
Anonymous Access Control with Attribute-Based
Encryption

Robert R. Enderlein

School of Computer and Communication Sciences

Master’s Thesis

March 18, 2011

EPFL Supervisor
Prof. Serge Vaudenay

EPFL / LASEC

IBM Supervisor
Dr. Jan Camenisch

IBM Zürich Research Lab

This thesis is submitted in partial fulfilment of the requirements for the degree of Master of
Science in Communication Systems at the École Polytechnique Fédérale de Lausanne (EPFL).
The thesis was written during a six-month project from September 21st, 2010 to March 18,
2011 at the IBM Zurich Research Laboratory in Rüschlikon under the supervision of Dr. Jan
Camenisch.

Acknowledgements: I thank Dr. Jan Camenisch, Maria Dubovitskaya, and Dr. Gregory
Neven for their supervision, advice, comments, and for proofreading my report ; Prof. Serge
Vaudenay for accepting to supervise my master’s thesis ; Marisa Marciano Wynn, and Sylviane
Dal Mas for helping me find this position. I thank the IBM Zurich Research Laboratory in
Rüschlikon for financial support, and all its members for making my stay a pleasant one. Last
but not least, I am grateful to my parents for support, and for doing my laundry and nice meals
during the week-ends :-) .

Abstract: We present a scheme that allows secure and privacy-preserving access control of
stored data — e.g., medical records — on potentially untrusted databases.

Each record is protected by a hidden access-control policy. Users receive their keys from a po-
tentially untrusted issuer. Records can be accessed fully anonymously: the databases never learn
anything about the requester nor his choice. An extension to our scheme allows for expiration
and revocation of records and keys.

Our solution combines hidden–ciphertext-policy attributed-based encryption with oblivious
transfer. It is proven secure in the CRS model (without random oracles) under the generic
bilinear group setting and SXDH assumption. Our scheme is more efficient and allows a larger
class of access control policies than existing approaches based on credentials. We have fully
implemented it in C++. It is scalable and fast enough to be used in practical settings.

Keywords: Privacy, Oblivious Transfer, Attribute-Based Encryption.

2

Contents

Table of Contents 3

1 Introduction 6

1.1 Motivation . 6

1.2 Ingredients . 6

1.3 Our Contribution . 6

1.4 Related Work . 7

2 Definitions 9

2.1 Syntax . 9

2.2 Record Policies . 9

2.3 Algorithms and Protocols . 10

2.4 Security . 11

2.4.1 Real World . 12

2.4.2 Ideal World . 13

2.5 Security Properties . 14

2.5.1 Limitations . 15

3 Preliminaries 15

3.1 Bilinear Maps . 15

3.2 Assumptions . 15

3.3 Perfect Zero-knowledge Proofs of Knowledge . 17

3.4 Non-interactive Zero-knowledge Proofs . 18

3.5 Hidden–ciphertext-policy Attribute-based Encryption 18

3.5.1 Security Game for HABE . 19

3.6 Structure-Preserving Signatures . 20

4 Our Construction 20

4.1 Main Idea . 20

4.2 The Construction . 21

4.2.1 Group Setup . 21

4.2.2 CRS Setup . 22

4.2.3 Issuer Setup . 22

4.2.4 Check Issuer Key . 22

4.2.5 Database Setup . 22

4.2.6 Check Database Key . 22

4.2.7 Issue Record . 23

4.2.8 Check Record . 23

4.2.9 Issue Key . 23

4.2.10 Query . 24

4.3 Theoretical Efficiency . 26

5 Security Analysis 26

5.1 Completeness . 29

5.2 Corrupted Database . 29

5.3 Corrupted User . 30

5.4 Corrupted Issuer + Some Corrupted Databases 32

5.5 Proof of Lemma 7 . 34

3

5.6 Proof of Lemma 8 . 35

5.7 Proof of Lemma 9 . 37

5.8 Proof of Lemma 10 . 38

6 Alternative Construction 39

6.1 Selective Security . 39

6.2 The Construction . 39

6.2.1 Group and CRS Setup . 39

6.2.2 Issuer Setup and Check Issuer Key . 39

6.2.3 Database Setup and Check Database Key 40

6.2.4 Key Generation . 40

6.2.5 Record Issuing . 40

6.2.6 Decrypting a Record . 40

6.3 Security Proof of Alternative Construction . 42

6.3.1 Corrupted Database or Corrupted Issuer+Database 42

6.3.2 Corrupted User . 42

7 Implementation 43

7.1 Measured Efficiency . 44

8 Extensions 45

8.1 Revocation of Keys . 45

8.1.1 Additional Security Guarantees . 45

8.1.2 Modified and Additional Algorithms . 46

8.1.3 Modified Real and Ideal World . 46

8.1.4 Construction . 46

8.1.5 Possible Improvements . 47

8.2 Record Revocation Lists (RRL) . 48

8.3 Key / Record Expiration . 48

8.4 Anonymity Revocation . 48

8.5 Preventing Denial-of-service . 48

8.6 Only Allow Databases Vetted by the Issuer . 48

8.7 Allow Everybody to Publish Records . 48

9 Conclusion 49

9.1 Future Work . 49

References 50

A Hidden–ciphertext-policy Attribute-based Encryption 54

A.1 Match-concealing Secure Construction . 54

A.1.1 Trusted Issuer Setup . 54

A.1.2 User Key Generation . 54

A.1.3 Issue Record . 54

A.1.4 Offline Record Decryption . 55

A.2 Selectively Secure Construction . 55

A.2.1 Selective security . 55

A.2.2 Trusted Issuer Setup . 55

A.2.3 User Key Generation . 55

A.2.4 Issue Record . 56

4

A.2.5 Offline Record Decryption . 56

B Sigma-Protocol 56
B.1 Properties of Sigma Protocols . 57
B.2 Construction . 57

B.2.1 Commit . 57
B.2.2 Challenge . 58
B.2.3 Open . 58
B.2.4 Verify . 58
B.2.5 Extractor . 58
B.2.6 Simulator . 58

C Perfect Zero-knowledge Proof of Knowledge 58
C.1 Properties of Perfect ZKPoK . 59
C.2 Extensions to Sigma Protocols . 59

C.2.1 Disjunctions of Sigma Protocols . 59
C.2.2 Sigma Protocol of Commitment Relationship 60

C.3 The Construction . 60

D Groth-Sahai Zero-knowledge Proofs 61
D.1 Types of Common Reference String (CRS) . 61
D.2 Security Properties . 61
D.3 Construction . 62

D.3.1 Transformation . 62
D.3.2 CRS Setup . 62
D.3.3 Computing the Proof . 63
D.3.4 Verification . 63

E Structure-preserving Signatures 63
E.1 Existential Unforgeability under Chosen-message Attack 63
E.2 Key Generation (SigKeyGen) . 64
E.3 Signing (Sign) . 64
E.4 Verification (SigVerify) . 64
E.5 Re-randomizing a Signature (SigRerand) . 64
E.6 ZKPoK of Private Key (SignKeyZKPoK) . 65

5

1 Introduction

1.1 Motivation

Existing cryptographic techniques do not provide sufficient privacy guarantees to handle long-
term storage of medical data. Conventional key management techniques fail to take into account
that at record creation, the set of users which are authorized to decrypt are not known by
name—in fact the doctor you will consult in eight years time might not have entered university
yet. It would be much more preferable to be able to specify the recipients by role, such as “all
practicing cardiologists”, and trust the key issuing authority to manage the set of permissions
each doctor has. For the sake of patient privacy, the set of authorized recipients of a record
must remain hidden: not many people would like it to be known that they are being treated
by an oncologist, a psychiatrist, or a plastic surgeon. The doctor in turn would like not to be
bothered by the press if he is treating a celebrity patient.

Medical data is subject to a set of stringent laws. In Switzerland for example, it must
be kept for 10 years and then destroyed. This means that there must exist some mechanism
enforcing expiration/revocation of the records (and of course, sane key-management also requires
expiration/revocation of the doctors’ keys). Each decryption attempt must therefore be vetted
by the database maintainer. Of course, in order to safeguard the privacy of the patients, this
revocation check must not reveal anything besides whether the record and key are fresh.

Our scheme could also be useful in a military setting: documents are generally assigned a
classification (“secret”, “top secret”, etc.) and not encrypted to specific users. Is often desirable
to hide the classification level of a document to prevent targeted attacks. It is useful to hide the
set of users who have access to a specific file to prevent bribery or social engineering attacks.
Attempts to decrypt the whole database by a malicious user, Wikileaks style, can de detected
at the decryption servers and curtailed. Expiration and revocation of keys are also paramount
in this setting.

1.2 Ingredients

In this paper, we present a scheme that combines hidden–ciphertext-policy attribute-based
encryption (HABE) [NYO08, Nis08], adaptive oblivious transfer (OT) [CNS07], and (optionally)
anonymous revocation [NFHF09, CDNZ11].

In Nishide et al.’s construction [NYO08] a trusted issuer selects a number of categories, and
for each category chooses a set of permissible attributes. Each user receives a key associated
with a list of attributes: one from each category. Each ciphertext is associated with an access
structure (or policy), which is a subset of attributes. This access structure is hidden, meaning
that one cannot recover it from the ciphertext alone. A user can decrypt a ciphertext if each
attribute in his key is an element of the ciphertext access structure. One could view the cipher-
text policy as implementing a limited version of conjunctive normal form: within a category,
the policy specifies an OR condition on the attribute the user key has for that category; and all
attributes of the key have to be in the access structure, basically an AND condition.

1.3 Our Contribution

We modify Nishide et al.’s scheme so that: firstly, users cannot decrypt offline anymore (so
that the database retains control over the ciphertext, and can thus limit the number of decryp-
tion queries or enforce expiration/revocation); secondly, encryptors prove their ciphertext was
computed correctly; and finally, the issuer doesn’t have to be a trusted party.

