−w · s; v ← σ · s− t (using the
value of σ that S chose). Notice that S did not use “P”’s input a.

Adjusting “Q”’s state when Q is corrupted second. When Q gets corrupted second,
S needs to come up with a believable internal state for “Q”. In order to do so, S sets “Q”’s
internal state (SQ, XQ and local variables) in each instruction, in the order in which they were
processed, as follows:

Input from P. The adjustements to make are straightforward.

Input from Q. If S accepted the 〈iq:send:ϕ〉 message, S recovers the orignal input of Q:
S sends 〈iq:expose:ϕ〉 through the S-interface, and expects 〈iq:expose:ϕ,SQ[k]〉 through
the S-interface. S now adjusts the opening XQ[k] of the commitment CQ[k], i.e., S uses
the Trapdoor to find a new value of the opening XQ[k] of the commitment CQ[k] so that
ComVfy(CQ[k],XQ[k], SQ[k]) = true.

Output to P. The adjustements to make are straightforward. Notice that the value (V [k]−SP[k])
that S delivered is equal to SQ[k] as expected, unless A somehow managed to equivocate one
of her commitments.

Output to Q. The adjustements to make are straightforward.

Exponentiated output to P. The adjustements to make are straightforward. Notice that the
value (gV [k]/gSP[k]) that S delivered is equal to gSQ[k] as expected, unless A somehow managed
to equivocate one of her commitments.

Exponentiated output to Q. The adjustements to make are straightforward.

Proof by P. The adjustements to make are straightforward.

Proof by Q. If S accepted the 〈pq:send:ϕ〉 message, but did not yet deliver the 〈pq:lock:ϕ〉
message, A still has a chance to send 〈expose〉 to S through the “A”-interface, and therefore S
needs to recover Q’s input, i.e., x and wk. S sends 〈pq:expose:ϕ〉 through the S-interface, and
expects 〈pq:expose:ϕ, x,wk〉. S saves x and we.

The remainder of the adjustements to make are straightforward.

Linear combination. S computes “Q”’s share SQ[k0] based on the other shares SQ[ki], and
adjusts the opening XQ[k0].

27

Multiplication. S performs the necessary adjustements inside the Πmul subroutine. S will recover
“Q”’s output ṽ and v from Πmul.
S computes “Q”’s share SQ[k0] based on SQ[k1], SQ[k2], ṽ, and v. S adjusts the opening

XQ[k0].
The remainder of the adjustements to make are straightforward.

Πmul. If Q gets corrupted before the delivery of the 〈deliver, 〈Cs,Ct,Ey〉〉 message through the
〈cm2,λ〉 sub-interface of the “P”-interface, the adjustements to make are trivial.

If Q gets corrupted after the delivery of the 〈deliver, 〈Cs,Ct,Ey〉〉 message through the
〈cm2,λ〉 sub-interface of the “P”-interface, but before the delivery of the 〈deliver, δ〉 message
through the 〈cm4,λ〉 sub-interface of the “P”-interface, S is committed to its “incorrect” Ey.
Since A can decrypt that value, S is therefore also committed to y. S needs to find s and t
consistent with y: S sets s at random, and computes t← y − w · s. S then adjusts the opening
xs and xt using the trapdoor. S does not need to compute rt, as it can claim that “Q” securely
erased that value already. Et can be re-computed from Ey, Ew and s.

If Q gets corrupted after the delivery of the 〈deliver, δ〉 message through the 〈cm4,λ〉 sub-
interface of the “P”-interface, S is committed to Ey (i.e., to y) and to δ. S sets s ← b − δ,
t ← y − w · s, v ← σ · s − t, and adjusts the openings xt, xs, and xv using the trapdoor. S now
knows the correct output of “Q”.

The remainder of the adjustements to make are straightforward.

Adjusting “P”’s state when P is corrupted second. This case is similar to the case where
Q was corrupted second. For all instructions except Πmul, S’s behaviour can be inferred from
S’s behaviour in the case where Q was corrupted second.

Πmul. If P gets corrupted before the delivery of the 〈deliver, 〈Cy, σ〉〉 message through the
〈cm3,λ〉 sub-interface of the “Q”-interface, the adjustements to make are trivial.

If P gets corrupted after the delivery of that message, S is bound to w (via Ew and pk) and
to σ (which was delivered to A). However at this point, S can claim that “P” already securely
erased rw and sk, and so it can get away with revealing a value of w that is inconsistent with
Ew and pk (the semantic security of the encryption hides that inconsistency, as proven more
formally later). S now needs to adjust the values y and w in “P”’s internal state: S computes
w′ ← a− σ and y′ ← (w′ −w) · s+ y, and replaces y by y′ and w by w′ in “P”’s internal state.
Furthermore S adjusts xy using the trapdoor. Finally, S recomputes “P”’s output u: u← δ ·a+y′

and adjusts the opening xu using the trapdoor.

