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Introduction

KeeLoq is a proprietary block cipher owned by Microchip, and is used in
remote key-less entry systems from several car manufacturers — such as
Chrysler, Daewoo, Fiat, GM, Honda, Toyota, Volvo, VW, Jaguar, etc. [19]
— as well as for garage door openers. After the confidential specifications
have been leaked on a Russian website [12] in 2006, several cryptanalysts
have found substantial weaknesses in the design of the algorithm [2, 5, 9]
and the hardware on which it is implemented [7, 10].

The objectives of this semester project are to understand and implement
the attacks against KeeLoq, try to improve them, and possibly to test them
in real life. Side channel attacks and weaknesses of the physical implemen-
tations are out-of-scope.

The report starts with a literature review of KeeLoq. In chapter 1, the
KeeLoq cipher, key derivation functions, and authentication protocols are
described. The state-of-the-art attacks against KeeLoq are summarized in
chapters 2 (attacks against the cipher) and 3 (attacks against the protocols).

Our contributions are presented in the subsequent chapters. We have
captured and analyzed radio traces of several cars and garage keys which
supposedly use KeeLoq (chapter 4). We have implemented two key-recovery
attacks in software (chapter 5). Our efforts to improve the state of the art
in KeeLoq cryptanalysis are documented in chapter 6, however, no positive
results have been achieved. Finally, we propose a slight modification of the
KeeLoq key schedule which renders the cipher immune against all published
cryptanalysis (chapter 7).
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Chapter 1

Description of KeeLoq

The purpose of this chapter is to present the KeeLoq encryption and decryp-
tion algorithms, the diverse key derivation functions used by KeeLoq, and
the authentication protocols in which KeeLoq is used.

1.1 Encryption

KeeLoq is a block cipher with a 64-bit key and a 32-bit block size [2, 9, 12].
The cipher operates on two registers:

• A 64-bit key register;

• A 32-bit text non-linear feedback shift register (NLFSR).

The key register

The 64-bit key register operates as a simple circular-shift register. The
register is initially filled with the encryption key k63..0. Let the state of the
key register in round i be denoted by:

K
〈i〉
63..0 =

(
K
〈i〉
63 ,K

〈i〉
62 , . . . ,K

〈i〉
0

)
(1.1)

with K
〈0〉
63..0 = k63..0 (1.2)

In each round, the contents of the register are simply rotated:

K
〈i+1〉
63..0 = ROR1(K〈i〉63..0) =

(
K
〈i〉
0 ,K

〈i〉
63 ,K

〈i〉
62 , . . . ,K

〈i〉
1

)
(1.3)

Where RORr is a circular rotation of r bits to the right.

The text register

The 32-bit text register operates as a non-linear feedback shift register. Let
the state of the text register in round i be denoted by:

T
〈i〉
31..0 =

(
T
〈i〉
31 , T

〈i〉
30 , . . . , T

〈i〉
0

)
(1.4)
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63 064-bit key register

KeeLoq encryption

NLF 0x3A5C742E

a b c d e

31 30 26 20 16 9 1 0...... ...... ...

32-bit NLFSR

Figure 1.1: KeeLoq encryption algorithm [19]

The register is initially filled with the plaintext P31..0:

T
〈0〉
31..0 = P31..0 (1.5)

The ciphertext C31..0 is read from the text register after 528 rounds:

C31..0 = T
〈528〉
31..0 (1.6)

During each round, the 31 most significant bits (MSB) are shifted right by
one position (becoming the 31 least significant bits (LSB) of the next round),
and the MSB of the new round is computed from a non-linear combination
of bits from the text and key register:

T
〈i+1〉
31..0 =

(
ϕ〈i〉, T

〈i〉
31 , T

〈i〉
30 , . . . , T

〈i〉
1

)
(1.7)

ϕ〈i〉 = NLF(T 〈i〉31 , T
〈i〉
26 , T

〈i〉
20 , T

〈i〉
9 , T

〈i〉
1 )⊕ T 〈i〉16 ⊕ T

〈i〉
0 ⊕K

〈i〉
0 (1.8)

Since there are only 32 possible inputs to the non-linear function NLF, it
is usually defined by a lookup table. If we consider the input as a 5-bit
number i4..0 =

(
a, b, c, d, e

)
then NLF(i) is equal to the ith LSB of the

hexadecimal number 3A5C742E16. Alternatively, it is possible to write the
NLF in algebraic form [2, 5, 9]:

NLF(a, b, c, d, e) = d⊕ e⊕ ac⊕ ae⊕ bc⊕ be⊕ cd⊕ de
⊕ ade⊕ ace⊕ abd⊕ abc

(1.9)

Figure 1.1 provides a more visual representation of the encryption processes.
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1.1.1 Compact description

All bits except the LSB are just shifted in a given round, i.e.:

∀k, 0 ≤ k ≤ 31, k ≤ i+ j T
〈i〉
j = T

〈i+j−k〉
k (1.10)

It is therefore unnecessary to keep track of the state of the whole text register
in each round: it is sufficient to keep track of the new bit introduced in each
round, the MSB. The 32 initial bits of the text register and the MSB of the
text register after each of the 528 rounds define a bitstream L559..0 [5], which
will be called encryption state.
The 32 LSB of the encryption state are the plaintext:

L31..0 = P31..0 (1.11)

The bit (31 + i) of the encryption state is the MSB of the text register after
round i.

It is possible to simplify the description of the encryption process by
observing that, during round i+ 1, only the bit L32+i needs to be computed
(from the bits L31+i..i and the key bit k〈i〉0 = ki mod 64). The bits L31+i..i will
be identical with the contents of the text register in round i. Formally:

∀i, 32 ≤ i ≤ 559
Li = ki−32 mod 64 ⊕ Li−32 ⊕ Li−16 ⊕NLF

(
Li−1, Li−6, Li−12, Li−23, Li−31

)
(1.12)

The ciphertext is then read from the 32 MSB of the encryption state after
528 rounds:

C31..0 = L559..528 (1.13)

1.1.2 Notation

In this report the following useful functions will be used:

Ek63..0 Full KeeLoq encryption (528 rounds = 8 · 64 + 16)
fk63..0 64 rounds of KeeLoq
gk15+z..z 16 rounds of KeeLoq (0 ≤ z ≤ 48)

Due to the very simple key schedule, a full KeeLoq encryption is just apply-
ing the 64-round-reduced encryption (fk) 81

4 times with the same key k:

Ek63..0 = gk15..0 ◦ f
(8)
k63..0

(1.14)

and fk63..0 = gk63..48 ◦ gk47..32 ◦ gk31..16 ◦ gk15..0 (1.15)
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1.2 Decryption

All steps in the encryption process can be reversed: the only bit that was
“dropped” from the text register when performing round i (T 〈i〉0 ) can be
recomputed from the bit that was “added” (T 〈i+1〉

31 ) and the bits that were
just shifted (T 〈i+1〉

30..0 = T
〈i〉
31..1) [2, 9, 12]:

T
〈i+1〉
31 = NLF(T 〈i〉31 , T

〈i〉
26 , T

〈i〉
20 , T

〈i〉
9 , T

〈i〉
1 )⊕ T 〈i〉16 ⊕ T

〈i〉
0 ⊕K

〈i〉
0

T
〈i〉
0 = NLF(T 〈i〉31 , T

〈i〉
26 , T

〈i〉
20 , T

〈i〉
9 , T

〈i〉
1 )⊕ T 〈i〉16 ⊕ T

〈i+1〉
31 ⊕K〈i〉0

= NLF(T 〈i+1〉
30 , T

〈i+1〉
25 , T

〈i+1〉
19 , T

〈i+1〉
8 , T

〈i+1〉
0 )⊕ T 〈i+1〉

15 ⊕ T 〈i+1〉
31 ⊕K〈i〉0

(1.16)

Figure 1.2 provides a more visual representation of the decryption processes.

1.2.1 Compact description

The 32 MSB of the encryption state are the ciphertext:

L559..528 = C31..0 (1.17)

The decryption process is then very similar to the encryption process (start-
ing at round 527 down to 0):

∀i, 527 ≥ i ≥ 0
Li = ki mod 64 ⊕ Li+32 ⊕ Li+16 ⊕NLF

(
Li+31, Li+26, Li+20, Li+9, Li+1

)
(1.18)

We can then read the plaintext from the 32 LSB of the encryption state
register after 528 rounds:

P31..0 = L31..0 (1.19)

1.3 Key derivation functions

There are several key derivation functions [12]. The keys of the individual
devices kdev are derived from a more or less random seed (which may include
bits from the publicly known device serial number S27..0 and some padding)
and the manufacturer key kman. The latter is constant over a wide range
of products by the same manufacturer [2], for example all cars of a given
model in a given year.

There are two methods to derive the device key: either by performing
an xor between the manufacturer key and the seed (see Figure 1.3(a)), or
by decrypting the first and second half of the seed with the manufacturer
key using the KeeLoq algorithm (Figure 1.3(b)) [12].
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63 064-bit key register

KeeLoq decryption

NLF 0x3A5C742E

a b c d e

31 30 25 19 15 8 1 0...... ...... ...

32-bit NLFSR

15 ...

Figure 1.2: KeeLoq decryption algorithm [19]

The seed may contain 0, 32, 48 or 60 random bits1. The seed is generated
as shown in Table 1.1.

Random bits Seed 2 Seed 1
0 01002 || S27..0 00102 || S27..0

32 00002 || S27..0 32 random bits
48 00002 || S27..16 || 16 random bits 32 random bits
60 00002 || 28 random bits 32 random bits

Table 1.1: Generation of the seed for the key derivation function [2, 11]

The manufacturer key kman is a very interesting target for the attacker.
If it is known, the security of the device key kdev drops from 64 bits to 60,
48, 32 or even 0 bits.

1.3.1 Storage of the seed

The seed is usually stored in the encoder (remote control) when it is pro-
grammed, and must be paired with the decoder (the car or the garage)
before use. To that effect, the user must make a special manipulation on
the decoder module (for instance press the “learn” button) so that it enters
the “learn” state [12]. The user must then press a special button or a button
combination on the encoder so that it transmits its seed and serial number
in plaintext to the decoder.