6

Roughly speaking, our scheme works like this: the issuer defines a special zeroth category
containing only one permissible attribute, he labels the latter “issuer”. All keys he issues will
therefore contain this “issuer” attribute. Each database in the system define a new permissible
attribute for that zeroth category, which it labels “database %” (% being the database index).
When a database issues a record, it excludes the “issuer” attribute from the access structure,
but includes its own “database %” attribute. A user cannot decrypt on his own, since the
“issuer” attribute of his key is not in the access structure of the ciphertext. To decrypt, he
needs to query the database for a piece of information which will allow him to proceed with
the decryption of the ciphertext without worrying about the zeroth category. This piece of
information is tailor-made for his key and his choice of record, so he cannot use it to decrypt
another record, and none of his friends can use it to decrypt the same record with their keys.

To make sure the query protocol reveals no information to the database, and at the same
time make sure the user doesn’t try to pass invalid ciphertexts to the database, parts of each
record and parts of each key are signed with a signature scheme that allows zero-knowledge
proof-of-possession. For this purpose we make heavy use of zero-knowledge proofs [CDM00]
and a signature scheme that works with elements of a bilinear group [AFG+10, AHO10]. This
idea is somewhat similar to the concept of k-out-of-n oblivious transfer [CNS07].

To handle the case where the database might be dishonest, we require that all databases
publish a non-interactive proof [GS08] that the ciphertexts they issue were computed honestly.1

We need that proof to be non-interactive so that the record issuing protocol runs in constant
time with respect to the number of users.2

To handle the case where the issuer and the database both are dishonest, we transform the
key issuing algorithm of Nishide et al.’s scheme [NYO08] into an interactive protocol between
the issuer and the user. Without this step, an honest user who is not authorized to decrypt a
ciphertext might nevertheless recover the correct plaintext due to the way the dishonest issuer
and database chose the supposedly random values in his key and ciphertext.3

Our construction is secure under the generic bilinear group model with type-3 pairings
[GPS08].

1.4 Related Work

Attribute-Based Encryption There are a number of papers on the subject of attribute-
based encryption [SW05, BSW07, NYO08, LOS+10] and the related concept of predicate en-
cryption [KSW08, LOS+10]. All of these schemes of course allow offline decryption, which
basically means that expiration/revocation mechanisms are impractical or insecure.

Some of these papers [KSW08, NYO08, LOS+10] are attribute-hiding, meaning that users
cannot deduce anything about the policy of a ciphertext except the fact that their key satisfies it
or not. Katz et. al’s [KSW08] and Lewko et. al’s [LOS+10] schemes allows for conjunctions and
disjunctions in the policy, but requires composite-order bilinear groups (order is the product of
three primes). Nishide, Yoneyama and Otha’s scheme [NYO08] allows for slightly less powerful
policies (multi-valued attributes) as described in Section 2.2.

All of these schemes except for Lewko et al.’s [LOS+10] and the second construction of

1 Users who try and decrypt a dishonest ciphertext will each recover a different plaintext, even if their key
satisfies the policy of the ciphertext.

2We make the assumption that the database is not directly involved with broadcasting the ciphertext to all
users. It can for example publish it on a web server, an anonymous ftp server, or ship a DVD containing all
ciphertexts to all users.

3This problem is arguably only of limited interest in the real world, since the only harm caused to the user
in that case is that he deduces incorrect information about the policy of the record. His privacy is maintained.
However, it is necessary to handle this step to ensure that our security proof is sound.

7

Nishide et al. [NYO08]4 are only selectively secure, meaning that the adversary must com-
mit to the policies he wishes to be challenged on before he sees the system public key. The
security proof of Nishide et al.’s second construction is in the generic group model [Nis08].
Lewko et al.[LOS+10] claimed they introduced the first fully secure ABE scheme, but they use
composite-order bilinear groups, which cannot be generated without a trusted third party.

Oblivious transfer There is an extensive body of literature on the subject of oblivious trans-
fer (OT). The variant of OT that we use in this paper is the k-out-of-n variant, which was in-
troduced by Naor and Pinkas [NP99]. In k-out-of-n OT, a user may query for up to k different
ciphertexts from a database of n ciphertexts. The database is guaranteed that the user didn’t
learn anything about the (n− k) records that weren’t queried. The user is guaranteed that the
database didn’t learn anything about his choice, and that the database didn’t substitute any
record with another one between two of his queries. Camenisch et al. [CNS07] introduced the
adaptive variant of k-out-of-n OT in 2007, and gave an efficient constructions in the standard
and random oracle models.

Several additions to the adaptive k-out-of-nOT protocol were made following the publication
of the original paper. For instance, Camenisch et al. [CDN09] introduced access control in 2009:
users are issued credentials, and a list of required credentials is associated to each record. To
complete the OT protocol, the user must prove he possesses all credentials associated to the
ciphertext he wants to access. Compared to our scheme however, the list of required credentials
is in the clear (even though the list is not revealed during the query protocol).

The recent paper by Camenisch et al. [CDNZ11] is perhaps the most similar to our approach.
Instead of attribute-based-encryption, their approach was to use credentials to enforce access
control. Their ciphertext policy is slightly weaker than ours: in their scheme they associate
a set of attributes (from a finite universe of ` attributes) to every credential and ciphertext;
decryption is possible if and only if all attributes in the ciphertext are present in the credential.
Our ciphertext-policy subsumes theirs.5 Furthermore, the communication cost and the compu-
tational cost borne by the database in each query is linear to the number of attributes in their
scheme, versus constant in our scheme (the price to pay is that in our scheme, the size of the user
keys is larger by a much bigger constant factor than theirs)—our scheme is therefore a better
choice if a large number of queries are to be expected (as soon as users query asymptotically
more than a constant number of ciphertexts).

Nakanishi et al. [NFHF09] introduced revocable group signatures with constant-time and
zero-knowledge verification, which can be used to implement revocation of user keys [CDNZ11].
We also use their ideas in our scheme for the same purpose.

It is of course possible to implement an oblivious transfer protocol with hidden access pol-
icy of arbitrary complexity by using Yao’s generic two-party computation techniques [Yao82];
however the communication cost associated with each query will be linear in the size of the
database times the number of users, versus constant-time6 in our approach.

4 It is not clear from their conference paper [NYO08] that their second construction is non-selectively secure.
This statement (together with the proof of security of the scheme) appears in Nishide’s PhD thesis [Nis08, p. 23].

5We set the same number of categories n in our scheme than they have attributes `: n = `. Each category
in our scheme will have two attributes: 0 and 1. When they issue a key with credentials {di}`i=1, we issue a key
with attribute Li such that ∀i ∈ N∗n+1 : Li = di. When they issue a record with ACL {ci}`i=1, we issue a record
with ciphertext policy Wi = {0, 1} if ci = 0, and with policy Wi = {1} if ci = 1.

6Assuming a constant security parameter κ. If the security parameters is not constant, then the run time is
O(κ3).

8

2 Definitions

An anonymous access control with Hidden–ciphertext-policy attributed-based encryption and
oblivious transfer (HABE-OT) scheme is run between the following parties:

• An issuer, who is responsible for setting up the system, generating the keys of the users,
and revoking them.

• Database maintainers (databases for short), who are responsible for encrypting the
records—which they can then publish on a regular file-server or ship on a DVD to all
users [CNS07]—, revoking the records’ ciphertexts, and assisting the users during the
decryption protocol. Several independent databases may coexist in the system.

• Users, who want to decrypt ciphertexts, and must interact with the database in order to
do so. After they received their key, users are completely anonymous and the choice of
ciphertexts they submit for decryption will remain private.

Let I denote the issuer, D the set of all databases, D% the database with index %, U the set
of all users, and Uϕ the user with index ϕ.

2.1 Syntax

By N we denote the set of natural numbers, by Nn the set of all natural numbers between 0
and (n− 1). By Zp we denote the ring of integers modulo p. By G1, G2, GT we denote bilinear
groups of prime order p. We use N∗n etc. to denote Nn \ {0}.

If κ ∈ N, then 1κ denotes the string consisting of κ ones. If A is a set, then a
$← A means we

set a to a random element of that set. If A is a Probabilistic Polynomial-Time (PPT) algorithm

or interactive machine, then y
$← A(x) means we assign y to the output of A when run with

fresh random coins on input x.

If A and B are two interactive machines, then let A ←→ B denote the interaction between

these two machines. We will add a text over the arrow
Setting←→ to denote the case where there are

more than 2 machines interacting, but where we wish to focus specifically the two machines A
and B. Let OutA(A ↔ B) denote A’s final output in the interaction.

We say that a function ν : N 7→ [0, 1] is negligible (denoted ν = negl.) if its inverse is
increasing faster than any polynomial. Formally: ∀c ∈ N : ∃κc ∈ N : ∀κ ∈ N : κ > κc =⇒
ν(κ) < κ−c.

In this paper, when we talk about negligible functions, we always mean negligible with
respect to the security parameter κ. Unless noted otherwise all algorithms and interactive
machines are PPT and we assume they implicitly take 1κ as an extra input.

2.2 Record Policies

We inherit the framework of Nishide et al. [NYO08] for access control.

Before issuing the system public key, the issuer chooses n ∈ N and
(
ni ∈ N

)n
i=1

, the total
number of regular categories, and the number of attributes in each category. The issuer may
assign labels to these categories and attributes (as we did for Figure 1).

The keys issued to users are associated with a list of attributes L =
(
L1, . . . , Ln

)
, one from

each category: ∀i ∈ N∗n+1 : Li ∈ Nni .
A database associates a ciphertext policy W to each record it encrypts. W could be thought

of as a subset of attributes, however for notational convenience we will segregate the attributes

9

of different categories: we thus define W to be a list of subsets of attributes. We write W =
(W1, . . . ,Wn) where ∀i ∈ N∗n+1 : Wi ⊂ Nni and where % 6= 0 is the database index.

A key is authorized to decrypt a given ciphertext (we also say that the key satisfies the
policy of the record/ciphertext) if and only if all attributes in the key are also in the ciphertext
policy ∀i ∈ N∗n+1 : Li ∈Wi.

For instance, in Figure 1 the issuer has set n = 5 and
(
ni
)n
i=1

=
(
6, 2, 6, 5, 3

)
. The ciphertext

policy that is shown is
(
Wi

)n
i=1

=
(
{0, 1}, {1}, {0, 1, 2}, {0, 2}, {1, 2}

)
. For example Alice, age 23,

and full-time predoc in life sciences, is issued a key with the attributes
(
Li
)n
i=1

=
(
1, 1, 2, 2, 2

)
.