Both parties corrupted. Once S has handed over the complete non-erased internal state of
the second corrupted party to A, the simulation is trivial: S runs “FgZK” and “Fach” honestly,
and does not send any messages to FABB. See Figure 11.

Proof of indistinguishability. We are going to define a sequence of games Game1 to
GameNgames , as described by Shoup [Sho04]. In the first game, everything is distributed as in
the protocol ΠABB, whereas in the last game everything is distributed as in the ideal world
FABB. By the piling-up lemma, the advantage of Z is less than the sum of the advantages in
distinguishing between Gamei and Gamei+1. We are going to prove that Z only has negligible

28

FABB

S

Z“FgZK”A

“P”

“Q”

P-interface

Q-interface

S-interface
“A”-interface

“P”-interface

“Q”-interface

Fig. 11: Construction of S in case all parties are corrupted.

advantage in distinguishing between two consecutive games, based either on a reduction to a
hard cryptographic problem, or by “failure events” happening with negligible probability. As
long as the number of games is polynomial w.r.t. the security parameter, the total advantage of
Z is negligible.

We must stress that in all intermediate games, the simulator Si receives the inputs of all
honest parties (i.e., we are not in the “ideal world” yet). We only require that the simulator of
the last game, which is equivalent to the “ideal” world, does not make use of these inputs.

Game1: As observed in the previous paragraph, S1 receives the input of all honest parties. S1

simply runs the parties it controls honestly, and exposes their internal state to A when cor-
rupted. S1 generates the CRS honestly using ComGen1. By construction, this setting is perfectly
indistinguishable from the (FgZK,Fach)-hybrid “real” world ΠABB.

Game2: S2 runs like S1, except that it aborts if A’s output is inconsistent with its inputs at
any time during the protocol. The probability that S2 aborts is at most the probability that the
commitment was not binding after all, which is negligible.

Game3: S3 runs like S2, except that now it chooses the CRS with ComGen′0 instead of ComGen1.
The commitment scheme is now perfectly hiding, and S3 can now efficiently equivocate com-
mitments using the trapdoor information. The advantage that Z has in distinguishing between
Game3 and Game2 is equal to its advantage in breaking the semantic security game of Elgamal
encryption, which in turn is equal to its advantage in breaking DDH in the group modulo p
generated by g, which is negligible.

Game4: S4 runs as S3, except that during the Πmul subroutines, it behaves as described earlier
in this section, i.e., it ignores the input of the parties it controls during the Πmul protocol and
reconstructs a plausible history upon corruption. It is easy to see that the only way Z can get an
advantage in distinguishing between Game4 and Game3 is, if upon corruption of “P”, it notices
that the values w, Ew and pk are inconsistent. We now argue that the advantage of Z is at
most the advantage Z has in breaking the semantic security of the Camenisch-Shoup encryption
times the number of Πmul sub-protocols that “P” started, which is still negligible.

29

Let NΠmul
be the number of times “P” calls Πmul in ΠABB.

We are going to define a polynomial number of hybrid games Game3:0 to Game3:NΠmul
, where

in Game3:i S behaves like S4 for the first i calls to Πmul, and like S3 for the subsequent calls.
Clearly Game3:0 is exactly Game3 and Game3:NΠmul

is exactly Game4.

If there exists Z which has non-negligible advantage γ in distinguishing between Game4

and Game3, then there must exist another environment Z ′ and a value i ∈ N∗NΠmul
such that

Z ′ has advantage γ/NΠmul
in distinguishing between Game3:i and Game3:i−1, which is still a

non-negligible advantage.

We now show how S can use such an Z ′ to break the semantic security of the encryption
function with advantage γ/NΠmul

.

In the ith run of the Πmul protocol on behalf of “P”, instead of computing Ew honestly,
S submits two plaintexts w and w′ to the challenger of the semantic security game, yielding a
challenge plaintext Ew̄ which is either equal to the consistent Ew or the inconsistent Ew′ , and a
public key pk. Recall that S does not need to know the value of w in order to properly run the
simulation; w is only needed upon corruption of P. S now uses Ew̄ instead of Ew.

If P becomes corrupted before the delivery of σ in the ith Πmul protocol, then S aborts
the simulation (it cannot produce a convincing value of sk) and returns a random guess to the
challenger. Since in this run the view of Z ′ would have been perfectly indistinguishable, S does
not lose any advantage by aborting.