1Some models of encoders may not support all variants: HCS101 and HCS365 only support
the 0 random bit variant; HCS2xx, 30x and 320 support up to 32 random bits; HCS360
and HCS361 support up to 48 random bits; HCS362 and 4xx support up to 60 bits.
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(a) xor-based (b) Decryption-based

Figure 1.3: Key derivation functions [2, 11, 12]

It is up to the car manufacturer to decide if to inhibit the transmission
of the seed in the encoder after a certain number of button presses [11]. This
is a compromise between security and user-friendliness since the user will
not be able to re-associate the key with another decoder (or even the same
decoder if the latter erases the association parameters).

If the manufacturer decides not to inhibit seed transmission, an attacker
who has access to the encoder for a few seconds can retrieve the seed (if
the corresponding kman is known, she will then be able to compute kdev
immediately).

The most user-friendly and least secure design is of course not to use a
seed at all, since the manufacturer can ship the encoder with one button
less, and the user will not have to do a complicated manipulation with
the encoder during the learning phase. It is worth mentioning that all the
integrated circuits (IC) analyzed by Eisenbarth et al. [7] used a seed derived
directly from the device serial number (0 random bits).

1.4 Authentication protocols

KeeLoq is used chiefly for authentication. There are two different protocols
that are used to that effect.

1.4.1 Identify Friend-or-Foe (IFF)

The IFF protocol is a challenge-response protocol implemented in modules
supporting two-way communication. Microchip’s HCS410 module for in-
stance can be used in an RFID-like proximity-based access control. Mi-
crochip also suggests using this mode to verify the compatibility of hardware
in modular systems [14].

The IFF protocol is extremely simple [14]. The verifier can request the
serial number of the prover, or some other configuration options, request
data to be written in the prover module or perform a challenge.
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(a) Regular IFF [14] (b) The attacker spoofs the verifier to
get the ciphertext corresponding to a
chosen plaintext.

Figure 1.4: Identify-friend-or-foe

Figure 1.5: Hopping code message format [13]

For the latter, the verifier is expected to know the key kdev of the prover.
The verifier sends a 32-bit challenge to the prover, which the latter then
encrypts and sends back (see Figure 1.4(a)).

It is worth mentioning that the verifier never needs to prove its identity:
by spoofing the verifier, the attacker can use the prover as an encryption
oracle (Figure 1.4(b)).

1.4.2 Hopping codes

The hopping code protocol is implemented in devices which are capable of
one-way communication only. Microchip produces several modules which
are capable of sending hopping codes2, and several devices capable of de-
coding them again3 (there are no modules which combine encryption and
decryption). The typical encoders are car keys and garage remotes, and the
decoders are the car or the garage door. The advantage of this solution is
that the encoders (which are typically limited in power) never have to listen
to the radio channel.

The protocol consists of only one 66/67-bit message transmitted LSB
first from the encoder to the decoder (typically over a radio channel) [13].
The contents of the message is detailed in Figure 1.5.

2HCS 101, 200, 201, 300, 301, 320, 360, 361, 362, 365, 410, 412, 473.
3HCS 500, 512, 515, and PIC 8-bit micro-controllers.



14 Chapter 1. Description of KeeLoq

• The synchronization counter is a 16-bit number which is incremented
with each message send by the encoder and is used for replay protection.
The way the decoder handles this number is described below.

• The discrimination value is an arbitrary 12-bit number which is more
or less unique for each encoder. In some integrated circuits (IC)4 this
number can be programmed, others just put the 10 LSB of the serial
number in the 10 LSB of the discrimination value and pad the rest with
zeros. Some ICs may use up to 2 bits (the 2 MSB) of this discrimination
value to increase the effective length of the synchronization counter to
18 bits5.

• The function bits are application dependent. This allows up to 16
different functions (such as lock the car, open the car, open the trunk,
etc.) to be performed. On most models, one combination is reserved for
the “learning” mode6.

• The serial number is a unique identifier of the encoder.

• The flag bits vary from IC model to model: there might be a bit for
“transmission repetition”, one for “battery low”7, or one or several CRC
bits (computed over the whole transmission).

The synchronization counter, discrimination value and function bits are en-
crypted with KeeLoq keyed with kdev. The serial number, a copy of the
function bits, and the flag bits are sent in cleartext.

Synchronization between encoder and decoder

Since the encoder can transmit while being out-of-range of the decoder, the
counter value at the decoder might become desynchronized with that of the
encoder (for example, if the user puts his car key in his pocket and a buttons
get inadvertently and repeatedly pressed, or if a child plays with the car key).
To cope with these eventualities, the decoder defines three ranges of counter
values (Figure 1.6). Let R be the currently received counter value at the
decoder, and L be the counter value stored in the decoder; then the three
ranges are as follows:

4HCS300 and HCS301.
5In models supporting this option, for compatibility reasons, the 2 MSB of the discrimi-
nation value can never be set to a non-zero value again once they both become zero [12].
This means that the counter first goes though 218 values, but then continues on a cycle
of period 216.

6In the learning mode, the 32 LSB bits of Figure 1.5 are replaced by the 32-bit seed
transmitted in cleartext.

7This allows the decoder to warn the user.
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Figure 1.6: Windows in the KeeLoq hopping code [12]

• The open window: the received counter value is within 16 units [12] of
the last value (1 +L ≤ R ≤ 16 +L (mod 216)). In this case, the decoder
accepts the transmission, performs the requisite function and updates its
own synchronization counter L← R.

• The re-synchronization window: the received counter value is within
215 units [12] of the last value (16+L < R ≤ 215 +L (mod 216)). In that
case, the decoder stores the value R and waits for the value R+ 1. If the
next message has a counter value of R+ 1, the decoder performs the req-
uisite function and updates its own synchronization counter L← R + 1.
This design exploits the natural reflex of the user to press the button on
the encoder again if the expected function did not happen.

• The blocked window: the received counter value does not fall in either
of the above two windows (R ≤ L or R > 215 + L). In this case the de-
coder rejects the transmission and does not perform anything. This mech-
anism enforces replay protection (assuming the counter has not rolled
over, which should not happen in the lifetime of a typical encoder).



Chapter 2

State-of-the-art attacks
against KeeLoq

This chapter will start with a comparison of several published key-recovery
attacks against the KeeLoq block cipher and widely spread hardware imple-
mentations. These attacks will then be described in varying levels of detail.
Finally, work done on side channel attacks against hardware implementa-
tions will be briefly mentioned.

2.1 Comparison of key-recovery attacks

Table 2.1 provides a compact comparison of the various attacks against
KeeLoq. A more detailed description of all attacks will be made in the
following sections.

Attack Requirementsa Timeb Successc Source
Brute force 2 KP 264 100%
Slide-algebraic 216 KP 253 63% [5]
Slide-meet-in-the middle 216 KP 245 63% [9]
Slide-correlation 232 KP 250.6 91% [2]
Slide-and-determine 232 KP 231.1 63%d [5]
Differential power analysis ≈30 PT small 100% [7]
Simple power analysis 1 PT small 100% [10]

aKP: Known plaintext-ciphertext pairs, PT: power traces.

bRunning time in full KeeLoq encryptions, as estimated by the respective authors.

cSuccess probability, with the parameters suggested by the respective authors.

dThis attacks works only against 63% of all keys.

Table 2.1: Comparison of different attacks against KeeLoq

16
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2.2 Known-plaintext key-recovery attacks

The papers [2], [5], and [9] present different key recovery attacks against
KeeLoq. They all exploit the simplistic key schedule of the cipher to mount
a sliding attack.

2.2.1 Observations

In this subsection, two properties of the KeeLoq cipher that are exploited
in all the key-recovery attacks will be described.

Directly determining key bits

Because the key is simply xored to each bit of the encryption state L, it is
possible to directly deduce some key bits if more than 32 consecutive bits of
the encryption state are known [5]:
Knowing Li..j with j > 32 + i, one can directly compute:

kz mod 64 ∀z, i ≤ z ≤ j − 32

by observing that

kz mod 64 = Lz ⊕ Lz+32 ⊕ Lz+16 ⊕NLF
(
Lz+31, Lz+26, Lz+20, Lz+9, Lz+1

)
(2.1)

Slid pairs

Two plaintexts P [i] and P [j] form a slid pair for a given key k iff the latter
can be obtained by encrypting the former by only 64 rounds [2, 9], i.e.:

P [j] = fk(P [i]) (2.2)

After 64 rounds, each bit of the key k will have been mixed exactly once
with the plaintext. Slid pairs are very attractive from a cryptanalysis point
of view, and indeed most of the published attacks make use of this con-
cept: if the cryptanalyst can find one slid pair, he can effectively reduce the
cryptanalysis to 64 rounds.

2.2.2 Slide-correlation attack

This attack was presented in the paper by Bogdanov [2]. It requires the full
codebook (232 plaintext-ciphertext pairs, which requires 16 GiB of memory)
and has a success probability of about 91% for the proposed parameters1.
The running time was estimated to be about 250.6 KeeLoq encryptions2.

The idea behind the attack is based on the following two observations:
1This probability can be made larger or smaller at the expense of the running time by
generating more slid pairs.

2Assuming that one memory access costs as much as performing 4 rounds of KeeLoq.
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• With one slid pair O[i] = fk(I [i]), and the first 16 bits of the key k15..0,
it is possible to quickly generate another slid pair as follows:

I [i+1] = g
(−1)
k15..0

(E(I [i])) (2.3)

O[i+1] = g
(−1)
k15..0

(E(O[i])) (2.4)

where E(x) is looked up in the codebook. Indeed:

I [i+1] = g
(−1)
k15..0

(gk15..0(f (8)
k (I [i]))) = f

(8)
k (I [i]) (2.5)

O[i+1] = g
(−1)
k15..0

(gk15..0(f (8)
k (O[i]))) = f

(8)
k (O[i]) = f

(9)
k (I [i]) = fk(I [i+1])

(2.6)

• The non-linear function is biased. Indeed, for uniformly distributed ran-
dom variables (a, b, c, d, e):

Pr{NLF(a, b, c, d, e) = d⊕ e} =
1
2

+
1
8

(2.7)

Given enough slid pairs (about 28), one can exploit this property to
quickly guess 32 more key bits one-by-one with a very high probability.
The last 16 bits of the key can then be directly computed.