Alice’s key satisfies the policy W , she would therefore be able to decrypt the message after
interacting with the database. Eve, age 26, who is in the same program as Alice, will receive a
key where L1 = 2. Her key does not satisfy the policy, and she would not be able to decrypt
the ciphertext (she would notice that only after interacting with the database).

Categories

Age Groups Gender Position Faculty Work load

≤ 17

18 – 24

25 – 29

30 – 49

50 – 64

≥ 65

M

F

Bachelor

Master

Predoctoral

Postdoctoral

Professor

Administrative

Computer &

Engineering

Life sciences

Basic sciences

Architecture,

Sabatical

Part-time

Full-time

professional

researcher

assistant

student

student

communication

civil & environ.

sciences

engineering

Figure 1: An example ciphertext policy, with labels attached to the categories and attributes.
Dark and crossed out boxes represent attributes which are not part of the policy, while light
boxes represent attributes which are part of the policy. This policy can be used for example for
pictures of a student’s party, which should only be accessible by female students aged below 24
in computer, communication or life sciences.

2.3 Algorithms and Protocols

An HABE-OT scheme is a set of eight probabilistic polynomial-time algorithms or protocols:

• IssuerSetup : I(n, {ni}ni=1)
$→ (PI,SI).

The issuer runs this algorithm to generate the system-wide public key PI and correspond-
ing secret key SI. The input to this algorithm is the number of categories n and for each
category, the number of attributes ni in it.

• CheckIssuerKey : OutUϕ
(
Uϕ(PI)←→ I(PI,SI)

) $→ b and OutD%
(
D%(PI)↔ I(PI,SI)

) $→ b.
Upon receiving the public key of the issuer, each user and each database runs this protocol
with the issuer, so that the latter can prove in zero-knowledge that he knows the secret
key corresponding to his public key. Common input is the issuer’s public key. The issuer
private input is his secret key. The output is a bit b that says whether the user/database
accepts the public key of the issuer or not.

10

• DatabaseSetup : D%(PI)
$→ (PD(%),SD(%)).

The database % runs this algorithm to generate its public-key PD(%) and corresponding
private key SD(%).

• CheckDatabaseKey : OutUϕ
(
Uϕ(PI,PD(%))←→ D%(PI,PD(%),SD(%))

) $→ b.
Upon receiving the public key of the database %, each user runs this protocol with the
database %, so that the latter can prove in zero-knowledge that it knows the secret key
corresponding to its public key. Common input is the issuer’s and database’s public keys.
The database’s private input is its secret key. The output is a bit b that says whether the
user accepts the public key of the database or not.

• IssueRecord : D%(PI,PD(%),SD(%),M (%,ψ),W (%,ψ))
$→ CT(%,ψ).

The database % runs this algorithm to publish a new record ψ. The input are the database’s
key pair, the issuer’s public key, the plaintext M (%,ψ) ∈ GT of the record, and the policy

W (%,ψ), ∀i ∈ N∗n+1 : W
(%,ψ)
i ⊂ Nni . The output is the ciphertext CT(%,ψ).

• CheckRecord : Uϕ(PI,PD(%),CT(%,ψ))
$→ b.

Upon receiving a ciphertext CT(%,ψ) from a database %, each user does a check to test
whether it is correctly formed or not. The output is a bit b indicating the result of that
check.

• IssueKey : OutUϕ
(
Uϕ(L(ϕ),PI)←→ I(ϕ,L(ϕ),PI,SI)

) $→ SU(ϕ).

The user ϕ and the issuer run this interactive protocol to generate a new secret key SU(ϕ)

for the user ϕ. Common input are the user index ϕ (this is an authenticated channel),

attributes L(ϕ), ∀i ∈ N∗n+1 : L
(ϕ)
i ∈ Nni to associate with the key, and the public key of

the issuer. The issuer additionally has to provide his secret key as private input. Only
the user receives output from this protocol: namely his secret key SU(ϕ).

• Query : OutUϕ
(
Uϕ(PI,PD(%),CT(%,ψ),SU(ϕ))←→ D%(PI,PD(%),SD(%))

) $→M ′.
The user ϕ queries the database % in order to attempt to decrypt the ciphertext of record
ψ. The common input is the public keys of the issuer and database. The user’s private
input is his secret key and the ciphertext of record ψ. The database’s secret input is
its private key. Only the user receives output from this protocol: namely the recovered
plaintext M ′. If decryption was successful, M ′ = M (%,ψ), and if it failed then M ′ = ⊥.
The database does not know with which user it interacted with, nor which ciphertext it
helped decrypt. The user does not recover the policy W (%,ψ) of the record.

We assume the CRS and group setup have already been generated and are implicitly added
as common input to all eight algorithms/protocols.

2.4 Security

We define the security of the HABE-OT protocol through an indistinguishability argument
between a real world and an ideal world construct, as introduced by the UC framework [Can00]
and reactive systems security [PW00, PW01], and used successfully in several papers [CNS07,
CDN09, CDNZ11].

In the real world there are a number of players who run some cryptographic protocols with
each other. Some of these players are honest and follow the original protocol. The other,
dishonest, players may behave arbitrarily and are controlled by an adversary A. We define an
environment E (a PPT interactive machine) which provides all the inputs and outputs of all the
honest players, and interacts arbitrarily with the adversary.

11

In the ideal world, the players do not run any cryptographic protocols, but interact with
a trusted third party T. The latter applies the functionality that the cryptographic protocols
are supposed to realize. The honest players do nothing more than relaying messages from the
environment to the trusted party, and vice-versa. The environment E again provides the inputs
and outputs for all honest players and interacts arbitrarily with the adversary S controlling the
dishonest players.

We say that a scheme securely implements a scheme if, for every real-world adversary A
(a PPT interactive machine), and every environment E , there exists an ideal-world adversary
S (also a PPT interactive machine) controlling the same parties as A, such that E cannot
distinguish if it is interacting with A in the real world or S in the ideal world. More formally,
we define the HABE-OT real-world / ideal-world distinguishing game for a PPT algorithm E :

• Before the start of the protocol, the environment E must select a subset of parties to cor-
rupt, and provide an arbitrary probabilistic polynomial-time (PPT) algorithm describing
their behaviour (which we collectively call A).

• After that a challenger flips a random coin b. If b = 0 then E will interact with the honest
parties and the corrupted parties he defined in the real world. If b = 1, then E will interact
with the honest parties and a simulator S in the ideal world.

• Thereafter, E may interact with the honest parties as described later in Section 2.4, and
arbitrarily with the corrupted parties. Honest parties will strictly follow their respective
protocols; all corrupted will behave as per the PPT algorithm A.

• Finally E outputs a guess b′ of b.

The advantage of E is defined as being:

AdvHABE-OT
E,A

def=
∣∣∣Pr
[
OutE(E Real←→ A)

$?
= 1
]
− Pr

[
OutE(E Ideal←→ S)

$?
= 1
]∣∣∣

The scheme is secure if

∀A : ∃S : ∀E : AdvHABE-OT
E,A = negl.

We must stress that E and A are not the same entity. One way E can get an advantage in
distinguishing between the two worlds is when A can recover information (such as the plaintext
or the policy of a record) it would not be able to get in the ideal world.

We denote messages in the following way: 〈S,R, str, arg1, arg2, . . .〉 where S is the sender of
the message, R is the recipient of the message, str is a string identifying the type of message
and arg1, arg2, . . . are the payload. When the message is broadcasted to all parties in the set
B we write 〈S, ∀R ∈ B, str, . . .〉. When communicating over anonymous channels, we put the
sender in parenthesis: 〈(S),R, str, . . .〉.

We make the assumption that a user Uϕ never receives more than 1 key. If a person gets
several keys, we model him as several distinct users.

2.4.1 Real World

We begin by describing the interface between the environment E and the real-world algo-
rithms/protocols presented in 2.3, when all parties are honest. Unless noted otherwise, we
assume all channels are authenticated, secure and integer. All parties are PPT interactive ma-
chines. All parties controlled by the adversary A may deviate arbitrarily from the specifications.

12

(1) E decides on the number of categories n and attributes
(
ni
)n
i=1

and sends 〈E , I, “InitIssuer”,

n,
(
ni
)n
i=1
〉. I sets n0 ← 1, runs IssuerSetup, and broadcasts PI to every other player: 〈I, ∀R ∈

(U∪D), “IssuerKey”,PI〉. Each recipient R ∈ (U∪D) then runs CheckIssuerKey with I (yielding
a result b), and sends 〈R, E , “ReceivedIssuerKey”, n,

(
ni
)n
i=0
, b〉 back to the environment.

(2) Next, E sends 〈E ,∀D% ∈ D, “InitDB”〉. Each D% then runs DatabaseSetup, and broadcasts
PD(%) to all users: 〈D%,∀Uϕ ∈ U , “DBKey”,PD(%)〉. Each user Uϕ then runs CheckDatabaseKey
with D% (yielding a result b), and sends 〈Uϕ, E , “ReceivedDBKey”, %, b〉 back to the environment.

The steps (3) to (5) may now run in any order, a polynomial number of times.

(3) When E sends 〈E ,D%, “IssueRecord”,M,W 〉 to some database D% (where M ∈ GT and W
is a ciphertext policy); D% runs IssueRecord and broadcasts the resulting ciphertext (with index
ψ) to all users and the issuer: 〈D%, ∀R ∈ (U ∪ I), “NewCiphertext”,CT(%,ψ)〉. Each recipient
R then runs CheckRecord (yielding a result b) and sends 〈R, E , “ReceivedCiphertext”, %, ψ, b〉
back to the environment. The issuer I recovers M and W from the ciphertext CT(%,ψ) using the
escrow formulas (see Section 5.1) and sends 〈I, E , “Escrow”, %, ψ,M,W 〉 to the environment.