If however P become corrupted after the delivery of σ (or not at all), then S will produce
an internal state for “P” that contains, among others: w, Ew̄, and pk. S returns the same guess
as Z ′ to the challenger: if Ew̄ = Ew then the view of Z ′ is exactly that of Game3:i−1, and if
Ew̄ = Ew′ then the view is exactly that of Game3:i.

The distinguishing advantage of Z between Game4 and Game3 is therefore negligible.

Game5: S5 runs as described earlier in this section for all instructions, and not just Πmul. By
construction, S5 does not need to know the input of the honest parties (S5 extracts it from
FABB) and S5’s behaviour is perfectly indistinguishable from S’s behaviour in the ideal world.
The difference between Game5 and Game4 is zero, thanks to the perfectly hiding commitments.

Conclusion. This concludes the proof of Lemma 1, i.e., ΠABB securely implements FABB for all
nice environments.

7 Related Work and Comparison

There is an extensive literature on the subject of multi-party computation (MPC); however,
most of these settings consider only the case of an honest majority, which is not helpful for the
two-party case.

Canetti et al. [CLOS02] present the first MPC protocols for general functionalities that are
secure with dishonest majority in the UC framework; however, these protocols are rather a proof
of concept, i.e., they are not at all practical, as they rely on generic zero-knowledge proofs.

More efficient MPC protocols for evaluating boolean circuits, secure with dishonest majority,
have been designed [LP07,LPS08,NO09,PSSW09]. Impressive results have been obtained in par-
ticular for the evaluation of the AES block cipher [PSSW09,DK10,DKL+12,KSS12,NNOB12].
While such protocols could be used to evaluate arithmetic circuits modulo n, a heavy price would

30

have to be paid: each gate in the arithmetic circuit would “blow up” into many boolean gates,
resulting in an impractical protocol.

The first practical protocols for evaluating arithmetic circuits modulo n were presented by
Cramer et al. [CDN01] (CDN-protocol) and Damg̊ard and Nielsen [DN03] (DN-protocol). While
both protocols assume an honest majority, they can be shown to be secure in the two-party
case (as noted by Ishai et al. [IPS09,IPS08]) if one relaxes the requirement for fair delivery of
messages (fair delivery is impossible in the two-party case). Both protocols have stronger set-up
assumptions than ours: they assume the existence of a trusted third party that distributes shares
of the secret key to all parties. The CDN-protocol is only statically secure and is not UC-secure,
and we therefore exclude it from our comparison. The DN-protocol is adaptively secure (with
erasures) in the UC model (secure without erasures only in the honest majority case), and is
slightly (about 30%) slower than ours.

Ishai et al. [IPS08,IPS09] present protocols for evaluating arithmetic circuits in several al-
gebraic rings, including one for the ring Zn for a composite n. These protocols achieve security
with a dishonest majority, and are secure with respect to adaptive corruptions (assuming era-
sures), but only against honest-but-curious adversaries. They note that standard techniques can
be used to make their protocols secure also for malicious adversaries, however it is not clear if
the resulting construction will be practical. Our protocol draws on ideas from their construction,
however we are able to achieve a significant speed-up compared to a naive implementation using
“standard techniques” by ensuring that all commitments live in Zn and by using the short-key
variant of the homomorphic encryption scheme.

Damg̊ard and Orlandi [DO10a] (DO-protocol), as well as Bendlin et al. [BDOZ11] (BDOZ-
protocol), give protocols for evaluating arithmetic circuits modulo a prime p. Damg̊ard et al.
[DPSZ12] (SPDZ-protocol) later improved upon the BDOZ-protocol. These protocols divide
the workload into a computationally intensive pre-processing phase and a much lighter on-line
phase. The pre-processing phase is statically secure, however the on-line phase can be made
adaptively secure (in the UC-model) [DO10a,BDOZ11,DPSZ12]. These papers optimize the
runtime of the on-line phase (the BDOZ- and SPDZ-protocols make use of local additions and
multiplications only). In the pre-processing phase of these protocols, it is necessary to prepare
for many multiplications gates (about 80 in the BDOZ-, several hundred in the DO-, and tens
of thousands in the SPDZ-protocol) making these protocols impractical for small circuits. This
pre-processing phase takes several minutes even for reasonable security parameters. Our protocol
is better suited for small circuits.

Even for large circuits, the computational complexity of our protocol is about 3.3 times lower
than that of the BDOZ- and DO-protocols. It must be noted that the BDOZ- and DO-protocols
have slightly weaker setup assumptions than ours: they only require a random string as the
CRS, while we also need an RSA modulus with unknown factorization as a system parameter.
(This is not a huge drawback of our protocol, see Section 3.1.)