In the attack, the 16 LSB of the key k15..0 have to be guessed3 (time 216),
and given an initial I [0] plaintext, a possible slid pair O[0] (32 bits) has to be
guessed (time 232). By exploiting the two observations above, it is possible
to compute (and try out) a candidate key faster than 216 full encryptions.

2.2.3 Slide-and-determine attack

The slide and determine attack by Courtois et al. [5, Section 5.2] is an
improvement over the attack by Bogdanov. It also requires the full codebook
(232 plaintext-ciphertext pairs), but requires only 231.1 KeeLoq encryptions
on average (assuming we get the codebook for free). Another property of
this attack is that it works only against about 63% of all keys, so this attack
can be made harmless by avoiding weak keys.

The main idea of this attack is to find a plaintext P [i] that is a fixed
point with respect to a 64-round-reduced KeeLoq, i.e., fk(P [i]) = P [i]. Such
a fixed point exists for about 63% of all keys. The attack operates in two
stages:

• All fixed points of f (8) (512 rounds of KeeLoq) are found. All fixed
points of f will necessarily be fixed points of f (8). Since the codebook
only allows E = g ◦ f (8) to be computed, only 16 of the 32 bits of f (8)

3The cryptanalyst does not really guess the bits, but he iterates over all possible values.
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can be determined (since KeeLoq only replaces one bit per round), but
that is sufficient to filter out a large number of wrong guesses. After this
step, around 216 candidates for a fixed point are left.

For each of these candidates, it is assumed that they are indeed a fixed
point of f (8), and the corresponding first 16 bits of the key k

[i]
15..0 are

directly computed. The triplet 〈P [i], C [i], k
[i]
15..0〉 is then stored.

• It is now assumed that for each of the stored triplets, P [i] is a fixed
point of f . For each of the stored triplets, the next 16 bits of the key
k

[i]
31..16 are guessed. Using that, it is now possible to directly compute

the remaining key bits. With some trial encryptions with the known
plaintext-ciphertext pairs, the candidate key is accepted or rejected.

2.2.4 Slide-algebraic attack

In the same paper, Courtois et al. [5, Section 7.2] presented their findings
on applying algebraic attacks on the KeeLoq cipher. In their experiments
they could not mount a direct algebraic attack on the full cipher (after 128
rounds the performance was becoming unacceptably slow). For 64 rounds
however, they got very good results: using the SAT-solver MiniSat, the key
could be recovered in just 2.3 seconds (232 CPU clocks) on average.

As the same suggests, this attack combines a slide attack with their
algebraic attack. By the birthday paradox, with 216 plaintext-ciphertext
pairs it is very probable (about 63%) that there is at least one slid pair
fk(P [i]) = P [j], yielding the first 64 equations. 64 additional equations can
be obtained by observing that the corresponding ciphertexts of the slid-pair
C [i] = E(P [i]) and C [j] = E(P [j]) also form a slid pair but for a key that is
shifted:

fk(P [i]) = P [j]

gk15..0(f (9)
k (P [i])) = gk15..0(f (8)

k (P [j]))

gk15..0(gk63..48(gk47..32(gk31..16(gk15..0(f (8)
k (P [i])))))) = gk15..0(f (8)

k (P [j]))

gk15..0(gk63..48(gk47..32(gk31..16(C [i])))) = C [j]

fk15..0,63..16(C [i]) = C [j] (2.8)

To summarize, these are the equations that are used:

P [j] = fk(P [i]) (64 equations)

C [j] = fk15..0,63..16(C [i]) (64 equations) (2.9)

These 128 equations are transformed to Conjunctive Normal Form with a
ANF-to-CNF converter (see Section 5.2.3), which are then given to the SAT-
solver. If the given pair was not a slid pair, the SAT-solver will either output
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garbage that can be quickly filtered out by performing some trial encryptions
on the other known plaintexts, or will output “unsatisfiable”. If however,
the pair was indeed a slid pair, then the SAT-solver will output the key4.

Performing this attacks requires about 264 CPU clocks, which corre-
sponds to 253 KeeLoq encryptions.

We have implemented this attack (see Section 5.2.2).

2.2.5 Slide-meet-in-the-middle attack

This attack was first described by Indesteege et al. [9], and requires 216

plaintext-ciphertext pairs. Like the previous attack, it is based on the hope
to find a slid pair fk(P [i]) = P [j], which happens with probability 63%5.
However, this attack gives an explicit algorithm to find the key given a
potential slid pair, and does not require a black-box SAT-solver.

This algorithm uses a clever way of fixing some bits of the encryption
state and the key to avoid unnecessary computation. It uses a hash table
to quickly decimate the number of candidate slid pairs to consider. The al-
gorithm runs faster than the slide-algebraic attack: 254 register clock cycles,
equivalent to about 245 full KeeLoq encryptions.

Description of the algorithm

1. The first step is to guess the first 16 bits of the key k15..0. With this in-
formation, all plaintexts P [i] are partially encrypted by 16 rounds (yield-
ing L[i]

47..0) and all ciphertexts C [j] are partially decrypted by 16 rounds
(yielding L[j]

623..576).

2. Next, 16 bits denoted by α15..0 are guessed, and L
[j]
63..48 is set to α. The

key bits k[j]
63..48 are computed from L

[j]
95..48 = P [j]||α. With this informa-

tion, all ciphertexts are partially decrypted by 16 more rounds (yielding
L

[j]
623..560). The tuples 〈L[j]

79..48, L
[j]
591..560, k

[j]
63..48〉 are then saved in a hash

table indexed by L[j]
575..560.

3. L[i]
63..48 is now set to α, in effect forcing all pairs 〈P [i], P [j]〉 to be slid

plaintexts for some key k[i,j] (where k[i,j]
63..48 = k

[j]
63..48 and k

[i,j]
31..0 = k

[i]
31..0).

For each plaintext P [i], the key bits k[i]
31..16 are computed from L

[i]
63..16.

Using this information, all ciphertexts C [i] are encrypted by 16 rounds
(yielding L[i]

575..528).

4We believe that this algorithm, as given in [5, Section 7.2], is mistaken/incomplete, and
will have a much lower probability of success than claimed, since it is possible that the
system of equations has several solutions, so the SAT-solver might miss the correct one.
See Section 5.2.2.

5Again, this probability can be increased at the cost of worse running time by having more
plaintext-ciphertext pairs available.
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for all possible values of k15..0 do
for all plaintexts P [i], 0 ≤ i < 216 do

Partially encrypt P [i] 16 rounds, yielding L[i]
47..0.

Partially decrypt C [j] 16 rounds, yielding L[j]
623..576.

for all possible values of α15..0 do
for all plaintexts P [j], 0 ≤ i < 216 do
L

[j]
63..48 ← α15..0.

Determine the key bits k[j]
63..48 from P [j]||α.

Partially decrypt the ciphertexts C [j], yielding L[j]
623..560.

Insert 〈L[j]
79..48, L

[j]
591..560, k

[j]
63..48〉 in a hash table indexed by L[j]

575..560.
for all plaintexts P [i], 0 ≤ i < 216 do
L

[i]
63..48 ← α15..0.

Determine the key bits k[i]
31..16 from α||L[i]

47..16.
Partially encrypt the ciphertext C [i], yielding L[i]

575..528.
for all collisions L[i]

575..560 = L
[j]
575..560 in the hash table do

Determine the key bits k[i,j]
47..32 from L

[j]
79..48||L

[i]
47..32.

Determine the key bits k′[i,j]47..32 from L
[j]
591..560||L

[i]
559..544.

if k
[i,j]
47..32 = k

′[i,j]
47..32 then

k[i,j] ← k
[j]
63..48||k

[i,j]
47..32||k

[i]
31..0

Encrypt several known plaintexts with the key k[i,j].
if the correct ciphertexts were found then

return success (the key is k[i,j])
return failure (there was no slid pair)

Figure 2.1: The attack algorithm in pseudocode [9, Fig.4]

4. All pairs 〈P [i], P [j]〉 which satisfy L
[i]
575..560 = L

[j]
575..560 are looked up in

the hash table: the corresponding ciphertexts 〈C [i], C [j]〉 are then slid
ciphertexts for some key k′[i,j].

5. Subsequently, only the pairs retrieved from the hash table that also sat-
isfy k′[i,j] = k[i,j] are kept (only the bits 47 to 32 need to be checked,
since the others are always the same); we can compute the two keys
from P [j]||L[i]

63..32 and L
[j]
591..560||L

[i]
559..544. For pairs 〈i, j〉 which are not

slid pairs, this equality holds with probability 2−16.

6. Finally, the key k′[i,j] of all remaining pairs is used to make some trial en-
cryptions with some known plaintext-ciphertext pairs. Only the correct
key will remain after this step.

Figure 2.1 shows a pseudocode of the attack algorithm.
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Running time analysis

Let R be the cost of one round of KeeLoq (encryption, decryption or directly
computing a key bit). Since we need only just slightly more than 2 MiB of
memory, we can assume that everything is located in the cache of the CPU
and that memory access is therefore free. LetNcol be the number of collisions
in the hash table and let V be the cost of verifying one collision.

• 216 iterations of the outer loop.

• 216 iterations in the next loop.

• 16 rounds of encryption and 16 rounds of decryption are per-
formed.

• 216 iterations in the loop where α15..0 is guessed.

• 16 bits of the key are determined and 16 rounds of decryption are
performed per iteration in the next loop.
• 216 iterations in the loop over all plaintexts.
• 16 bits of the key are determined and 16 rounds of encryption

are performed.
• All tuples can be fetched from hash table in constant time.

There is an average of Ncol results.
• For each collision, some work needs to be done: V .

The total cost is therefore:

216 · (216 · (2 · 16 ·R) + 216 · (2 · 16 ·R+ 216 · (2 · 16 ·R+Ncol · V ))) (2.10)

With 216 known plaintext-ciphertext pairs, 216 elements will be inserted
in a hash table indexed by a 16-bit key. The expected number of elements
fetched is therefore Ncol = 1.