(4) When E sends 〈E ,Uϕ, “IssueKey”, L〉 to some user Uϕ (L is a list of attributes, one per
category); Uϕ sends 〈Uϕ, I, “RequestKey”, L〉 to the issuer. I sends 〈I, E , “KeyOK?”, ϕ, L〉
to the environment, and receives the reply 〈E , I, “KeyOK”, b〉. If b = 0 then I aborts the
key issuing protocol. Else both Uϕ and I engage in the IssueKey protocol. Let b = 0 if the
issuer aborted the protocol and b = 1 if it completed successfully. Finally, the user sends
〈Uϕ, E , “IssueKeyDone”, b〉 back to the environment.

(5) When E sends 〈E ,Uϕ, “Query”, %, ψ〉 to some user Uϕ; Uϕ sends 〈(Uϕ),D%, “Query?”〉 over
an anonymous channel to D%.7 D% sends 〈D%, E , “ProcessQuery?”〉 to the environment who
replies with 〈E ,D%, “ProcessQuery”, c〉. If c = 0, then D% aborts the query protocol. Else both
Uϕ and D% engage in the Query protocol over the anonymous channel. If the decryption is suc-
cessful,8 the user sends 〈Uϕ, E , “QueryResult”,M ′〉 back to the environment. If the decryption
was not successful, then 〈Uϕ, E , “QueryResult”,⊥〉 is sent instead. If the query protocol aborted
then 〈Uϕ, E , “QueryResult”, |= 〉 is sent.

2.4.2 Ideal World

The interface between the environment E and the ideal world is necessarily identical to the real-
world interface. In the ideal world, no cryptographic protocols are run. An incorruptible trusted
third party T performs the functionality that was realized by cryptographic protocols in the
real world. All parties may communicate only with T and E . All honest parties are dummies,
who do nothing but relay messages between E and the trusted third party T. All channels are
authenticated, secure and integer. The ideal-world adversary S controls all corrupted parties
and may interact arbitrarily with E .

7One can use onion routing, such as the TOR network, to achieve anonymous communication.
8One way to detect if decryption is successful is to use the message M to derive a symmetric key and use an

authenticated encryption mode, such as AES-256-GCM, to encrypt the records. If a malicious database outputs
garbage instead of a well-formed (symmetric) ciphertext, then with overwhelming probability no honest user will
be able to decrypt the ciphertext, which is functionally equivalent to using the most restrictive policy W1 = ∅.

13

(1) E decides on the number of categories n and attributes
(
ni
)n
i=1

and sends 〈E , I, “InitIssuer”,

n,
(
ni
)n
i=1
〉. I relays the message 〈I,T, “InitIssuer”, n,

(
ni
)n
i=1
〉 to T. The latter sets n0 ← 1 and

broadcasts 〈T,∀R ∈ (U∪D), “ReceivedIssuerKey”, n,
(
ni
)n
i=0
, 1〉 to all other players. Each recip-

ient then relays the message back to the environment: 〈R, E , “ReceivedIssuerKey”, n,
(
ni
)n
i=0
, 1〉.

(2) Next, E sends 〈E , ∀D% ∈ D, “InitDB”〉. Each D% then relays the message 〈D%,T, “InitDB”〉
to T. The latter broadcasts 〈T,∀Uϕ ∈ U , “ReceivedDBKey”, %, 1, 〉 to all users. Each user Uϕ
then relays the message back to the environment: 〈Uϕ, E , “ReceivedDBKey”, %, 1〉.

The steps (3) to (5) may now run in any order, a polynomial number of times.

(3) When E sends 〈E ,D%, “IssueRecord”,M,W 〉 to some database D% (where M ∈ GT and
W is a ciphertext policy); D% relays 〈D%,T, “IssueRecord”,M,W 〉 to T. The latter sets the record
index ψ, savesM andW asM (%,ψ) andW (%,ψ), and broadcasts 〈T, ∀R ∈ (U∪I), “ReceivedCipher-
text”, %, ψ, 1〉 to all users and the issuer. Each recipientR then sends 〈R, E , “ReceivedCiphertext”,
%, ψ, 1〉 back to the environment. T also sends 〈T, I, “Escrow”, %, ψ,M (%,ψ),W (%,ψ)〉 to the issuer.
The issuer relays 〈I, E , “Escrow”, %, ψ, M (%,ψ),W (%,ψ)〉 back to the environment.

(4) When E sends 〈E ,Uϕ, “IssueKey”, L〉 to some user Uϕ (L is a list of attributes, one per
category); Uϕ relays 〈Uϕ,T, “IssueKey”, L〉 to T. The latter sends 〈T, I, “KeyOK?”, ϕ, L〉 to
the issuer. The issuer relays 〈I, E , “KeyOK?”, ϕ, L〉 to the environment, and receives the reply
〈E , I, “KeyOK”, b〉. The issuer relays 〈I,T, “KeyOK”, b〉 to T. If b = 1, then T saves L as L(ϕ)

and sends 〈T,Uϕ, “IssueKeyDone”, b〉 back to the user. Finally, the user relays 〈Uϕ, E , “IssueKey
Done”, b〉 to the environment.

(5) When E sends 〈E ,Uϕ, “Query”, %, ψ〉 to some user Uϕ; the latter relays 〈Uϕ,T, “Query”, %, ψ〉
to T. If L(ϕ) has not been initialized, then T aborts the protocol. T sends 〈T,D%, “ProcessQuery?”〉
to database D%, the latter relays 〈D%, E , “ProcessQuery?”〉 to the environment who replies with
〈E ,D%, “ProcessQuery”, c〉. D% relays the message 〈D%,T, “ProcessQuery”, c〉 to the trusted
party. If c = 0, then T sends 〈T,Uϕ, “QueryResult”, |= 〉 back to Uϕ. Else if c = 1 and L(ϕ)

satisfies the policy W (%,ψ), then T sends 〈T,Uϕ, “QueryResult”,M (%,ψ)〉. Else if c = 1 and L(ϕ)

does not satisfy the policy, T sends 〈T,Uϕ, “QueryResult”,⊥〉. Finally the user sends respec-
tively 〈Uϕ, E , “QueryResult”, |= 〉, 〈Uϕ, E , “QueryResult”,M (%,ψ)〉, or 〈Uϕ, E , “QueryResult”,⊥〉
back to the environment.

2.5 Security Properties

In this subsection we will give an informal description of the security properties of our scheme.

Database security Users need to interact with (query) the database in order to try to decrypt
a ciphertext. Users cannot determine if their key satisfies the access policy of the record before
the interaction. After a successful interaction, users cannot deduce anything about the policy
except whether their key satisfies it or not.

Cheating and colluding users do not have more power than each user taken individually, in
particular they cannot “combine” or “rearrange” the attributes in their keys, and they cannot
use the transcript of their interaction with the database to try and decrypt different ciphertexts
or with different keys. They cannot deduce the plaintext of a ciphertext if they haven’t queried
for it with a valid key satisfying the policy. They cannot deduce anything about the policy of a

14

record except of course that each time they query the record’s ciphertext with a valid key, they
know if that key satisfies the policy of the record.

User security The only information that the database can gather is the number of attempted
decryptions. In particular it cannot determine which user queried which ciphertext during any
of the queries, what policy the ciphertext was encrypted under, what attributes the user has,
and whether the decryption was successful or not. User security is valid even if the database
colludes with the issuer and some other users.

If the query protocol completed successfully, honest users are guaranteed that (1) if the
decryption was successful, their key satisfies the policy of the ciphertext and (2) if the decryption
was unsuccessful, their key does not satisfy the policy of the ciphertext.

2.5.1 Limitations

Issuer escrow The issuer can extract the plaintext and the policy of all the databases’ ci-
phertexts without interacting with them. This functionality is an unfortunate side effect of the
HABE scheme.

This functionality makes our scheme slightly weaker than [CDNZ11]: in their scheme, the
issuer can generate a credential for himself containing all attributes of the system, but he must
interact with the database to decrypt.

If we decide to combine the roles of the issuer and the database in our scheme,9 then this
functionality does not cause any problems anymore.

3 Preliminaries

3.1 Bilinear Maps

A bilinear map is a function e : G1 × G2 7→ GT, where G1, G2 and GT are abelian groups of
prime order p. Let g1 ∈ G1 \ {1} and g2 ∈ G2 \ {1} denote generators of G1 and G2. The
bilinear map must satisfy the following properties:

• Bilinearity: ∀a, b ∈ Zp : e(ga1 , g
b
2) = e(g1, g2)ab.

• Non-degeneracy: gT
def= e(g1, g2) 6= 1.

The element gT is of course a generator of GT. Throughout this document, we will use multi-
plicative notation for the groups G1, G2 and GT. We assume that all algorithms implicitly take
a description of the groups as an extra input parameter.

3.2 Assumptions

Decisional Diffie-Hellman (DDH)

Let G be either G1, G2 or GT (and let g be the corresponding generator of the group, viz. g1,

g2, gT). Let a, b, z
$← Zp. DDH is hard in G if for every PPT algorithm A:

AdvDDH
G

def=
∣∣∣Pr
[
A(g, ga, gb, gab)

$?
= 1
]
− Pr

[
A(g, ga, gb, gz)

$?
= 1
]∣∣∣ = negl.

9 Thus forfeiting the possibility of having multiple independent databases.

15

Symmetric External Diffie-Hellman (SXDH) Assumption

We say that the SXDH assumption holds if DDH holds in G1, G2 and GT. This assumption
holds only for type-3 [GPS08] bilinear maps: this means there exists no efficiently computable
homomorphism from G1 to G2 or vice-versa. It is believed SXDH holds in certain subgroups of
MNT elliptic curves.

Decisional Bilinear Diffie-Hellman (DBDH) Assumption

Let z1, z2, z3, z
$← Zp, g1 ∈ G∗1, g2 ∈ G∗2. The DBDH assumption holds in G1,G2 if for every

PPT algorithm A [NYO08]:

AdvDBDH
G1,G2

def=
∣∣∣Pr
[
A
(
g1, g

z1
1 , g

z2
1 , g

z3
1 , g2, g

z1
2 , g

z2
2 , g

z3
2 , g

z1z2z3
T

)
$?
= 1
]

− Pr
[
A
(
g1, g

z1
1 , g

z2
1 , g

z3
1 , g2, g

z1
2 , g

z2
2 , g

z3
2 , g

z
T

)
$?
= 1
]∣∣∣ = negl.