The SPDZ-protocol is about an order of magnitude faster than our protocol, however, unlike
the BDOZ-, DO-, and our protocols, it cannot evaluate reactive circuits, severely limiting its
applicability in the real world. It also requires a trusted key setup, which is a stronger setup
assumption than ours. (Concurrently to our work, Damg̊ard et al. [DKL+13] lifted the restriction
on reactive circuits, but only in the random oracle model. They also lifted the restriction on the
trusted key setup but only for covert security.)

31

Amortized runtime per multiplication gate with s=80

This work (90 · s + 200 · lb n) exp.n+ (66 · s + 40.5 · lb n) exp.n2 602 ms
2-party DN-protocol [DN03] (216 · s + 130 · lb n) exp.n2 862 ms
DO-protocol [DO10a] (2004 · s + 151 · s2) exp.n+ (84 · s + 88 · lb n) exp.n2 2025 ms
BDOZ-protocol [BDOZ11] (256 · s + 368 · lb n) exp.n2 2303 ms

Table 1. Estimated amortized runtime per multiplication in various protocols. The numbers in the last column
are for s = 80, lb n = 1248, exp.n = 1.3 µs, and exp.n2 = 4.8 µs. Results for our work use the optimized variant
of our Multiplication instruction. Results for the DO-protocol and the BDOZ-protocol are for circuits having a
multiple of 4.8·s and s multiplication gates, respectively; the performance of these protocols degrades dramatically
for smaller circuits. For the DO-protocol we used parameters λ = 0.25 and B = 3.6 · s.

None of the UC-secure protocols discussed have an equivalent to the Proof instruction in
their ideal functionality. This makes it hard to compose them with other protocols because of
the issue with non-committed inputs in a 2-party setting, as dicussed in the introduction, thus
negating some of the advantages of working in the UC model.

7.1 Efficiency Comparison

Table 1 summarizes the amortized runtimes per multiplication gate of our protocol, the DN-
(when run as a 2-party protocol), the DO-, and the BDOZ-protocols. We assume that the
runtime of an exponentiation with a fixed modulus length scales linearly with the size of the
exponent. Let exp.n denote the runtime per bit in the exponent of an exponentiation modulo n
or modulo p,7 and similarily exp.n2 for exponentiations modulo n2. Let lb n be equal to log2(n).
Let s be the security parameter. For each protocol, we counted the number of exponentiations
with an exponent of at least s bits. Faster operations, in particular multiplications and divisions,
are ignored. We also ignored the time needed for secure channel setup, did not consider multi-
exponentiations, and ignored network delay. We provide an estimate of the runtime when run
with the “smallest general purpose” security level of the Ecrypt-II recommendations [BCC+11]
(s = 80, lb n = 1248) on a standard laptop with a 64-bit operating system.8

For a fair comparison, we replace all Paillier encryptions [Pai99] in the protocols we compare
with by Paillier encryptions with short randomness. The encryption function is thus changed as

follows: r
$← Zb√nc, c ← (1 + n)mgr (mod n2); output c. (Where g = (g′)n is pre-computed and

part of the public key.)

7.2 Comments about the Efficiency of Related Work

Here we comment on the performance of the DO-protocol and the BDOZ-protocol, both of which
use a very different approach than our protocol and the DN-protocol.

DO-protocol. In the DO-protocol, the computational load is split between a pre-processing and
an on-line phase [DO10a]. Their protocol optimizes the cost of the on-line phase, at the expense of
the pre-processing phase. The crux of the pre-processing phase is to generate so-called triplets of
commitments to random values (a, b, c), where c = a ·b. One triplet is required per multiplication

7 In practice, exponentiations modulo p are only a few percent slower than modulo n.
8 The computer used for the benchmarks had an Intel i7 Q820 processor clocked at 1.73 GHz. We used version

5.0.2 of the GNU Multiple Precision Arithmetic Library.

32

gate. Instead of using traditional zero-knowledge proofs, they uses a technique called “cut-and-
choose”, where P generates a number of triplets without proof, and then selectively reveals a
fraction of these to Q. Afterwards, P and Q “distill” the remaining triplets—which involves
interpolation with Lagrange polynomials—to obtain UC-secure triplets.

Their approach however suffers from two drawbacks: 1) a large number of triplets have to
be generated no matter what, and then used up during “distillation” to ensure security, and 2)
due to the Lagrange interpolation, the runtime of the pre-processing phase is quadratic in the
number of triplets generated in each batch.