As for verifying that the two computed keys k[i,j]
47..32 and k′[i,j]47..32 are identi-

cal, it can be done bit-per-bit, aborting early if there is a mismatch. Only if
they match it is necessary to perform two full trial encryptions (the second
needs to be done only if the first was successful). It is possible to do more
than two full trial encryptions; the running time will hardly be affected. We
therefore have:

V = 2 ·R ·
15∑
i=0

2−i + 2−16(528 ·R+ 2−32 · 528 ·R) < 4.01 ·R (2.11)

Overall, the cost of the attack is therefore 253.2 · R, which corresponds
to about 244.2 full KeeLoq encryptions.
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Improvements

Indesteege et al. [9, Section 3.4] generalized their attack, making it possible
to vary the number of bits of α (to) and the number of key bits to determine
in step 2 (tc). The algorithm has to be adapted slightly however. The param-
eters of the standard algorithm are tc = to = 16. The optimal parameters
are tc = 15, to = 14 and offer an improvement of 33% in theory.

Combining the above observation with chosen plaintexts, they could
halve the time required to extract the key in practice.

2.3 Side-channel attacks

Side channel attacks (SCA) exploit the weaknesses of the physical imple-
mentation of the cryptographic algorithms instead of just the theoretical
weaknesses. In this section, two SCA on KeeLoq are briefly presented.

2.3.1 Differential power analysis of the encoding integrated
circuits

Eisenbarth et al. [7] performed a differential power analysis of Microchip’s
HCSxxx family of encrypting integrated circuits. They were able to extract
the device key kdev by measuring the power consumption of the IC using a
resistor and an oscilloscope, and alternatively by measuring the electromag-
netic (EM) radiation with a near-field probe.

They were able to extract the key with the resistor with 6 to 30 power
traces depending on the packaging of the IC. Using the non-invasive EM
measurements, they required 10 power traces in the best case. Their attack
considered only the amplitude of the peaks of the measured signal.

Their results are applicable for all key derivation methods and the two
protocols (hopping codes and IFF). In case the simple xor-based (Figure
1.3(a)) key derivation scheme is used, an attacker can extract some/all bits
of kman from the device key.

2.3.2 Simple power analysis of software implementation in a
micro-controller

Contrary to the encrypting modules, which are implemented in a special-
purpose IC, the modules responsible for decrypting are more complex and
are usually implemented in a general purpose 8-bit micro-controller (PIC)
to perform the decryption. Since these modules have to be able to learn new
encrypting modules, they store the manufacturer key kman in read-tamper-
proof memory.

In case the more complicated decryption-based key derivation function
is used (Figure 1.3(b)), the module can be forced to perform a KeeLoq
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decryption with the manufacturer key by entering the “learn” mode and
sending random serial numbers.

Using differential power analysis proved to be very time consuming, re-
quiring about 10’000 power traces [7]. In 2009, Kasper et al. [10] performed
a simple power analysis, which exploited the different number of clock cy-
cles in the computation of the non-linear function on the micro-controller
(using the source code given by Microchip). They were able to extract the
manufacturer key on a commercial PIC micro-controller.

The attack works even if the decryption process is disturbed by inter-
rupts, as long as it is possible to clearly identify them in the power trace.
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Attacks against the protocol

In this chapter, various attacks against the authentication protocols (hop-
ping codes and IFF), attacks exploiting the key derivation functions, and
attacks using cloned keys are described.

3.1 Attacks against the hopping code protocol

In this section some attacks against the hopping code authentication proto-
col are described.

3.1.1 Exploiting the re-synchronization protocol

Since the range of the counter is only 216, it is possible to make a workable
clone by just gathering 216 plaintexts [9, Section 5.1]. This would require
about an hour of effort [2, Section 4.3].

In fact, by taking advantage of the resynchronization protocol, the at-
tacker need only half that number of plaintexts. She would need an oscillo-
scope and a simple program to record the traces, and probably some sort
of mechanism to press the button on the remote for her (a simple Lego
construction with a motor). The attacker has to press the button on the re-
mote 215 +2 times; assuming 10 button presses per second, the whole attack
would take 55 minutes. Thanks to the re-synchronization protocol with its
rather large re-synchronization window, she only needs to perform a couple
of measurement sessions in which she needs to capture two consecutive hop-
ping codes. The goal of the attacker is to store several sets of consecutive
hopping codes, such that for any counter value c ∈ GF(216), she knows two
consecutive hopping codes hι and hι+1 with c+ 1 ≤ ι ≤ c+ 215 (mod 216).

In practice, assuming one key press per second, she would have to per-
form two measurement sessions at the beginning (hinit, hinit+1), two some-
time in the middle1 (e.g. hinit+ε, hinit+1+ε with 2 ≤ ε ≤ 215) and two at the

1If the attacker has precise control over the number of presses she makes, she would need

25
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end (hinit+k, hinit+k+1 with 215 ≤ k ≤ ε+ 215). If she wants to fool the veri-
fier, she now only has to retransmit those six captured messages (cleartext +
hopping codes) verbatim, as two consecutive hopping codes will necessarily
be within the re-synchronization window, triggering the re-synchronization
mechanism.

This attack can very easily be adapted to include more function bits
(the attacker has to do captures for all function bits separately). If the
manufacturer chose to extend the counter range to 218 bits, this attack can
still be done, but will take 7 times longer.

3.1.2 On-line guessing attack

Since the hopping code is 32 bits long, but the open window has a size of 16,
and since the counter is not transmitted in the cleartext part of the message,
the attacker who purely guesses the hopping code has a success probability
of 2−32·16 = 2−28 (assuming the attacker has one trace of a legitimate key, so
she can spoof the cleartext part of the message). This attack is theoretically
faster than any of the off-line attacks, but has not much practical value (at
ten guesses per second2, this attack would take about a year).

3.1.3 Jamming and replay attacks

If the car key transmits out-of-range of the car, the synchronization counter
at the decoder will not increment. An attacker can exploit this in two ways:

• By jamming the communication channel when the victim tries to lock
his car. The car will then remain unlocked when the victim walks away.
This attack, however, has a high probability of being detected by the
victim, as cars usually flash their lights and emit a sound when locked.

• By intercepting a signal transmitted when the remote is out of range
and the victim is not aware of this (for instance, when the key is in the
victim’s pocket and is being pressed inadvertently, or if the key is left
unattended for several seconds and the attacker has the opportunity to
press the buttons), and then replay the captured signal to open the car.
However, the captured signal becomes obsolete once the owner uses his
key legitimately within range (in effect, re-synchronizing the key and the
decoder).

One could also imagine a kind of jamming + replay attack, where the at-
tacker records the legitimate signal, while also jamming the communication
channel. This attack is not very practical, since the attacker can typically

only two measurement sessions and measure only hinit, hinit+1, hinit+215 , hinit+215+1.
2We determined experimentally that the time required to send one message according to
the KeeLoq protocol is about 100ms.
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only record the signal locking the car (if she want to burgle the car when
the victim is leaving his car parked), and she cannot change the function
bits (they are part of the ciphertext), making this attack equivalent to the
first one.

3.1.4 Partially-known-plaintext attack

None of the cipher-only key recovery attacks presented in the last chapter
work in the case of hopping codes, since the attacker does not know the
initial value of the synchronization counter. This is no longer a known
plaintext attack, but only a partially known plaintext attack. If she tries
to guess the initial counter, the attacks become impractically slow (doing
the slide-meet-in-the-middle attack 216 times will require a run time of 261,
where one might be better off doing brute force on FPGA). Under certain
circumstances it is conceivable that the attacker might be able to guess a
plausible counter range to speed up the search, but the fact remains that
there is no good general-purpose method to break the hopping codes.

3.1.5 Extracting the device and master key

The device key can be extracted from the key using differential power anal-
ysis and about 10 to 30 power traces. This can be performed by an attacker
who has access to the key for a few minutes.

Since the manufacturer key is not saved inside the car key, the attacker
can only deduce the manufacturer key if the weak xor-based key derivation
function was used (he can determine the random bits by putting the car key
into “learn mode”).

If the attacker buys a car, she can try to extract the manufacturer key
from the decoder chip. If the chip is a PIC-micro-controller, she can just
use simple power analysis; but if the chip is an HCSxxx integrated circuit,
she will need prohibitively many power traces (about 10’000).

3.2 Attacks against the IFF protocol

In this section attacks against the IFF authentication protocol are described.

3.2.1 Known-plaintext attack

With about one and a half hours of unsupervised access to the key, the
attacker is able to ask the car key to generate the 216 plaintext-ciphertext
pairs she needs to crack the device key kdev using the slide-meet-in-the-
middle attack. She can then clone the key, and perform some of the attacks
described in the next section.
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In case the xor-based key derivation function was used, she can also
extract the manufacturer key by putting the car key into “learning mode”
to record the seed that was used in the key generation.

3.2.2 Jamming attack

Jamming the communication signal while the user tries to lock his car and
walk away also works for the IFF protocol.

3.2.3 Relay attack

If a button on the car key is pressed (inadvertently, or by the attacker in a
few seconds of unattended access to the key) and the attacker manages to
relay the messages between the car and the key, she can open the car of his
victim from an arbitrary distance.

3.3 Attacks with the manufacturer key

Once the attacker knows the manufacturer key corresponding to a given
product, it is very easy for her to carry out several damaging attacks with
little skill on all cars of the same model. As it was shown in the previous
sections, determining the master key is a challenging and/or costly task. It
is also very rewarding for a criminal. It is therefore plausible to see this
task outsourced to knowledgeable criminal cryptanalysts, who can then sell
these manufacturer keys on the black market.

3.3.1 Product piracy

The major reason for deriving the device key from a manufacturer key in the
first place is an economic one: customers are forced to buy spare car keys
from the original manufacturer at premium prices. For example, the cheap-
est spare remote for my garage door costs 105 CHF3 but contains only very
simple electronics and a $0.96 KeeLoq HCS300 chip. If the manufacturer key
became known, competitors could sell replacement blanks for much cheaper,
therefore denying the original manufacturer a very lucrative market.