Note that the DBDH assumption was originally made for symmetrical (type 1) pairings only.
Using the transformation introduced by Chatterjee et al. [CM09], we have generalized it type-3
pairings.10

Decision Linear (D-Lin) Assumption

Let z1, z2, z3, z4, z
$← Zp. The D-Lin assumption holds in the input groups if for every PPT

algorithm A [NYO08]:

AdvD-Lin
G1,G2

def=
∣∣∣Pr
[
A
(
g1, g

z1
1 , g

z2
1 , g

z2z4
1 , gz3+z4

1 , g2, g
z1
2 , g

z2
2 , g

z1z3
1

)
$?
= 1
]

− Pr
[
A
(
g1, g

z1
1 , g

z2
1 , g

z2z4
1 , gz3+z4

1 , g2, g
z1
2 , g

z2
2 , g

z
1

)
$?
= 1
]∣∣∣ = negl.

Note that the D-Lin assumption was originally made for symmetrical (type 1) pairings only,
but we can generalize it to type-3 pairings in the same way as for DBDH[CM09].11

`-Simultaneous Flexible Pairing (SFP) Assumption

Let A,B
$← G1, Ã, B̃

$← G2 and gZ , fZ , gR, fU
$← G∗1. For j ∈ N∗`+1 let Pj

def=
(
Zj , Rj , Sj , Tj ,

Uj , Vj ,Wj

)
that satisfies:

e(A, Ã) = e(gZ , Zj) e(gR, Rj) e(Sj , Tj) and (1)

e(B, B̃) = e(fZ , Zj) e(fU , Uj) e(Vj ,Wj). (2)

We say that the `-SFP assumptions holds in G1 if for all PPT algorithms A [AFG+10,
AHO10]:

Adv`−SFP
G1

def= Pr
[
A
(
gZ , fZ , gR, fU , A,B, Ã, B̃,

(
Pj
)`
j=1

)
$?
= P`+1

]
= negl.

10 The original DBDH problem for symmetrical pairings G1 = G2 asks, given g1, g
z1
1 , gz21 , gz31 to distinguish

gz1z2z3T from random. The transformation simply adds g2, g
z1
2 , gz22 , gz32 to the input in the asymmetrical set-

ting, following the observation that we would have been able to compute these group elements anyway in the
symmetrical setting.

11 The original formulation of D-Lin for symmetrical settings is: given g1, g
z1
1 , gz21 , gz1z31 , gz2z41 distinguish

gz3+z4
1 from random. The following formulation is equivalent: given g1, g

z1
1 , gz21 , gz2z41 , gz3+z4

1 distinguish gz1z31

from random. To transform this to the asymmetric setting, we add g2, g
z1
2 , gz22 to the input (which we would

have been able to compute anyway in the symmetric setting).

16

where P`+1 satisfies both Equations 1 and 2 and where Z`+1 6= 1 and ∀i ∈ N∗`+1 : Z`+1 6= Zi.

`-SFP in G2 is defined analogously by exchanging the groups G1 and G2 in the above
definition.

We also note that this assumption is parameterized by ` (unlike the other assumptions which
are static), where a larger ` means a stronger assumption. This assumption was proven to hold
in the generic bilinear group model [AHO10], as long as `� √p (quadratic bound).

Generic Bilinear Group Model

The generic bilinear group model is an idealization of the groups and associated bilinear map
used in a given construction. Note that the generic group model subsumes all of the assumptions
made in the previous paragraphs.

The plain generic group model was introduced by [Sho97] and extended to bilinear groups
in [BB08].

In the generic group model all elements of G1,G2,GT are encoded as arbitrary unique
strings, and it is assumed that no operation other than equality testing can be performed on
this representation. An example would be to encode the group elements sequentially, in the
order the adversary sees them. The adversary has access to several oracles, which he needs
to query to perform his computations: three oracles to do multiplication in the three groups
respectively, and one oracle to compute the bilinear pairing.

Roughly speaking, if a scheme is proven secure in the generic bilinear group model, then
any successful attack against the scheme must exploit nontrivial structure of the groups used
(or a flaw in the proof). However, like the random oracle model, the generic group model has
attracted a lot of criticism [KM06].

3.3 Perfect Zero-knowledge Proofs of Knowledge

A zero-knowledge proof of knowledge (ZKPoK) [CDM00] is a protocol in which a prover P can
convince a verifier V that he knows a secret—for instance, the discrete logarithm of a certain
element, the discrete-logarithm–based representation of a certain element to certain bases, a
pre-image of a bilinear pairing—without disclosing these to the verifier.

We will use the notation introduced by Camenisch and Stadler[CS97b] when we need to
perform a ZKPoK in a protocol. For example:

ZKPoK{(α, β) : y = g α ∧ z = g β hα }

is used for proving the knowledge of the discrete logarithm of y to the base g, and a representa-
tion of z to the bases g and h such that the h-part of this representation is equal to the discrete
logarithm of y to the base g [CS97b, p. 414]. We will use the convention that letters in the first
parenthesis (which are also boxed in red12 throughout the equation) denote the elements whose
knowledge is proven, and all other letters denote elements which are known to the verifier.

With ZKPoK it is possible to work with statements of the form:

ZKPoK

{((
xi ∈ Zp

)ux
i=0
,
(
γi ∈ G1

)ug
i=0
,
(
ηi ∈ G2

)uh
i=0

)
:

ng∧
i=0

(
Gi =

n1,i∏
j=0

g
xν1,i,j
1,i,j

)
(3)

nh∧
i=0

(
Hi =

n2,i∏
j=0

h
xν2,i,j
2,i,j

) nt∧
i=0

(
Ti =

n3,i∏
j=0

t
xν3,i,j
3,i,j

n4,i∏
j=0

e(g4,i,j , ην4,i,j)

n5,i∏
j=0

e(γν5,i,j , h5,i,j)
)}

,

12 Unless of course you are currently reading this document from a black-and-white printout :-)

17

where t3,i,j , Ti ∈ GT, g1,i,j , g4,i,j , Gi ∈ G1, h2,i,j , h5,i,j , Hi ∈ G2 and ν1,i,j , ν2,i,j , ν3,i,j ∈ Nux+1,

ν4,i,j ∈ Nug+1, ν5,i,j ∈ Nuh+1 and ux, ug, uh, ng, nh, nt,
(
nk,i
)5
k=1
∈ N are known to both parties.

In Appendix C we give more details about the construction and the security properties of
ZKPoKs.

3.4 Non-interactive Zero-knowledge Proofs

A non-interactive zero-knowledge (NIZK) proof allows a prover P to certify that a certain
statement is satisfiable, without revealing a satisfiable assignment in the proof (however P
usually needs to know such a satisfiable assignment to be able to compute the proof). The
proof he issues can be checked offline by a verifier V.

Common Reference String

In the Common Reference String (CRS) model we assume that a set of values (the CRS)
which were generated according to some distribution D are made available to all participants
at the start of the protocol. It is also assumed that no participants gets to know any “extra
information” or trapdoor on that CRS, and that a trusted third party generates the CRS.

When a simulator S has black-box access to an interactive machine A, he can dictate the
CRS that A will use in the protocol. Usually S generates the CRS such that he knows the
discrete logarithm of all its values (trapdoor) or generate it with a different distribution D′.

Non-interactive proofs are impossible in the standard model [GO94, BFM88], i.e. without
CRS or random oracles.

Groth-Sahai Proofs

In our construction, we will work with a subset of Groth-Sahai (GS) proofs [GS08, GSW10]
which allows us to prove the satisfiability of the following classes of statements:

NIZK

{({
xi ∈ Zp

}u
i=0

)
:

n∧
i=0

(
Gi =

ni∏
j=0

g
xνi,j
i,j

)}
,

where Gi, gi,j ∈ G1 and νi,j ∈ Nu+1 and u, n, ni ∈ N are known to both P and V. GS proofs
require the SXDH assumption to hold.

GS proofs are not proofs of knowledge, since it is possible to combine several GS proofs to
construct a GS proof of a related statement (as used in [CDNZ11]).

In Appendix D we give more details about the construction and the security properties of
GS proofs.

3.5 Hidden–ciphertext-policy Attribute-based Encryption

A hidden–ciphertext-policy attribute-based encryption (HABE) scheme is a set of four algo-
rithms [NYO08]:

• Setup(n,
(
ni
)n
i=1

)
$→ {PK,MK}.

This algorithm generates the system public key PK and master secret key MK. The inputs
are the number of categories and attributes par category (see also Section 2.2).

• KeyGen(L(ϕ),PK,MK)
$→ SK

(ϕ)
L .

This algorithm takes a list of attributes L(ϕ) (one per category: L(ϕ) = {L(ϕ)
1 ∈ Nn1 , L

(ϕ)
2 ∈

Nn2 , . . . , L
(ϕ)
n ∈ Nn}) and generates a user secret key SK

(ϕ)
L containing these. The master

secret key is required for this step.

18

• Encrypt(M,W,PK)
$→ CT.

This algorithm takes a plaintext M ∈ GT and a ciphertext policy W—where W = {W1 ⊂
Nn1 ,W2 ⊂ Nn2 , . . . ,Wn ⊂ Nn}—and generates a ciphertext CT. Only the system public
key PK is required to encrypt.

• OfflineDecrypt(CT,SK
(ϕ)
L ,PK)→M ′.

This algorithm takes a key and a ciphertext and returns the result of the decryption M ′.

If the key satisfies the ciphertext policy (i.e., ∀i ∈ N∗n+1 : L
(ϕ)
i ∈ Wi) then this algorithm

outputs the plaintext M . If the key doesn’t satisfy the policy, then with overwhelming
probability M ′ 6= M .

The category and attribute setup, the attributes in the key, and the structure of the cipher-
text policies are exactly as described in Section 2.2. In Appendix A we give more details about
the construction of both HABE schemes of [NYO08].

3.5.1 Security Game for HABE

A HABE scheme is (match-concealing) secure if no PPT interactive machine A can win the
following game with probability non-negligibly higher than 1/2 [Nis08]:

(1) The challenger runs Setup and hands over PK to A.

(2) A submits a list of attributes L (one per category) to the challenger. The challenger gives
the adversary the corresponding secret key SKL. This phase may be repeated polynomially
many times.