In our analysis in Table 1, we used the parameters λ = 0.25 and B = 3.6 · s as recommended.
We computed the amortized runtime (offline + on-line) per muliplication gate when doing exactly
4.8 · s multiplications (the value 4.8 · s was chosen because it comes to within 1% of the minimum
runtime per gate for security levels s = 80, s = 96, and s = 112). When more multiplications
gates are required, the pre-processing phase should be done in batches of 4.8 · s. Note that no
matter how many triplets are generated, the pre-processing phase is very slow—at least four
minutes for s = 80.

BDOZ-protocol. Similarily to the DO-protocol, in the BDOZ-protocol the computational load
is split between a heavy pre-processing phase and a very fast on-line phase (with essentially no
cryptographic operations) [BDOZ11]. Like in the DO-protocol, a number of triplets are generated
during the pre-processing phase. The technique used to generate them is somewhat different,
and as observed by the authors is slightly slower: triplets are generated in batches of s, and a
Σ-protocol (with binary challenge run on s instances simultaneously) ensures correctness.

In our analysis in Table 1, we determined the amortized runtime per multiplication gate in
the pre-processing phase. The online phase was not considered, since it only consists of modular
additions and multiplications.

8 Example of a Useful Protocol Constructed with FABB

In this section we give an example of how to use our framework to construct a UC-secure
variant of the Dodis-Yampolskiy oblivious pseudorandom function [DY05] in a group of order n
as originally proposed by Jarecki and Liu [JL09]. Jarecki and Liu proposed a two-party protocol
for computing the following oblivious pseudorandom function (OPRF) [JL09], inspired by a
similar construct by Dodis and Yampolskiy [DY05]:

fy(x) =

{
g1/(y+x) if gcd(y + x, n) = 1

1 otherwise

Where P’s private input is x, Q’s private input is y, P’s output is fy(x) and Q’s receives a bit
b where b = 0 iff gcd(y + x, n) = 1.

Their protocol is only secure against static corruptions and has not been proven to be UC
secure, which is unfortunate since many of the applications they proposed in their paper would
benefit from being able to treat the OPRF generation protocol as a black box. We remedy to
this situation here by leveraging FABB and the extensions presented in Section 5. The price to
pay is that our construction is about 3.2 times slower (see Table 2).

33

8.1 Ideal Functionality

For completeness we explicitly show here the ideal functionality FOPRF which is parametrized
by an abelian group G of order n (written multiplicatively), and a genrator g of G.

• Preparing fy (needs to be done once only):

– input:y : Accept 〈input:y, y〉 from Q where y ∈ Zn. Store y: ȳ ← y. Send 〈input:y〉 to
A.

– ready:y : Accept 〈ready:y〉 from P. Send 〈ready:y〉 to A.
– commit:y [input:y ∧ ready:y] : Accept 〈commit:y〉 from A. Send 〈commit:y〉 to A.
– done:y [commit:y] : Accept 〈done:y〉 from A. Send 〈done:y〉 to Q.
– deliver:y [commit:y] : Accept 〈deliver:y〉 from A. Send 〈deliver:y, gȳ〉 to P.

• Computing fy(xi) (can be repeated many times by using a different ϕ ∈ Σ?):

– input:x:ϕ [deliver:y] : Accept 〈input:x:ϕ, xϕ〉 from Q where xϕ ∈ Zn. Store xϕ: x̄ϕ ←
xϕ. Send 〈input:x:ϕ〉 to A.

– ready:x:ϕ [done:y] : Accept 〈ready:x:ϕ〉 from P. Send 〈ready:x:ϕ〉 to A.
– lock:x:ϕ [input:x:ϕ ∧ ready:x:ϕ] : Accept 〈lock:x:ϕ〉 from A. Let b̄ϕ ← 0 if gcd(n, ȳ +
x̄ϕ) = 1, else b̄ϕ ← 1. Send 〈lock:x:ϕ〉 to A.

– done:x:ϕ [lock:x:ϕ] : Accept 〈done:x:ϕ〉 from A. Send 〈done:x:ϕ, b̄ϕ〉 to Q.
– deliver:x:ϕ [lock:x:ϕ] : Accept 〈deliver:x:ϕ〉 from A. Send 〈deliver:x:ϕ, fȳ(x̄ϕ)〉 to
P.

• Dealing with corruptions:

– corrupt:P : Accept special 〈corrupt〉 message from P. Send 〈corrupt:P〉 to A.
– corrupt:Q : Accept special 〈corrupt〉 message from Q. Send 〈corrupt:Q〉 to A.
– expose:y [input:y ∧ corrupt:Q] : Accept 〈expose:y〉 from A. Send 〈expose:y, ȳ〉 to A.
– reset:y [¬commit:y ∧ corrupt:Q] : Accept 〈reset:y, y〉 from A. Change y: ȳ ← y. Send
〈reset:y〉 to A.