3.3.2 Extract the device key

The serial number of the key is transmitted with every message, so once the
manufacturer key kman is known, only the 0, 32, 48 or 60 bits of randomness
introduced during key derivation hinder the cryptanalyst from computing
the key kdev. Once kdev is known, the car key can be cloned.

3Personal experience with Novoportes for a Mini-Novotron 502, 433 MHz remote (excl.
costs for installation).
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In case no randomness was introduced into the key derivation function,
the attacker can deduce the device key with just one eavesdropped commu-
nication (to learn the serial number) between the key and the car.

In all other cases, it might be possible to trick the key into entering the
“learn mode” and forcing it to reveal the seed it used for key derivation. For
this attack to work, the attacker will need to have access to the key for a
few minutes. This attack will fail if the manufacturer decided to inhibit the
seed transmission.

If 32 bits of randomness were used, the attacker can also launch a remote
brute force attack in reasonable time (several seconds with a laptop). Since
in IFF, the car key and the car exchange plaintexts and the corresponding
ciphertexts, eavesdropping on only one communication should be sufficient
(if there are several candidates for a device key, the attacker can just try
them out directly with the car). When hopping codes are used, it is more
complicated. Only the four function bits are known for sure. The 12 dis-
crimination bits can usually be deduced by looking at the serial number, and
the attacker may deduce a relationship between the counter bits of consecu-
tive communications (she never knows them exactly). Two communications
fairly close in time are thus necessary for the brute-force attack to have a
terminating condition.

If 48 bits of randomness are used, the same method as for 32 bits can be
used (the attacker might need two or three eavesdropped communications),
but the brute force attack will be much slower (several hours on an FPGA),
which is probably not cost effective.

For 60 bits of randomness, the remote attack is not worthwhile.

3.4 Attacks with cloned keys

Finally, attacks that can be performed by an adversary who is in possession
of a particular device key are described.

3.4.1 Burgle a car without any signs of break-in

With a cloned remote control, the attacker can open the car of his victim
without any sign of break-in, steal the contents of the car, and (optionally)
lock the car again. The victim might not notice the missing items since he
will find the car locked upon his return, giving the attacker much more time
to disappear.

The victim will also have a hard time claiming the theft at his insurance
company. The latter will believe the victim was careless and forgot to lock
his car.
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3.4.2 Steal a car

While Indesteege et al. joke that “soon, cryptographers will all drive expen-
sive cars” in the presentation promoting their paper, it must be noted that
the door lock and the car immobilizer might be based on two completely
different keys. The attacker might have a harder time eavesdropping on
the communication when the user turns the ignition (as the range is much
shorter), and she might not be able to exploit this effectively (since the user
will usually drive away immediately afterwards).

Assuming however that the attacker is indeed able to determine the
device key used for disarming the immobilizer, she will be able to drive
away with the car.

3.4.3 Denial-of-service attack

The attacker can furthermore perform a kind of denial-of-service attack on
garage doors (and to a lesser extent cars4) using hopping codes. By trans-
mitting two messages with consecutive counter values at the far end of the
“re-synchronization window”, she will trigger a re-synchronization at the re-
ceiver. The synchronization counter of the legitimate encoder will now be
firmly within the “blocked window”, thus preventing the legitimate owner
of using his remote key anymore (the owner needs to press the button on his
key 215 times for it to work again), making him think his remote is broken.

Possible motivations for this include annoying the victim, or even damage
the reputation of the manufacturer.

4Car keys usually also have a key blade to open the car if the remote fails.
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KeeLoq in real life

According to [2] and [5] (citing [19]), KeeLoq is or has been used by several
car manufacturers – including Chrysler, Daewoo, Fiat, GM, Honda, Jaguar,
Toyota, Volvo, and Volkswagen – and is used in some garage door openers.
In order to verify the claims of the widespread usage of KeeLoq (especially in
IFF mode, according to [9]), we have decided to capture and try to reverse-
engineer the signal emitted by several car keys (Toyota, Audi, Mercedes-
Benz, Volkswagen) and garage door opener (Novoferm1).

4.1 Decoding of radio traces

We used an oscilloscope connected to a simple loop antenna to capture the
signals. We caught between 1 and 8 million samples per measurement, with
sampling frequencies between 50 MS/s and 1.25 MS/s. The anti-aliasing
filter of the oscilloscope was disabled because the carrier frequency of the
signals was well into the Mega-hertz range.

We then wrote a series of scripts and programs2 to demodulate and
segment the signals (to get the bits on the physical layer), and then extract
the data (physical to link layer conversion).

4.1.1 Demodulation

Upon visual inspection with gnuplot, the graph of two of the car models
(Audi, Mercedes) seemed to be just a single sinusoid of constant frequency
and amplitude throughout. After performing a Fast Fourier Transform
(FFT) with GNU Octave, it is possible to discern two peaks – correspond-
ing to two different frequencies – very close together. The encoding used
was therefore a Binary Frequency Shift Keying (BFSK). It was possible to

1Mini-Novotron 502, 433 MHz.
2In the radio directory and its subdirectories.
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distinguish the two frequencies in the traces by convolving them with a per-
fect bandpass filters (the parameters of the filter were determined by visual
inspection of the FFT graph of one trace; see Figures 4.2 and 4.3).

The garage door and the other car models (Toyota, VW) used a simple
binary amplitude modulation scheme, as we can immediately ascertain by
visual inspection of the graphs (see Figures 4.1, 4.4 and 4.5).

4.1.2 Segmentation

Upon visual inspection of the graphs, it was possible to determine the basic
bit duration te (time element) for each of the car and garage models. It
turned out to be 400 µs for Audi and the garage door, and 500 µs for the
others. The signal-to-noise ratio for most traces was excellent, so it was
enough to write a simple program detecting the transitions between regions
in the trace with a high amplitude and a low amplitude: it counts the
number of samples with an amplitude higher than a third of the maximum
amplitude in a window of size te

10 ; if the count drops below some value or
becomes larger than some other value3, a transition is recorded.

For each transition, the program determines the time elapsed between
the previous one and rounds it to the nearest integer multiple of te. It then
outputs the corresponding number of 1s (if the amplitude was high) or 0s,
forming the physical-layer-bits (see Figure 4.6).

4.1.3 Extracting the data bits

The physical-layer bits all contain a lot of extra information to help the de-
coder. The transmission starts with a preamble, which is designed “wake-up”
the decoder and help synchronize its clock with the encoder. It consists of a
series of alternating bits 101010· · · 10101, sometimes ended with · · · 010110.
The preamble is usually followed by a header (in the case of KeeLoq, the bit
0 is repeated for 10te [13]). The data bits are also coded in order to avoid
clock drift associated with long sequences of the same bit.

All five models of keys have a preamble of duration between 23te (garage)
and 276te (Audi). Only the garage key has a header according to the speci-
fications of KeeLoq [13].

There exists several methods to encode the data: Manchester coding
(IEEE 802.34, G.E. Thomas5, or differential6), Pulse Width Modulation
(PWM)7, to name but the few we came across. Only the garage key used

3Hysteresis was necessary to avoid aberrant behavior.
401 on the physical layer corresponds to 0 on the link layer, while 10 corresponds to 1.
510 on the physical layer corresponds to 0 on the link layer, while 01 corresponds to 1.
6Two bits on the physical layer correspond to one bit on the link layer. The second bit of
the physical layer is always different from the first. If the first bit of the physical layer is
different from the bit that came just before, output 0, if it is the same output 1.

7100 on the physical layer corresponds to 0 on the link layer, and 110 corresponds to 1.
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Figure 4.1: A trace from the Toyota key
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Figure 4.2: Amplitude of an Audi trace after demodulation. The dark and light
colors corresponds to the two different frequencies. Parts of the preamble were cut.
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Figure 4.3: Amplitude of a Mercedes trace after demodulation. The dark and
light colors corresponds to the two different frequencies. Parts of the preamble
were cut.
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Figure 4.4: A trace from the VW key. Parts of the preamble were cut.
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Figure 4.5: A trace from the garage key

10101010101010101010101000000000010010011011011011010010010
01101001001001001101001101101101001101101001101101101001001
00110100100100110100100110100110110100110100110100100100100
1101101101101101001101001001101101101101101001101101

Figure 4.6: The trace shown in Figure 4.5 after segmentation

Binary:
00111100010000101110110111000100 0100101101010000111110100111
1101 10
Hexadecimal: 3C42EDC4 4B50FA7 D 8
Figure 4.7: The trace shown in Figure 4.6 after PWM decoding. The blocks are:
hopping code (32 bits), serial number (28 bits), function (4 bits), battery flag (1 bit)
and repeat flag (1 bit).
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PWM. All the car keys used non-differential Manchester coding.
All models had a different number of data bits on the link layer: the

garage key had only 66, Toyota 69, VW 80, Audi 97, and Mercedes 112.
Figure 4.7 shows an example of decoded data.

4.1.4 Interpretation of the link layer

Toyota

The data on the link layer had the following pattern: 4 constant bits over
all traces, 65 bits different over all traces.

We suspect that Toyota uses a block cipher of 64 bits, probably also
with a hopping code mechanism. All the requisite data is probably inside
the plaintext. The last bit might be there for error correction.

Audi

This trace was very confusing to analyze. It did not help that some traces
had a very poor signal-to-noise ratio and some traces were not captured
from the beginning.

The data on the link layer had the following pattern: 7 fixed bits, 50
random bits8, 23 constant bits, 17 bits that differed between all traces (there
seemed to be a high correlation between certain bits, but it was not perfect).
We suspect that Audi uses a block cipher of 48 bits.

Mercedes

This was the longest of all traces.
The data on the link layer had the following pattern: 8 bits that were the

same for each button, 5 bits that were different for each trace, 35 constant
bits, 64 random bits. The first byte is probably for the function (lock,
unlock, open trunk), the second byte seemed to be some sort of counter
(since the values were nearly sequential), the next 4 bytes are probably the
serial number of the key, and the last 8 bytes probably correspond to the
ciphertext of a block cipher (64-bit block size).

VW

The data on the link layer had the following pattern: 8 constant bits, 64
bits that were different for each trace, 1 constant bit, 6 bits that were the
same for each button and one constant bit.