(3) A submits two messages M (0), M (1) and two ciphertext policies W (0), W (1) to the chal-
lenger. The latter flips a coin b, encrypts M (b) under policy W (b) and sends the resulting
ciphertext to A.

(4) Phase 2 is repeated.

(5) The adversary outputs a guess b′ of b. The adversary wins if b′ = b and if there was no
trivial way for him to win this game: If A obtained one key SKL which satisfies either W (0) or
W (1), then it must be the case that:

• M (0) = M (1) and

• each key satisfies either: both policies W (0) and W (1), or none of the two policies.

We define the advantage of A to be: AdvHABE
A

def= max(Pr[A wins HABE game]− 1/2, 0).

Our construction makes extensive use of the second HABE scheme of Nishide et al. [NYO08,
Nis08], which is secure13 in the generic bilinear group model.

13See [Nis08, p. 23], since [NYO08] only says that their scheme is selectively secure.

19

3.6 Structure-Preserving Signatures

In our construction we use the basic signature scheme of Abe et al. [AFG+10, Section 5.2] for
signing a vector of group elements. That scheme is existentially unforgeable against adaptive
chosen message attacks (see Section E.1) if the Simultaneous Flexible Pairing assumption (see
Section 3.2) holds. Unlike some other signature schemes, like the Boneh-Boyen signatures [BB08]
or credentials (BBS+ signature) [ASM06, CL04], which have a cubic bound in the generic group
model, this scheme enjoys an optimal quadratic bound.14 Also this signature scheme does not
require the signer to know the discrete logarithm of the group elements he is signing.

In Appendix E we show how to generate a private signing key (SigKeyGen), how to prove in
zero-knowledge that you know the signing key corresponding to a verification key vk
(ZKPoKSigKey(vk)), how to sign and verify a message (Sign, SigVerify), and finally how to re-
randomize a signature (SigRerand). We note that a signature consists of 7 group elements in
G1 or G2. The re-randomization algorithm allows you to re-randomize these group elements in
such a way that four of these group elements become totally independent from the other three
and the message that was signed. This re-randomization enables us to use standard ZKPoKs
to prove possession of a signature in zero-knowledge.

We use this signature scheme in the query protocol. It allows the user to blind group
elements while at the same time proving in zero-knowledge to the database that he knows the
unblinded values. The user’s anonymity is thus preserved, and the database has the guarantee
that it does not help to decrypt invalid ciphertexts.

4 Our Construction

4.1 Main Idea

We modify the second construction of Nishide et al. [NYO08] as follows:

Zeroth attribute category In addition to the n regular categories, the issuer creates an
additional zeroth category, and creates one attribute—which he labels “Issuer”—in that cat-
egory. Let A0,0 = g

a0,0

1 be the public-key component associated to that attribute (a0,0 is the
private key component). All the users’ keys he issues will contain this “Issuer” attribute (that
is L0 = 0).

Each database D% that joins the system, extends the zeroth category with a new attribute,

which it labels “Database %”: it publishes a public-key component A0,% = A
k%
0,0 for that new

attribute, where k% is part of the database’s private key.
When publishing a ciphertext, D% publishes the ciphertext component C0,%,2 corresponding

to its own “Database %” attribute, but not the component C0,0,2 corresponding to the “Is-
suer” attribute (it also doesn’t publish the ciphertext components corresponding to the other
databases’ attributes). Due to the properties of the HABE scheme and the way the new at-

tribute is defined, we have that C0,0,2 = C
k−1
%

0,%,2.
Users cannot decrypt offline anymore, since the ciphertext component for the “Issuer” at-

tribute is in none of the ciphertexts issued by any of the databases: he cannot compute the
term e(C0,L0,2, D0,2) in Equation 6. A user who wishes to decrypt a record needs to query
the database D% that issued that record. The user then blinds the “Issuer” component D0,2

of his key with a random value kd, and the “Database %” component of the ciphertext C0,%,2

with a random value kc, yielding D′ ← Dkd
0,2 and C ′ ← Ckc0,%,2, and sends these to the database.

14If a signature scheme has a cubic bound in the generic group model, it should be secure as long as less than
` messages with `� 3

√
p are signed. With a quadratic bound, we have `� √p instead.

20

The latter transforms the blinded “Database %” ciphertext component into a blinded “Issuer”

ciphertext component with the help of its private key Ckc0,0,2 = C ′k
−1
% , bilinearly pairs the result

with the blinded key component of the user P ′ ← e(C ′k
−1
% , D′), and sends the result P ′ back.

The user can unblind the result e(C0,0,2, D0,2)← P ′k
−1
c k−1

d , and with that value, he can proceed
with the HABE decryption.

In the rest of the paper, when we say that a key (with attribute list L) satisfies the policy W
of a record/ciphertext, we mean that each attribute in the key excluding the “Issuer” attribute
is in the set of attributes of the policy: ∀i ∈ N∗n+1 : Li ∈Wi.

Signing group elements In the query protocol, the database must have the assurance that
the blinded values C ′ and D′ sent by the user have been computed honestly, lest it becomes a
decryption oracle. For this, the issuer signs the “Issuer” key component D0,2 of each user, and
each database signs the “Database %” ciphertext component C0,%,2 in all ciphertexts it issues
with the structure preserving signatures by Abe et al. [AHO10, AFG+10] (introduced in Section
3.6). Users can then prove in zero knowledge that they know the values C0,%,2 and D0,2 they
blinded, and that said values are part of a legitimately issued key, resp. ciphertext. The issuer
and each database create a signing/verification key pair together with their public/secret key
for that purpose.

Interactive key issuing protocol Additionally we transform the key issuing algorithm in
the scheme of Nishide et al. into an interactive protocol, in which the key of a user is computed
jointly between the issuer and the user. In this protocol we use the homomorphic property of
the El-Gamal cryptosystem so that the issuer and the user jointly compute the random values
gλi2 in the user’s key, in such a way that neither party can recover the discrete logarithm λi.

The rationale for this is to avoid that a dishonest issuer and database craft a malicious
ciphertext that can be decrypted by a user whose key doesn’t satisfy the policy.15

Non-interactive proof in ciphertext When issuing a ciphertext, the database D% also
publishes a Groth-Sahai non-interactive proof certifying that the ciphertext was computed hon-
estly.16

4.2 The Construction

We now present the implementation of all algorithms and protocols described in Section 2.3 in
our scheme in detail.

4.2.1 Group Setup

We assume all participants agree on the group parameters and that these have been generated
in a trusted manner:

[p,G1,G2,GT, g1 ∈ G1, g2 ∈ G2, e]← Gen(1κ).

We denote gT
def= e(g1, g2).

15It is crucial that this case never happens if we want our security proof to work.
16This is required for our security proof to work.

21

4.2.2 CRS Setup

A trusted third party generates a CRS for the databases’ GS proofs:

a, t
$← Z∗p, U1,2 ← ga2, U2,1 ← gt2, U2,2 ← gat2 .

The CRS is {U1,2,U2,1,U2,2}. The parameters a and t must be kept secret from everybody
(CRS model). All algorithms and protocols receive the CRS as an extra (implicit) input.

4.2.3 Issuer Setup

The issuer chooses the number of categories n and the number of different attributes possible
for each category {ni}ni=1. He sets n0 = 1 and computes:{{

ai,t
$← Z∗p

}ni−1

t=0

}n
i=0
, w, β

$← Z∗p, Y ← gwT , B ← gβ1 ,{{
Ai,t ← g

ai,t
1

}ni−1

t=0

}n
i=0
, {sgkI , vkI} ← SigKeyGenG2

().

The secret key SI of the issuer is {w, β, {{ai,t}ni−1
t=0 }ni=0, sgkI}.

His public key PI is {Y,B, {{Ai,t}ni−1
t=0 }ni=0, vkI , n, {ni}ni=0}.

4.2.4 Check Issuer Key

Everybody who receives the public key checks that Y , B and all Ai,t are not the identity
element and are of the correct order p, and then requests that the issuer does the following
proof knowledge of his private and verification key:

ZKPoK1

{(
w, β ,

{{
ai,t
}ni−1

t=0

}n
i=0

)
: Y = gwT ∧B = g

β
1

n∧
i=0

(
ni−1∧
t=0

Ai,t = g
ai,t
1

)}
∧ ZKPoKSigKey(vkI).

4.2.5 Database Setup

Let % be the implicit database index. We will add a superscript (%) to a variable to distinguish
between the variables of different databases. We may omit that superscript if it is clear from
the context whose database’s variable we mean.

The database % computes:

k%
$← Zp \ {a0,0}, A0,% ← A

k%
0,0 = g

a0,0k%
1 , {sgk%vk%} ← SigKeyGenG1

().

The private key SD(%) of database % is: {k%, sgk%}.
The public key PD(%) is: {A0,%, vk%}.
This effectively defines another attribute for the zeroth category: a0,% = a0,0k%.

4.2.6 Check Database Key

All users receive PD(%). They are required to check that A0,% 6= 1, that the order of A0,% is
p, and request that the database does the following proof of knowledge about his private and
verification key:

ZKPoK2{(k%) : A0,% = A
k%
0,0} ∧ ZKPoKSigKey(vk%).

22

4.2.7 Issue Record

Let ψ be the implicit record index. We might add a superscript (ψ) to variables in the same way

as for databases. Let M ∈ GT be the plaintext to encrypt, and let W (ψ) = [W
(ψ)
0 , . . . ,W

(ψ)
n],

where ∀i : Wi ⊂ Nni , be the hidden ciphertext policy.
The database computes the following values:{
r

(ψ)
i

$← Z∗p
}n
i=0
, r(ψ) ←

n∑
i=0

ri, Ĉ(ψ) ←MY r,

{{
εi,t ← 0

}
∀t∈Wi

}n
i=1
,

{{
εi,t

$← Z∗p
}
∀t∈Nni\Wi

}n
i=1
, C

(ψ)
0 ← Br,{

C
(ψ)
i,1 ← gri1

}n
i=0
,

{{
C

(ψ)
i,t,2 ← Arii,tg

εi,t
1

}ni−1

t=0

}n
i=1

, C
(ψ)
0,%,2 ← Ar00,%,

σ(ψ) ← Sign(C0,%,2, sgkDB).