– expose:x:ϕ [input:x:ϕ∧ corrupt:P] : Accept 〈expose:x〉 from A. Send 〈expose:x, x̄ϕ〉 to
A.

– reset:x:ϕ [¬lock:x:ϕ ∧ corrupt:Q] : Accept 〈reset:x:ϕ, xϕ〉 from A. Change xϕ: x̄ϕ ←
xϕ. Send 〈reset:x:ϕ〉 to A.

8.2 Construction

Preparing fy (needs to be done once only):
1. Q inputs value y to FABB with identifier k0 using the Input instruction.
2. Q outputs the “public key” gy using the Exponentiated Output instruction. (This step can

be omitted if the value gy is not needed. Indeed Q is committed to y through FABB anyway.)
Computing fy(xi) (can be repeated many times):
1. P inputs value xi to FABB with identifier k3i+1 using the Input instruction.
2. They compute y + xi: V [k3i+2]← V [k0] + V [k3i+1].
3. They invert the previous result using the protocol shown in Section 5.1:

V [k3i+3] ← (V [k3i+2])−1. (If the inversion fails, then P and Q output 1 and skip the next
step—this is similar to how Jarecki et al. proceed [JL09]).

4. P retrieves gV [k3i+3] = g1/(y+xi) = fy(xi) using Exponentiated Output.
5. Q returns 0.

34

Runtime for OPRF setup and one OPRF compute with s = 80

This work (219 · s + 290 · lb n) · exp.n+ (74 · s + 52.5 · lb n) · exp.n2 836 ms
Jarecki-Liu [JL09] (45 · s + 8 · lb n) · exp.n+ (14 · s + 40 · lb n) · exp.n2 263 ms

Table 2. Estimated runtime per OPRF computation including preparation, using the same notation as Table 1.
Note that Jarecki and Liu’s protocol [JL09] is not UC-secure, and only secure against static corruptions.

8.3 Security

Correctness and privacy of the input follow directly from the construction of the extended FABB.

Acknowledgements

We are grateful to Stephan Krenn and to the anonymous reviewers for their comments. This
work was supported by the European Community through the Seventh Framework Programme
(FP7), under grant agreements n◦257782 for the project ABC4Trust and n◦321310 for the project
PERCY.

References

[BCC+11] S. Babbage, D. Catalano, C. Cid, B. de Weger, O. Dunkelman, C. Gehrmann, L. Granboulan,
T. Güneysu, J. Hermans, T. Lange, A. Lenstra, C. Mitchell, M. Näslund, P. Nguyen, C. Paar, K. Pa-
terson, J. Pelzl, T. Pornin, B. Preneel, C. Rechberger, V. Rijmen, M. Robshaw, A. Rupp, M. Schläffer,
S. Vaudenay, F. Vercauteren, and M. Ward. ECRYPT II Yearly Report on Algorithms and Keysizes,
2011.

[BDOZ11] R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic Encryption and Multiparty
Computation. In EUROCRYPT, pages 169–188, 2011.

[BIB89] J. Bar-Ilan and D. Beaver. Non-Cryptographic Fault-Tolerant Computing in Constant Number of
Rounds of Interaction. In PODC, pages 201–209, 1989.

[Can00] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. IACR
Cryptology ePrint Archive, 2000:67, 2000.

[CCGS10] J. Camenisch, N. Casati, T. Groß, and V. Shoup. Credential Authenticated Identification and Key
Exchange. In CRYPTO, pages 255–276, 2010.

[CDN01] R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty Computation from Threshold Homomorphic
Encryption. In EUROCRYPT, pages 280–299, 2001.

[CES13] J. Camenisch, R. R. Enderlein, and V. Shoup. Practical Universally Composable Circuit Evaluation
over Zn. IACR Cryptology ePrint Archive, 2013:205, 2013.

[CF01] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO, pages 19–40, 2001.
[CHK05] R. Canetti, S. Halevi, and J. Katz. Adaptively-Secure, Non-interactive Public-Key Encryption. In

TCC, pages 150–168, 2005.
[CKL06] R. Canetti, E. Kushilevitz, and Y. Lindell. On the Limitations of Universally Composable Two-Party

Computation Without Set-Up Assumptions. J. Cryptology, 19(2):135–167, 2006.
[CKS11] J. Camenisch, S. Krenn, and V. Shoup. A Framework for Practical Universally Composable Zero-

Knowledge Protocols. In ASIACRYPT, pages 449–467, 2011.
[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-Party and Multi-

Party Secure Computation. In STOC, pages 494–503, 2002.
[CS97] J. Camenisch and M. Stadler. Proof Systems for General Statements about Discrete Logarithms.