Volkswagen probably uses a block cipher of 64 bits. The data probably
corresponds to: one byte of serial number, eight bytes of ciphertext, one
byte of function code.
8Although the first and the last bit were equal for all but one trace.
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Garage key

It must be noted that the garage key transmitted two data packets for each
key press that differed only in their last bit. A different model of key from the
same brand and for the same garage sent identical data packets continuously
while the button was held down.

The data on the link layer had the following pattern: 32 bits different
over all traces, 28 bits that were constant over all traces, 4 bits that were
the same for each button, 1 bit that was always 1, and the last bit that was
1 in the first transmission and 0 in the second transmission.

This pattern fits exactly with the KeeLoq specifications [13]. The data
bits correspond exactly to Figure 1.5. The first flag bit corresponds to the
battery low indicator, the second to indicate a repeated transmission.

4.1.5 Conclusion

Every key we tested followed a different standard for the encoding of the
physical and link layers.

We have experimentally determined that the two car makers which puta-
tively use KeeLoq in their products seem to have switched to another cipher
with longer block size. All car manufacturers we tested except Audi seem
to be using a cipher with a 64-bit block size.

The only instance of KeeLoq we encountered in practice was for garage
door access control, a much less interesting target. It must be noted that
the physical security of the doors themselves leave much to be desired9, so
for the end-user a compromise of KeeLoq is very much of academic interest
only.

9One can open the main parking door by waving a long stick through the door under the
sensor, the decoder of the main door can be reprogrammed from outside, and one can
open the individual garages manually with a pair of pliers (or even without tools if the
user did not bother to lock the garage with a regular key).
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Software implementation of
the attacks

To test the validity of the slide-meet-in-the-middle attack by Indesteege
et al. [9] and the slide-algebraic attack by Courtois et al. [5, Section 7.2],
we decided to implement the attacks. You can find the source code and
demonstration in the prog directory.

You can type make to compile everything in this directory. However,
if your processor is not a Core2, you must adapt (or remove) the string
-mtune=core2 from the CXXFLAGS in the Makefile.

The programs were written and tested on a Dell Inspiron 6400 laptop
with an Intel Core2 T7200 CPU (2GHz, 4MiB L2-cache, only 1 of 2 cores
used), 2 GiB of main memory (2 GiB of swap). The operating system used
was Ubuntu Karmic Koala. Run times were measured either with the Unix
time(1) program, or directly from the program output if it displays the total
run time (MiniSat and CryptoMiniSat).

5.1 Slide-meet-in-the-middle attack

We implemented the attack by Indesteege et al. according to both the stan-
dard algorithm [9, Section 3.3] and the generalization with optimal parame-
ters [9, Section 3.4] (cf. Section 2.2.5).

5.1.1 Implementation

Source code: preneel.cpp and preneel2.cpp.
Demonstration: can be found in the test preneel subdirectory. The
scripts used for the measurements were preneel.sh and preneel2.sh.

There were no major difficulties encountered in the implementation, as
the paper provided good explanations and included pseudocode that could
be quickly translated to a working program.
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Notes

It is very strongly recommended to run this program on a computer with at
least 3 MiB resp. 4 MiB of L2-cache, since the performance of the program
critically depends on the speed of retrieval of elements in a hash table.

Our program expects a list of 216 plaintext-ciphertext pairs. The pro-
gram genkp.cpp will generate such a list, and can also check whether the
list includes a slid pair.

In order to speed up computation, the first 16 bits of the key may be
provided. For even faster computation, a guess for α might also be provided
(genkp.cpp can print out α corresponding to a particular slid pair); however,
the comparison between the two variants will no longer be fair.

5.1.2 Results

The measured run time of both approaches is summarized in the Table 5.1:

Variant Run time Time for full attack
Standard (tc = to = 16) 51’38”304 2350 days
Optimal (tc = 15, to = 14) 50’18”768 2290 days

Table 5.1: Measured worst-case run time for both variants (the program does not
halt when it finds the key), when the first 16 bits of the key are provided. Since
these are worst-case measurements, the run time is almost constant over different
trials; so we decided to make only one trial. The time for the full attack is computed
by multiplying the run time by 216.

The optimal variant is just 2.8% faster than the standard approach, and
not 33% as expected in theory. We surmise that this is because the opti-
mal program needs to do much more bit manipulations than the standard
approach.

The program would take 2290 days
available 2GHz CPU cores (worst case) if no key

bits were provided (for 82 quad-core CPUs this would take one week). Since
our computer needs about 4.7 µs to do one full KeeLoq encryption, the
worst-case run time of our program is 245.26 KeeLoq encryptions.

When corrected for differences in CPU speed, our program runs just 2.25
times slower that the implementation of Indesteege et al. [9, Section 4].

5.2 Slide-algebraic attack

We also implemented the slide-algebraic attack [5, Section 7.2] by Courtois
et al.
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5.2.1 SAT solvers and Boolean normal forms

The slide and algebraic attack requires the use of a SAT solver, which can
be considered as a “black box”. SAT solvers solve the Boolean satisfiabil-
ity problem (SAT): given a Boolean formula in Conjunctive Normal Form
(CNF), find an assignment of variables such that the whole formula evalu-
ates to true if one exists, else output “unsatisfiable”. SAT is a well-known
NP-complete problem, so any algorithm that solves it must have an expo-
nential running time1. However, practical implementations are often able to
solve systems with up to thousands of variables and clauses in seconds.

Conjunctive Normal Form

A formula is in CNF if it consists of a conjunction of clauses (i.e., clauses
separated by logical-and operators). A clause consists of a disjunction of
literals (literals separated by logical-or operators). A literal is either a
variable or a negated variable.

A Boolean formula can always be transformed to CNF by applying dis-
tributivity and De Morgan’s laws. For example, Equation 5.7 is in CNF.

Some SAT solvers, such as CryptoMiniSat, also accept clauses which
consist of literals separated by xor-operators. This is convenient, since it
frees the programmer from converting an xor-clause consisting of n literals
into 2n−1 regular clauses.

Algebraic Normal Form

Another widely used Boolean normal form is the Algebraic Normal Form
(ANF). An equation is in ANF, if the right hand side is a sum of monomials
(and each monomial is a product of variables), i.e., if it can be written as:

f(x1, x2, · · · , xn) = a0+
a1x1 + a2x2 + · · · anxn+
a1,2x1x2 + a1,3x1x3 + · · ·+ an−1,nxn−1xn+
· · ·+
a1,2,··· ,nx1x2 · · ·xn (5.1)

For instance, Equation 1.9 is in ANF.

5.2.2 A mistake in Courtois et al.’s paper

According to Courtois et al. [5, Section 7.2], if you are given a slid pair
(P [j] = fk(P [i])), it is sufficient to write the equations for 64 rounds for the

1Assuming P 6= NP .
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two slid pairs:

P [j] = fk(P [i]) (64 equations)

C [j] = fk15..0,63..16(C [i]) (64 equations) (5.2)

In ANF there are 128 equations, 64 unknowns from the key and 2×32 un-
knowns from the intermediate values of the encryption state register. How-
ever, since the system is non-linear, it is possible that there are several
solutions. When running the attack, CryptoMiniSat outputs a wrong key
about half the time. For example for the following parameters:

k = 0x5cec6701b79fd949

P [i] = 0xf741e2db

We have:

P [j] = 0xca69b92

C [i] = 0xe44f4cdf

C [j] = 0xa6ac0ea2

The SAT solver may however output:

k′ = 0x5cef6603971dd949 6= k

Indeed we have:

P [j] = fk(P [i]) = fk′(P [i])

C [j] = fk15..0,63..16(C [i]) = fk′
15..0,63..16

(C [i]) (5.3)

The mistake lies in the fact that:

Ek(P [i]) = C [i] 6= 0xbbb828bc = Ek′(P [i]) (5.4)

which was not explicitly stated in the input.
To avoid this problem, we need to write the 464 missing equations bridging
P [j] to C [i]. The system then becomes:

P [j] = fk(P [i]) (64 equations)

C [i] = Ek(P [i]) (528 equations, but 64 are the same as above)

C [j] = fk15..0,63..16(C [i]) (64 equations)
(5.5)

for a total of 592 = 64 + 528 equations (in ANF).
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5.2.3 Implementation

Source code: keeloq cnf.cpp (outputs the equations in CNF, the output
must be fed to CryptoMiniSat).
Demonstration: can be found in the test courtois subdirectory. The
scripts test courtois.sh and test courtois negative.sh will do every-
thing for you. You may pass a list of options to the scripts to test out the
different variants (run ../keeloq cnf -h for a list of options).
Dependencies: This requires the program CryptoMiniSat version 1.2.11
[16]. The source code and binaries are included in the deliverables. Alterna-
tively, it is possible to use the program MiniSat2 [6].

Unlike the previous attack, no explicit algorithm was given in the paper,
so we had to devise the equations to be input to the SAT-solver ourselves.
We initially used CryptoMiniSat as a SAT-solver, since it allows xor clauses.
Later, we also used MiniSat2, the SAT-solver that was used by Courtois et
al. [5, Section 6.4].

The equations given in Section 1.1.1 are in ANF, and had to be converted
to CNF-with-xor before they could be solved by CryptoMiniSat. We did
not find a satisfactory ANF-to-CNF converter, so we decided to write one
ourselves. We proceeded in three steps:

• Step 1: Write the equations as they appear in Equations 1.9 and 1.12
(using CNF-with-xor clauses). The only nontrivial step was to handle
the multivariate monomials inside the NLF:

For instance, we can replace the monomial ade by an auxiliary variable
γ, and write the additional clauses corresponding to γ = ade:

(γ ∨ a) ∧ (γ ∨ d) ∧ (γ ∨ e) ∧ (γ ∨ a ∨ d ∨ e) (5.6)

• Step 2: Keep the encryption state equations (Equation 1.12) in CNF-
with-xor, but transform the equations of the NLF in CNF (with a 6
variable Karnaugh map). Equation 5.7 below shows the equivalence of
f = NLF(a, b, c, d, e) in CNF:

(f ∨ c ∨ e ∨ a ∨ b) ∧ (f ∨ c ∨ e ∨ a ∨ b) ∧ (f ∨ c ∨ d ∨ b)
∧ (f ∨ d ∨ e ∨ a ∨ b) ∧ (f ∨ c ∨ e ∨ a ∨ b) ∧ (f ∨ c ∨ d ∨ e)
∧ (f ∨ a ∨ b ∨ d ∨ e) ∧ (f ∨ a ∨ b ∨ d ∨ e) ∧ (f ∨ c ∨ d ∨ e)
∧ (f ∨ d ∨ e ∨ a ∨ b) ∧ (f ∨ c ∨ d ∨ e ∨ a) ∧ (f ∨ c ∨ d ∨ b)
∧ (f ∨ d ∨ e ∨ a ∨ b) (5.7)

• Step 3: Write everything in regular CNF by breaking up the 5-term
xor of Equation 1.12 into 16 clauses. After this step, we can also run
MiniSat.