The ciphertext CT (ψ) is:
{
σ, Ĉ, C0, C0,1, C0,%,2,

{
Ci,1, {Ci,t,2}ni−1

t=0

}n
i=1

}
.

The database generates a NIZK GS proof that the record was computed correctly (i.e.,
such that the issuer can recover the record correctly when using the escrow functionality). We
are required to do a non-interactive proof here, as doing an interactive one would increase the
asymptotic complexity of the pre-computation time to O(NrecordsNusers):

NIZK3

{
({ri }ni=0) :

n∧
i=0

(
Ci,1 = g

ri
1

)
∧ C0 =

n∏
i=0

B ri ∧ C0,%,2 = A
r0
0,%

}
.

At this point we would like to make a few observations:

• We see that for the zeroth category the database only publishes the ciphertext component
C0,%,2 corresponding to its “Database %” attribute, and not the component C0,0,2 for the
“Issuer” attribute. No user will thus be able to decrypt the record without help from the
database.

• The database can easily recover the “Issuer” ciphertext component with its private key:

C
(ψ)
0,0,2 ← (C

(ψ)
0,%,2)k

−1
% .

4.2.8 Check Record

When they receive the record, all users are required to check that all group elements are of order
p, that C0,%,2 is not the neutral element, and that the GS proof and the signature on C0,%,2 are
correct.

4.2.9 Issue Key

Let ϕ be the implicit user index. We might add a superscript (ϕ) to variables in the same way
as for databases and records.

Let L(ϕ) = [L
(ϕ)
0 , . . . , L

(ϕ)
n] where ∀i : Li ∈ Nni be the attribute list that will be associated

to the generated key. We necessarily have L0 = 0, as the issuer defined only a single attribute
for the zeroth category. We will assume that the user chooses the value of L and that the issuer
then decides if he wants to grant the request.

The details of the protocol are shown in Figure 2. The user first does an El-Gamal encryption

of values g
λ′′i
2 with an ephemeral key. The issuer then chooses his own values of λ′i and then

23

computes the HABE keys by modifying the user’s El-Gamal ciphertext. We have λi = λ′i + λ′′i .
The protocol is 10-move if the zero-knowledge proofs from [CDM00] are used.

User(ϕ)(L(ϕ),PI) Authenticated channel Issuer(L(ϕ),SI,PI)

x
$← Z∗p, X ← gx2 ,{
λ′′i , r3,i

$← Zp
}n
i=1
,

{
λ′i

$← Zp
}n
i=1
, λ0

$← Zp,{
E3,i ← g

λ′′i
2 Xr3,i

}n
i=1

, s
$← Z∗p,

{
r5,i

$← Zp
}n
i=1
,{

F3,i ← g
r3,i
2

}n
i=1

.
L,X, {E3,i, F3,i}ni=1 - D

(ϕ)
0 ← g

w+s
β

2 , D
(ϕ)
0,2 ← gλ0

2 ,

ZKPoK4 (see Equation 4) - D
(ϕ)
0,1 ← gs2D

a0,0

0,2 ,

σ(ϕ) ← Sign(D0,2, sgkI),{
E4,i ← g

λ′i
2 E3,i

}n
i=1

,{
E5,i ← gs2E

ai,Li
4,i Xr5,i

}n
i=1

,{
D

(ϕ)
i,2 ← E4,iF

−x
3,i

}n
i=1

,
σ,D0, D0,1, D0,2,

{
E4,i, E5,i, F5,i

}n
i=1�

{
F5,i ← F

ai,Li
3,i g

r5,i
2

}n
i=1

.{
D

(ϕ)
i,1 ← E5,iF

−x
5,i

}n
i=1

, ZKPoK5 (see Equation 5)�

SU(ϕ) ←
{
L, σ,D0, {Di,1, Di,2}ni=0

}
,

return SU(ϕ). return {ϕ,L}.

Figure 2: Real-world key generation

The following proofs of knowledge are used in the key issuing protocol:

ZKPoK4

{(
x, {λ′′i , r3,i }ni=1

)
: X = g x2

n∧
i=1

(
E3,i = g

λ′′i
2 X r3,i ∧ F3,i = g

r3,i
2

)}
, (4)

ZKPoK5

{(
w, β , s ,

{
λ′i , ai,Li

}n
i=0

,
{
r5,i

}n
i=1

)
: Y = gwT ∧B = g

β
1 ∧

1 = gw2 g s2 (D−1
0)β ∧D0,2 = g

λ′′0
2 g

λ′0
2 ∧D0,1 = g s2 D

a0,0

0,2

n∧
i=0

(
Ai,Li = g

ai,Li

1

)
n∧
i=1

(
E4,i = g

λ′i
2 E3,i ∧ E5,i = g s2 E

ai,Li

4,i X r5,i ∧ F5,i = F
ai,Li

3,i g
r5,i
2

)}
. (5)

4.2.10 Query

Given a key with ACL L = [L0, . . . Ln], the user would need to compute the following if he
wishes to decrypt a record [NYO08]:

M ′ ←
Ĉ
∏n
i=0 e(Ci,1, Di,1)

e(C0, D0)
∏n
i=0 e(Ci,Li,2, Di,2)

= Mg
−

∑n
i=0 λiεi,Li

T . (6)

The recovered message M ′ is equal to M if the key satisfies the record policy (i.e., if all εi,Li are
equal to zero). Intuitively, if the key does not satisfy the policy of the record, then the message
is blinded by a random value, and the user cannot decrypt.

24

However, as we have seen, the database did not publish C0,0,2. The “missing piece” P def=

e(C0,0,2, D0,2) = e(C0,%,2, D0,2)k
−1
% will have to be computed jointly by the user and the database.

We show the 10-move OT protocol to do this in Figure 3.
The user recovers the plaintext thus:

M ′ ←
Ĉ
∏n
i=0 e(Ci,1, Di,1)

P e(C0, D0)
∏n
i=1 e(Ci,Li,2, Di,2)

. (7)

The user then checks if M ′ was correctly recovered (i.e., if M ′ = M)17 and returns M ′ if so. If
not, the user returns ⊥.

U(ϕ)
(
CT (ψ), SU (ϕ),PD(%),PI

)
: Anonymous channel DB(%)(SD(%),PI) :

Blind C
(ψ)
0,%,2 and D

(ϕ)
0,2 :

kc
$← Z∗p, C ′ ← (C

(ψ)
0,%,2)kc ,

kd
$← Z∗p, D′′ ← (D

(ϕ)
0,2)kd .

Re-randomize σ(ψ) and σ(ϕ) :

σ′ ← SigRerand(σ(ψ)),

σ′′ ← SigRerand(σ(ϕ)).
Parse σ′ and σ′′ as respecively
{Z ′, R′, S′, T ′, U ′, V ′,W ′} and

{Z ′′, R′′, S′′, T ′′, U ′′, V ′′,W ′′}. C ′, S′, T ′, V ′,W ′, D′′, S′′, T ′′, V ′′,W ′′-
ZKPoK6 (see Equation 8) - P ′ ← e(C ′, D′′)k

−1
%

P ′�

Unblind P ′: P ← P ′k
−1
c k−1

d . ZKPoK7 (see Equation 9)�

Compute M ′ from Equation 7.
If M ′ correcta: return M ′; return ε.
else return ⊥ .

Figure 3: Transfer protocol

aSee Footnote 8.

The ZKPoK6 in Figure 3 and Equation 8 is used to verify that the user possesses the

signature to C
(ψ)
0,%,2 and D

(ϕ)
0,2 . The equations inside the ZKPoK follow straightforwardly from

the verification equations of the signature scheme (cf. Appendix E.4). Both parties parse vk%
as {g′Z , f ′Z , g′R, f ′U , g′M , f ′M , A′, B′} and vkI as {g′′Z , f ′′Z , g′′R, f ′′U , g′′M , f ′′M , A′′, B′′}.

ZKPoK6

{(
k−1
c , Z ′ , R′ , U ′ , k−1

d , Z ′′ , R′′ , U ′′
)

:

A′ = e(Z ′ , g′Z) e(R′ , g′R) e(T ′, S′) e(C ′, g′M)k
−1
c ∧

B′ = e(Z ′ , f ′Z) e(U ′ , f ′U) e(W ′, V ′) e(C ′, f ′M)k
−1
c ∧

A′′ = e(g′′Z , Z
′′) e(g′′R, R

′′) e(S′′, T ′′) e(g′′M , D
′′)k

−1
d ∧

B′′ = e(f ′′Z , Z
′′) e(f ′′U , U

′′) e(V ′′,W ′′) e(f ′′M , D
′′)k

−1
d

}
, (8)

17See Footnote 8.

25

Table 1: Size of the various keys in our construction. D def= Ndatabases denotes the number of
databases, U def= Nusers the number of users, R def= Nrecords the total number of records, n the
number of categories, and V def=

∑n
i=1 ni the total number of attributes.

Item # times Number of elements
repeated Zp G1 G2 GT

CRS 1 – 1 4 –
Issuer secret key 1 9 + V – – –
Issuer public key 1 – 8 + V – 3
User secret key U – 2 8 + 2n –
Database secret key D 7 – – –
Database public key D – 1 6 2
Database record R 1 11 + 2n+ V 4 + 2n 1

Size of elements in bitsa κ κ+ 8 3κ+ 8 6κ

aFor a type-D curve from the PBC library with a ≤ 2κ group order, elements of G1 and G2 are compressed.

ZKPoK7{(k%) : P ′
k% = e(C ′, D′′) ∧A0,% = A

k%
0,0}. (9)

4.3 Theoretical Efficiency

Table 3 shows the amount of computation that the various players have to do in our scheme.
Table 1 shows the size of the keys, and Table 2 shows the size of the transmitted messages
during all of the protocols in our scheme.

We point out that a significant amount of work is done at the start of the scheme (setup, key
and record issuing protocols). The players have to perform computation in time linear either
to the number of users Nusers times the total number of attribute Nattributes

def= V def=
∑
ni, or

computation linear to the number of records Nrecords times Nattributes, but never linear to the
product of the three.18

For each query, the database has to do only a constant19 amount of work, while the user
has to do work linear in the number of categories. (In contrast, [CDNZ11] requires that both
the database and the user do work linear in the number of attributes). In the worst case, each
user will query each ciphertext, so it is very important to make sure that the query protocol is
fast for the database, which has to bear most of the work.