Institute for Theoretical Computer Science, ETH Zürich, Tech. Rep., 260, 1997.
[CS03] J. Camenisch and V. Shoup. Practical Verifiable Encryption and Decryption of Discrete Logarithms.

In CRYPTO, pages 126–144, 2003.
[DFK+06] I. Damg̊ard, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally Secure Constant-Rounds

Multi-party Computation for Equality, Comparison, Bits and Exponentiation. In TCC, pages 285–304,
2006.

35

[DJ03] I. Damg̊ard and M. Jurik. A Length-Flexible Threshold Cryptosystem with Applications. In ACISP,
pages 350–364, 2003.

[DK10] I. Damg̊ard and M. Keller. Secure Multiparty AES. In Financial Cryptography, pages 367–374, 2010.
[DKL+12] I. Damg̊ard, M. Keller, E. Larraia, C. Miles, and N. P. Smart. Implementing AES via an Ac-

tively/Covertly Secure Dishonest-Majority MPC Protocol. In SCN, pages 241–263, 2012.
[DKL+13] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical Covertly Secure

MPC for Dishonest Majority - or: Breaking the SPDZ Limits. ESORICS, 2013.
[DN03] I. Damg̊ard and J. B. Nielsen. Universally Composable Efficient Multiparty Computation from Thresh-

old Homomorphic Encryption. In CRYPTO, pages 247–264, 2003.
[DO10a] I. Damg̊ard and C. Orlandi. Multiparty Computation for Dishonest Majority: From Passive to Active

Security at Low Cost. In CRYPTO, pages 558–576, 2010.
[DO10b] I. Damg̊ard and C. Orlandi. Multiparty Computation for Dishonest Majority: from Passive to Active

Security at Low Cost. IACR Cryptology ePrint Archive, 2010:318, 2010.
[DPSZ12] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty Computation from Somewhat Ho-

momorphic Encryption. In CRYPTO, pages 643–662, 2012.
[DY05] Y. Dodis and A. Yampolskiy. A Verifiable Random Function with Short Proofs and Keys. In Public

Key Cryptography, pages 416–431, 2005.
[HS11] D. Hofheinz and V. Shoup. GNUC: A New Universal Composability Framework. IACR Cryptology

ePrint Archive, 2011:303, 2011.
[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. Secure Arithmetic Computation with No Honest Majority.

IACR Cryptology ePrint Archive, 2008:465, 2008.
[IPS09] Y. Ishai, M. Prabhakaran, and A. Sahai. Secure Arithmetic Computation with No Honest Majority.

In TCC, pages 294–314, 2009.
[JL09] S. Jarecki and X. Liu. Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT

and Secure Computation of Set Intersection. In TCC, pages 577–594, 2009.
[JS07] S. Jarecki and V. Shmatikov. Efficient Two-Party Secure Computation on Committed Inputs. In

EUROCRYPT, pages 97–114, 2007.
[KSS12] B. Kreuter, A. Shelat, and C. Shen. Towards Billion-Gate Secure Computation with Malicious Adver-

saries. IACR Cryptology ePrint Archive, 2012:179, 2012.
[Küs06] R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines. In IEEE

Computer Security Foundations Workshop, pages 309–320, 2006.
[LP07] Y. Lindell and B. Pinkas. An Efficient Protocol for Secure Two-Party Computation in the Presence

of Malicious Adversaries. In EUROCRYPT, pages 52–78, 2007.
[LPS08] Y. Lindell, B. Pinkas, and N. P. Smart. Implementing Two-Party Computation Efficiently with Security

Against Malicious Adversaries. In SCN, pages 2–20, 2008.
[MR11] U. Maurer and R. Renner. Abstract Cryptography. In ICS, pages 1–21, 2011.
[Nie03] J. B. Nielsen. On Protocol Security in the Cryptographic Model. PhD thesis, BRICS, Computer Science

Department, University of Aarhus, 2003.
[NNOB12] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A New Approach to Practical Active-Secure

Two-Party Computation. In CRYPTO, pages 681–700, 2012.
[NO09] J. B. Nielsen and C. Orlandi. LEGO for Two-Party Secure Computation. In TCC, pages 368–386,

2009.
[Pai99] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In EURO-

CRYPT, pages 223–238, 1999.
[PSSW09] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure Two-Party Computation Is Practical.