A comparison of the number of clauses and variables generated can be
found in Table 5.2.
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Courtois’ version Corrected version
Step xor clauses Variables Clauses Variables Clauses

1 yes 1 536 4 608 6 608 20 848
2 yes 384 1 920 1 280 8 416
3 no 384 3 840 1 280 17 296

Table 5.2: Number of clauses and variables in the problem submitted to the SAT
solver for the slide-algebraic attack after the different steps

5.2.4 Experimental results

We simulated 100 runs of the attack for each setting, since the run time
of SAT solvers is highly variable and log-normally distributed [1, Section
13.5.3]. The following settings were tested: running the corrected and un-
corrected variants; after each step in the ANF-to-CNF conversion; when
given a slid pair (positive run) or random plaintexts (negative runs). Ev-
erything was tested with CryptoMiniSat 1.2.11, and step 3 was also tested
with MiniSat 2.0 (beta). The run times are summarized in Table 5.3.

Positive test Negative test
Step Program µtime σtime ok µtime σtime ok

Courtois et al.’s version: (128 equations)
1 cryptominisat 7.12 s 6.74 s 53% 17.2 s 9.62 s 50%
2 cryptominisat 1.30 s 1.12 s 57% 2.19 s 1.56 s 43%
3 cryptominisat 1.34 s 1.16 s 57% 2.27 s 1.26 s 54%
3 minisat2 1.16 s 1.10 s 51% 2.25 s 1.41 s 47%

Corrected version: (560 equations)
1 cryptominisat 9.50 s 6.52 s 100% 20.7 s 7.43 s 100%
2 cryptominisat 1.87 s 1.25 s 100% 3.63 s 1.46 s 100%
3 cryptominisat 2.12 s 1.39 s 100% 3.92 s 1.81 s 100%
3 minisat2 2.23 s 1.76 s 100% 4.40 s 2.09 s 100%

Table 5.3: Run time of the slide-algebraic attack, with a variety of parameters.
µtime is the average run time over 100 runs, σtime is the standard deviation, ok is
the probability the algorithm found the original key.

Assuming that all 232 instances can be run in parallel and that the
program halts as soon as it finds a solution (in practice, due to caching, all
instances should be run for some time, and if they did not complete they
should be put to sleep and the next unfinished instance should be run [4]),
we do not need to care about the run time of unsatisfiable instances. The
total run time would be 254.51 years

available 2GHz CPU cores . On our computer, performing
a full KeeLoq encryption takes 4.7 µs, so the run time of the full attack is
equivalent to 250.6 KeeLoq encryptions (which is a bit faster than Courtois
et al.’s results [5, Section 7.2]).
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Improving the attacks
against KeeLoq

In this chapter, several attempts to improve the attacks against KeeLoq
are described. We have first tried to find a better bias in the NLF; next,
we tried to find ways to adapt the attacks against KeeLoq to work for the
hopping code protocols; and finally we experimented with Gröbner bases,
an alternative to SAT solvers.

6.1 Finding a better bias in the NLF

The slide-correlation attack relies on the fact that the NLF has a bias of 1
8 [2]:

Pr[NLF(a, b, c, d, e) = d⊕ e] =
1
2

+
1
8

(6.1)

We have found a better bias (see findbias.cpp):

Pr[NLF(a, b, c, d, e) = c⊕ d ] =
1
2

+
1
4

(6.2)

Regrettably, this bias cannot be used to improve Bogdanov’s attack,
since the latter relied on the fact that the NLF could be approximated by
the first 16 bits of the text register (d and e represent positions 9 and 1 of
the text register, while c represents bit 20).

The better bias does not help with linear or differential cryptanalysis
either, because of the prohibitively high number of rounds of the cipher.

6.2 Adapting the slide-algebraic attack to hopping
codes

In Section 3.1.4 it was observed that all of the published key recovery attacks
work for the IFF protocol. It was also observed that simply guessing the
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initial counter value and then running the slide-meet-in-the-middle attack,
one could break the hopping code protocol in 261 KeeLoq encryptions. In
this section, we detail how we tried to break the hopping code protocol by
adapting the slide-algebraic attack.

6.2.1 Model

The attacker gathers 216 consecutive hopping codes with the same 16 MSB
in each plaintext. Since the 16 MSB contain only public information (serial
number and button status) which are either easily obtainable, or transmitted
in cleartext with each message, we assume she knows the 16 MSB.

We assume that the attacker does not know the initial counter value, so
she does not know the 16 LSB of each plaintext. However, since she gathers
consecutive codes, she knows the difference between the 16 LSB of each pair
of plaintexts.

6.2.2 Implementation

Source code: keeloq anf.cpp (with the -p option).
Demonstration: test hopping.sh in the subdirectory test courtois.

We slightly modify the slide-algebraic attack: two plaintexts are taken
at random and assumed to be a slid pair. The ciphertext, the 16 MSB of
each plaintext, and the 560 equations shown in Equation 5.5 are written.
Additionally, the following equation is written:

L79..64 = L15..0 + δ (mod 216) (6.3)

Where δ is known and equal to L79..64−L15..0 (mod 216). The above equation
can be easily translated to CNF by using the equations for a 16-bit full adder
and with the help of a 4-bit Karnaugh map.

We only ran the attack with slid pairs. As mentioned previously, the
probability of having a slid pair in 216 plaintexts is 63%.

6.2.3 Results

We used the same setup as in Chapter 5. We used CNF-with-xor (Step
2 in Section 5.2.3). Since running the full attack takes much too long, we
decided to leak some key bits1.

The results are summarized in Table 6.1. It is surprising that the more
key bits we guess, the faster the full attack becomes. Overall the results are
disappointing since running the original slide-algebraic attack and guessing
the initial counter value is about 7 times faster (but still slower than brute
force).

1Of course, for each key bit guessed, the complexity of the full attack doubles.
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Key leaked Trials µtime
a σtime

b Medtimec Full attackd

22 bits 400 0.212 s 0.114 s 0.220 s 269.461

20 bits 100 0.892 s 0.518 s 0.912 s 269.534

18 bits 25 4.08 s 2.55 s 3.86 s 269.727

16 bits 10 18.3 s 12.1 s 22.5 s 269.893

14 bits 10 99.6 s 60.7 s 123 s 270.337

12 bits 10 513 s 315 s 595 s 270.702

Originale 100 1.87 s 1.25 s 1.67 s 266.602

aAverage run time.

bStandard deviation of the run time.

cMedian run time.

dRun time of the full attack, in full KeeLoq encryptions (one encryption takes 4.7 µs).

eUsing the original slide-algebraic attack and guessing L15..0 instead of the key.

Table 6.1: Run time of the extension of the slide-algebraic attack

6.3 Gröbner Bases

Gaussian Elimination can be used to solve a linear system over GF(2).
KeeLoq and many other ciphers, however, can only be described by a sys-
tem of non-linear equations. As was stated before, SAT solvers can be used
to solve these systems numerically, but they typically only output one so-
lution. Another method is to use Buchberger’s algorithm or the Faugère
F4 algorithm, which both compute the Gröbner basis G of a system of non-
linear polynomials I over any field, such as GF(2) [18]. The Gröbner basis
G preserves all roots of I, and so it can be used to quickly compute all
solutions. The time required to compute a Gröbner basis is highly variable
(see Section 6.3.2), depends on the specific implementation [1, Section 15.7]
and may take a lot of memory (usually it crashes due to insufficient memory
[1, Section 15.7]). The monomial ordering (i.e. which variables appear first
in the solution) chosen also has a huge impact on the run time [18]. Several
computer algebra systems, such as Magma, Singular [8], or PolyBoRi [3],
implement algorithms for computing Gröbner bases.

For some systems of equations, computing the Gröbner basis is much
faster than using SAT solvers [1, Section 15.7]. Courtois et al. [5, Section
6.3] experimented with Singular’s implementation of Gröbner bases, but
with little success. We therefore decided that it was worthwhile to try to
break KeeLoq with Gröbner bases.
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6.3.1 Implementation

Source code: keeloq anf.cpp (by default outputs a PoliBoRi script, with
the -S option it outputs a Singular script).
Demonstration: groebner *.sh in the subdirectory test groebner.

Several tests were performed with both PolyBoRi and Singular2:

• Test 1: Given a random plaintext and key, compute the ciphertext (this
can be though as a sort of “unit test” to make sure that the equations
were written correctly).

• Test 2: Given a single known plaintext/ciphertext pair (KP), recover
the key.

• Test 3: Given two known plaintext/ciphertext pairs, recover the key.

• Test 4: The original version of the slide-algebraic key-recovery attack
(c.f. Section 5.2.2).

The polynomials for which the Gröbner basis was to be computed on,
were taken from Equation 1.12, which was already in the correct format.
The degree reduction technique mentioned in Courtois et al.’s paper [5, Sec-
tion 6.1] was used to write the NLF. Furthermore, all known variables were
directly substituted in the equations.

6.3.2 Results

Like in the case of SAT solvers, the run time to compute Gröbner bases
is highly variable. Also, the computations need a huge amount of memory.
We therefore limited the run time of all computations to 20 minutes and the
memory to 2 GiB. The run time for PoliBoRi is summarized in Table 6.2,
and the results for Singular’s slimgb function3 in Table 6.3.