In ASIACRYPT, pages 250–267, 2009.
[PW01] B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and its Application to

Secure Message Transmission. In IEEE Security & Privacy, pages 184–200, 2001.
[Sho04] V. Shoup. Sequences of Games: a Tool for Taming Complexity in Security Proofs. IACR Cryptology

ePrint Archive, 2004:332, 2004.
[WJ79] S. S. Wagstaff Jr. Greatest of the Least Primes in Arithmetic Progressions Having a Given Modulus.

Mathematics of Computation, 33(147):pp. 1073–1080, 1979.

A FZK and FgZK Ideal Functionalities

In this Section, we show the ideal functionalities for zero-knowledge proofs of knowledge and
existance: FZK and FgZK, respectively.

36

A.1 FZK

The following is the formal definition of the FZK functionality for universally composable zero-
knowledge proofs of knowledge in the GNUC model [HS11]. It is designed to be used in a setting
where dynamic corruption with erasures are allowed. This ideal functionality is parametrized by
a binary predicate x and a leakage function `.

– send : Accept 〈send, x, w〉 from P where R(x,w) = 1. Store the instance and witness: x̄← x
and w̄ ← w. Send 〈send, `(x,w)〉 to A.

– ready : Accept 〈ready〉 from Q. Send 〈ready〉 to A.

– lock [send ∧ ready] : Accept 〈lock〉 from A. Send 〈〉 to A.

– done [lock] : Accept 〈done〉 from A. Send 〈done〉 to P.

– deliver [lock] : Accept 〈deliver, L〉 from A, where L = `(x̄, w̄) ∨ [corrupt:Q]. Send
〈deliver, x̄〉 to Q.

– corrupt:P : Accept a special 〈corrupt〉 message from P. Send 〈corrupt:P〉 to A together
with an invitation for the message 〈expose〉.

– corrupt:Q : Accept a special 〈corrupt〉 message from Q. Send 〈corrupt:Q〉 to A.

– reset [¬lock ∧ corrupt:P] : Accept 〈reset, x, w〉 from A, where R(x,w) = 1. Store the
instance and witness: x̄← x and w̄ ← w. Send 〈〉 to A.

– expose [send ∧ ¬lock ∧ corrupt:P] : Accept 〈expose〉 from A. Send 〈expose, x̄, w̄〉 to A.

A.2 FgZK

The functionality FgZK is a tool which allows us to simplify the security proof of protocols
which use zero-knowledge proofs of existence. This functionality was proposed by Camenisch et
al. [CKS11]. The two major differences between FZK and FgZK is that the latter: 1) does not
check its inputs, and 2) does not allow the adversary to extract the witnesses quantified by ∃.

One must be careful with this functionality, since it is not an ideal functionality in the UC
sense. Indeed the functionality is quite useless by itself. By using a special composition theorem
by Camenisch et al., one can prove that if the FgZK-hybrid protocol is secure against a weak class
of environments called nice environments, then the Fsch-hybrid protocol in which all instances
of FgZK have been replaced by a specific zero-knowledge protocol is secure in the UC-sense.

Like FZK, FgZK is designed to be used in a setting where dynamic corruption with erasures
are allowed; and FgZK is parametrized by a binary predicate x and a leakage function `.

– send : Accept 〈send, x, wk, we〉 from P. Store the instance and all witnesses quantified by

K

: x̄ ← x and w̄k ← wk. The ideal functionality FgZK, being gullible, does not check if the
predicate holds. Send 〈send, `(x,wk)〉 to A.

– ready : Accept 〈ready〉 from Q. Send 〈ready〉 to A.

– lock [send ∧ ready] : Accept 〈lock〉 from A. Send 〈〉 to A.

– done [lock] : Accept 〈done〉 from A. Send 〈done〉 to P.

– deliver [lock] : Accept 〈deliver, L〉 from A, where L = `(x̄, w̄k) ∨ [corrupt:Q]. Send
〈deliver, x̄〉 to Q.

– corrupt:P : Accept a special 〈corrupt〉 message from P. Send 〈corrupt:P〉 to A together
with an invitation for the message 〈expose〉.

– corrupt:Q : Accept a special 〈corrupt〉 message from Q. Send 〈corrupt:Q〉 to A.

37

– reset [¬lock∧corrupt:P] : Accept 〈reset, x, wk, we〉 from A. The ideal functionality FgZK,
being gullible, does not check if the predicate holds. Store the instance and all witnesses
quantified by

K

: x̄← x and w̄k ← wk. Send 〈〉 to A.
– expose [send ∧ ¬lock ∧ corrupt:P] : Accept 〈expose〉 from A. Send 〈expose, x̄, w̄k〉 to A.

38