Singular tends to allocate a lot of memory, and therefore frequently ran
out of memory on the larger problems after one to five minutes. Even if there
is a single solution, slimgb tends to output a Gröbner basis in non-reduced
row echelon form, which makes parsing the solution harder. In contrast,
PoliBoRi tends to use much less memory, and frequently ran out of time
on the larger problems. If the solution is unique, PoliBoRi always outputs
the Gröbner basis in reduced row echelon form. PoliBoRi’s performance is
slightly better than Singular’s, but this is not a surprise as PoliBoRi was
optimized for computations over Boolean rings (hence the name).

Compared to SAT solvers, the performance of the Gröbner basis compu-
tation is appalling. The results of test 2 and 3 strongly indicate that direct
2Magma was not included due to lack of availability.
3We also tried using the groebner function, but its performance was much worse than
slimgb.
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Rounds Trials Faileda Uniqueb µtime σtime Medtime
Test 1: (Encryption)

528 25 0% 100% 29.2 s 0.489 s 29.1 s
Test 2: (Key recovery with 1 KP)

64 25 0% 0% 0.315 s 0.006 s 0.31 s
68 25 0% 0% 3.34 s 1.89 s 2.72 s
72 10 50% 0% – – 444 s

Test 3: (Key recovery with 2 KP)
52 25 0% 44% 2.23 s 6.91 s 0.53 s
56 10 30% 43% – – 161 s

Test 4: (Key recovery attack with a slid pair)
48 25 0% 28% 45.1 s 98.8 s 8.56 s
52 6 100% – – – –

aPercentage of trials which didn’t complete after 20 minutes.

bPercentage of non-failed trials which output a unique solution to the system.

Table 6.2: Testing the Gröbner basis algorithm with PolyBoRi. Tests 2 to 4 are
all round-reduced, since running a full attack would take too long.

Rounds Trials Faileda µtime σtime Medtime
Test 1: (Encryption)

528 10 0% 197 s 6.92 s 196 s
Test 2: (Key recovery with 1 KP)

44 25 0% 4.94 s 14.5 s 0.25 s
48 3 100% – – –

Test 3: (Key recovery with 2 KP)
48 25 0% 0.032 s 0.011 s 0.03 s
52 10 20% – – 18.8 s
56 4 100% – – –

Test 4: (Key recovery attack with a slid pair)
44 25 0% 0.162 s 0.312 s 0.06 s
46 10 30% – – 15.4 s
48 4 100% – – –

aPercentage of trials which ran out of memory.

Table 6.3: Testing the Gröbner basis algorithm with Singular’s slimgb function.
Tests 2 to 4 are all round-reduced, since running a full attack would take too much
memory.
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key recover for full-round KeeLoq is slower than bruteforce. The results of
test 4 show that a direct key recovery attack using Gröbner basis and our
method is slower than using SAT-solvers and slower than brute force.



Chapter 7

A new key schedule

In this chapter, we will present a new key schedule for KeeLoq that will
render the cipher immune to slide attacks.

7.1 Resistance against slide attacks

The prerequisite for launching a slide attack is that the key schedule repeats:

∃s > 0 ∀i, s ≤ i < 528 K
〈i−s〉
0 = K

〈i〉
0 (7.1)

For the regular KeeLoq key schedule (which is vulnerable to slide attacks),
this equations is satisfied for s = 64.

7.2 Description of the new key schedule

Let r527..0 ∈ {0, 1}528 be a vector of 528 numbers. This vector shall be part
of the description of the cipher.

In each round i, a binary rotation of the key register ri + 1 bits to the
right shall be performed:

K
〈i+1〉
63..0 = RORri+1(K〈i〉63..0) (7.2)

The rest of the cipher shall operate as per Equations 1.4, 1.6 and 1.8.
Intuitively, the key register is shifted either one or two bits to the right.

This is somewhat similar to the key schedule of the Data Encryption Stan-
dard (DES) [17, p. 25].

7.2.1 Choosing the parameter r

The resistance of this new key schedule depends critically on r: indeed, if
all elements of r are 0, the regular KeeLoq key schedule is performed.

49
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Case 1: Full random

One possibility would be to choose each element of r independently at ran-
dom. There are two problems with this approach:

• First, it unnecessarily complicates the description of the cipher. Hard-
ware implementations will need much more gates, and software imple-
mentations will need to store at least an extra 528 bits (66 bytes).

• Second, with high probability, the usage of the key bits will be unevenly
distributed (see Table 7.1).

In what follows, r527..0 = b(π−3) ·2528c will be used as a representative1

of a random number (case 1).

Case 2: Partial random

A better method, would be to choose only the first R elements of r at random,
and then “recycle” the old numbers: ∀i ≥ R ri = ri−R. The description of
the cipher will be much simpler, as it requires the storage of only R extra
bits of information.

We can again use the digits of π as our random number: for case 2 we
have chosen to use R = 31 bits.

Case 3: Optimize for smallest R

An even better approach would be to quit using random numbers, and in-
stead try to find the smallest R (with corresponding r) such that these
essential properties are satisfied:

• All key bits must be used.

• It must not be possible to mount a slide attack on the key schedule.

We have determined experimentally that for R ≤ 8 there exists no r
which satisfies these properties2, and that for R = 9 there are 246 satisfac-
tory values of r8..0: we shall use the first one r = 0000000112 = 0x03 as
representative for case 3.

1In this definition, π is the well-known mathematical constant 3.141592 · · · . The constant
r is not really random, but is a “nothing up my sleeve number”: a number exhibiting good
random-like properties, but which is “above suspicion of hidden properties” (Wikipedia).

2After 64 ·R rounds, the key register must necessarily be the same as in round zero, so it
must be possible to launch a slide attack with window size s = 64 ·R.
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Key schedule R Min Max St. Dev Slide attacks
Regular KeeLoq 1 8 9 0.433 yes: s = 64
Case 1a 528 4 12 1.7 no
Case 2b 31 7 10 0.935 no
Case 3c 9 8 9 0.433 no

ar527..0 = b(π − 3) · 2528c = 0x243F6A8885A308D2A82B5E7BAC1594F52A · · ·
br30..0 = b(π − 3) · 231c = 0x121FB544

cr8..0 = 0000000112 = 0x03

Table 7.1: Comparing the distribution of the key bits (number of occurrences of
the least and most frequently used key bit, standard deviation on the number of
occurrences of each key bit), and susceptibility to slide attacks, for regular KeeLoq
and the three variants of the proposed key schedule

7.3 Performance

Source code: speed.cpp and keeloq keysched.cpp.
We compared the performance of the 3rd key schedule (r8..0 = 0x03)

with the regular one. We used the implementation by Ruptor [15] for the
latter. The setup was the same as in chapter 5. The source code was
compiled both will full compiler optimizations, and without any compiler
optimizations. The results are presented in Table 7.2.

The new key schedule performs about as well as the old one. We can see
that with full optimization, the decryption function of the new key schedule
is noticeably slower; we surmise that this is due to caching effects of the
CPU and has no importance for implementation on more modest hardware.

-O3 optimization -O0 optimization
Key schedule Encryption Decryption Encryption Decryption

Old 4.651 µs 4.527 µs 8.641 µs 8.205 µs
New 4.890 µs 7.360 µs 8.509 µs 8.448 µs

Table 7.2: Comparing the performance of the old and new key schedule, both
compiler-optimized (-O3) and non-optimized (-O0). We ran one million encryptions
and decryptions for each scenario.

7.4 Conclusion

For the improved key schedule, case 3, viz. R = 9 r8..0 = 0000000112, shall
be used. We can see from Table 7.1 that this alternative offers protection
against slide attacks, has a key usage distribution similar to that of the
regular KeeLoq, and requires the least amount of extra resources in software
and hardware implementations.



Conclusion

Although there are claims of widespread usage of KeeLoq in the literature
[2, 5, 7, 9, 10, 19], we were able to identify the usage of KeeLoq only in a
garage door opener, but not in any of the cars key we analyzed — all man-
ufacturers we analyzed seem to have switched to ciphers with longer block
length. Furthermore, all remotes seemed to use single-way communication,
casting some doubt over the widespread usage of the IFF protocol.

We found out that implementing the slide-meet-in-the-middle attack —
the fastest attack which does not require an unrealistic data gathering effort
— is very easy, and that performing the full attack is feasible with modest
hardware. We also found that the slide-algebraic attack as published by
Courtois et al. [5, Section 7.2] was incomplete, and that the published run
time is difficult to achieve in practice due to the parallelization requirements.

We have tried to improve the attacks against KeeLoq, especially to make
a workable key recovery attack against hopping codes, but we could not find
anything faster than the slide-meet-in-the-middle and guessing the initial
counter value (261 KeeLoq encryptions).

Finally, we have seen that it is possible to slightly change the key schedule
of KeeLoq to make it immune against slide attacks, making it invulnerable
to all currently published attacks. This change has very little performance
penalty.

Future work

We believe that the potential of slide attacks against KeeLoq in IFF mode
has been exhausted. No satisfactory attack against KeeLoq in the prevalent
hopping code mode exists yet, so this problem might be of interest for future
research.

Our survey of car and garage keys comprised only five brands; in order
to determine the full extent of KeeLoq usage, radio traces of more manufac-
turers are needed.
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Theoretical and practical knowledge gained

For me, it was an interesting experience to study a subject in detail: applying
the ideas gathered in the litterature analysis, implementing the attacks in
software and trying out variations. Seeing a real-world cipher in action and
studying a new form of cryptanalysis in detail by myself was a very gratifying.
It was also the first time I was confronted with actual radio traces, which I
decoded by trying various techniques lernt a few semesters ago. Frustration
and disapointment was also involved, especially when my ideas turned out
to be worse when tried out. Overall, the most valuable gain was to get a
good glimpse of what reasearch in cryptography is.
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basis computations with Boolean polynomials. Journal of Symbolic
Computation, 44(9):1326–1345, 2009.

[4] N.T. Courtois. Personal communication, December 9, 2009.

[5] N.T. Courtois, G.V. Bard, and D. Wagner. Algebraic and slide attacks
on KeeLoq. Lecture Notes In Computer Science, 5086:97–115, 2008.
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