5 Security Analysis

We prove our scheme secure in the generic bilinear group model for type-3 pairings, based on
indistinguishability between the real and ideal worlds defined in Section 2.4.

The adversary may corrupt any subset of players, but must do so before the start of scheme.
Furthermore, the adversary is never allowed to run more than a small constant number of
ZKPoKs in parallel, as the extractor of the ZKPoK would have an exponential run-time other-
wise.

18The only exception is the work involved in broadcasting the records’ ciphertext of the database to all users.
However, in this phase no cryptography is involved, so this can happen with the help of a normal (not specially
secured) file server, content distribution network, or snail-mailed DVD.

19Constant assuming we fix the security parameter κ. If κ varies, then the run time is O(κ3).

26

Table 2: Size of the various exchanged messages in our construction. Q def= Nqueries denotes the
number of queries, all other letters as in the table above.

Item # times Number of elements
repeated Zp G1 G2 GT

IssuerSetup U +D 32 + 3V 32 + 5V – 15
IssueKey U 47 + 12n+ 3V 26 + 4V 25 + 25n 12
DatabaseSetup DU 26 6 22 10
IssueRecorda RU 1 11 + 2n+ V 4 + 2n 1
Query Q 19 18 14 21

Size of elements in bitsb κ κ+ 8 3κ+ 8 6κ

aThe records can be disseminated using an untrusted server, or published on DVD.
bFor a type-D curve from the PBC library with a ≤ 2κ group order, elements of G1 and G2 are compressed.

Table 3: Computational costs borne by the various players in our construction. We only list
the number of pairings performed, the number of exponentiations, and the number of random
variables generated, since these are the major contributors to the run-time. (Multiplications,
additions and inversions are “free” since these run in time quadratic to the security parameter,
while exponentiations and pairings have a cubic run-time.)
D denotes the number of databases, U the number of users, R the total number of records and
RD the number of records issued by a particular database, QU the number of queries performed
by a particular user and QD the number of queried processed by a particular database, n the
number of categories, and V the total number of attributes. Let m be the number of attributes
that are not in the ciphertext policy of a given record.

Item # times Computational cost
repeated Expon. G1 Expon. G2 Expon. GT Pairings Random Zp

a

• Issuer •
IssuerSetup 1 8 + V 2 1 2 11 + V
CheckIssuerKey U +D 42 + 7V – 21 2 21 + 2V
IssueKey U 16 + 7n 49 + 58n 7 – 25 + 12n
• Database •
CheckIssuerKey 1 54 + 9V – 27 2 21 + 2V
DatabaseSetup 1 3 6 – 2 9
CheckDatabaseKey U 7 28 14 2 17
IssueRecord RD 16 + 4n+ V 10 + 4n 1 – 8 + 2n+m
Query QD 17 9 45 41 24
• User •
CheckIssuerKey 1 54 + 9V – 27 2 21 + 2V
IssueKey 1 18 + 9n 46 + 61n 9 8 20 + 12n
CheckDatabaseKey D 9 36 18 2 17
CheckRecord R – 4 – 26 + 8n –
Query QU 27 22 38 35 + 2n 34

• Run timeb per operation • 1.75 ms 15.6 ms 4.1 ms 13.6 ms 1.1 ms

aGenerating random values in Zp is linear to the size of the security parameter but takes a non-negligible
amount of time.

bThe run-time estimates are given for a type-D curve from the PBC library with 158-bit group order on our
computer (Intel T2600, 2.16GHz). For random elements in G1 or G2 we first need to generate a random element
of Zp, then do an exponentiation, for a time of around 2.8 ms.

27

Theorem 1 If the HABE scheme is (match-concealing) secure, the SXDH assumption holds,
and the max(Nusers, Nrecords)-SFP assumption holds in the chosen bilinear group, then:20 For
all subsets of corrupted parties, and for all PPT algorithms A describing the behaviour of the
corrupted parties, we can construct a simulator S—which has rewindable black-box access to A
and may dictate the CRS to A—such that the advantage of all environments E in distinguishing
between the real and the ideal world is negligible. That is:

∀A : ∃S : ∀E : AdvHABE-OT
E,A

def=
∣∣∣Pr
[
OutE(E Real←→ A)

$?
= 1
]
− Pr

[
OutE(E Ideal←→ S)

$?
= 1
]∣∣∣ = negl.

Corollary 2 The scheme presented in Section 4.2 satisfies all security properties described in
Section 2.5.

There are five main cases to consider, which are summarized in Table 4. We do not consider
the other cases in our proof: we can construct a simulator S for them by combining the strategies
used for the main cases.

Table 4: Main cases to consider for the security proof. An “X” means that some of the players in
the respective category are corrupted, while a hyphen “–” means that all players in the category
are honest.

Case Issuer Database User Comments

1 – – – Guaranteed by completeness, see Section 5.1.
2 X – – Subsumed by case 5.
3 – X – See Lemma 3, proved in Section 5.2.
4 – – X See Lemma 4, proved in Section 5.3.
5 X X – See Lemma 5, proved in Section 5.4.

Lemma 3 If the SXDH assumption holds, then: For all A in which any number of databases
are corrupt, we can always construct S(A) controlling the corrupt parties in the ideal world
such that all E have at most a negligible advantage in the distinguishing game.

Lemma 4 If the HABE scheme we use is (match-concealing) secure, the SXDH assumption
holds, and the max(Nusers, Nrecords)-SFP assumption holds, then: For all A in which any number
of users are corrupt, we can always construct S(A) such that all E have at most a negligible
advantage in the distinguishing game.

Lemma 5 If the SXDH assumption holds: For all A in which the issuer and any number of
databases are corrupt, we can always construct S(A) such that all E have at most a negligible
advantage in the distinguishing game.

Proof strategy For cases 3–5, we are going to define a sequence of games, as described by
Shoup [Sho04]. In the zeroth game, everything is distributed as in the real world, whereas
in the last game everything is distributed as in the ideal world. By the piling-up lemma, the
advantage of E is less than the sum of the advantages in distinguishing between Games i and
Game i + 1. We are going to prove that E only has negligible advantage in distinguishing
between two consecutive games, based either on a reduction to a hard cryptographic problem,

20Since the HABE scheme was proven secure only in the generic bilinear group model of type-3 pairings, one
could instead say that our construction is secure in the generic bilinear group model.

28

or by “failure events” happening with negligible probability. As long as the number of games
is polynomial w.r.t. the security parameter, the total advantage of E is negligible.

We must stress that in all intermediate games, the simulator S has complete access to all
honest parties. We make use of this fact in the security proof. Of course, this is not the case in
the ideal world, so by the last game, S doesn’t need that extra information anymore.

5.1 Completeness

Completeness for the users and the databases follows from the completeness of the HABE
scheme, the signature scheme, the GS and zero-knowledge proofs.

Real-world escrow To prove completeness for the issuer, we also need to show how the
escrow functionality works. The issuer can recover the plaintext from a given ciphertext Ĉ, C0

by computing:
M ′ ← Ĉ e(C0, g2)−wβ

−1
= MgwrT e(gβr1 , g2)−wβ

−1
= M.

If M is used to generate a symmetric key, the issuer needs to check that it allows a correct
decryption of the symmetric ciphertext. In the ideal world, the case where the issuer can’t
decrypt even with the correct M can be simulated by having a ciphertext policy that permits
no one to decrypt (e.g., setting W1 = ∅).

The issuer can determine if a given ciphertext component Ci,t,2 (i 6= 0) was computed
correctly or not (and thus recover the whole ciphertext policy):

C
ai,t
i,1

?
= Ci,t,2.

Note that for i = 0, the perfect soundness of the NIZK3 proof guarantees that C0,%,2 is
well-formed and that r =

∑
ri.

5.2 Corrupted Database

Honest databases don’t communicate with one another, they share no common secret, and
furthermore they can never violate the user’s privacy: dishonest databases thus gain nothing
by colluding. We can therefore, without loss of generality, handle the case of only one dishonest
database.

Game 1 S1 generates a hiding CRS and gives it to A. (We do this for compatibility with the
dishonest user case.) The difference between this game and the real world is negligible based
on the SXDH assumption [GS08].

Game 2 S2 runs like S1 except that it runs an honest issuer SI and gives that simulated
issuer’s public key to A. SI also generates a user key for S2. The difference between the two
games is zero.

Game 3 S3 runs like S2 except that when A publishes an encrypted record with a correct GS
proof, S2 runs the escrow functionality to extract the message and the ciphertext policy of that
record. The difference between the two games is zero, because of the perfect soundness of GS
proofs and the perfect completeness of the escrow functionality.

Game 4 S4 runs like S3 except that when a user U queries for a missing piece, S3 queries
a random piece from A. The difference between the two games is zero, because of the perfect
zero-knowledge property.

29

Game 5 S5 runs like S4 except that it uses its rewindable black-box access of A to extract
the witnesses from ZKPoK7. S5 aborts if it fails to extract. The difference between the two
games is 2−κNqueries.

Game 6 S6 runs exactly like S5 except that it aborts if the user recovers the correct message
despite the fact that his key does not satisfy the policy. This happens only when

∃j, 0 ≤ j ≤ n : εj,Lj 6= 0 (mod p) ∧ −
n∑
i=0

λiεi,Li = 0 (mod p).

Since the values λi are random, and the database never sees these values, this failure event
happens with probability p−1, which is negligible.

Construction We now construct a simulator S which incorporates all steps from the previous
games. S relays all messages he gets from E to A, and all return values from A to E .

S generates a hiding CRS and gives it to A.

S runs like the honest issuer to generate the issuer’s public key. It also generates a key k
for itself.

When S receives an encrypted record from A, it uses the escrow functionality to recover the
plaintext and the ciphertext policy. It then sends these to T.

When S receives a query message from T, S chooses a random record, and its own key k
and queries A with these. If A is cooperative in the query protocol, S sends c = 1 to T. Else S
sends c = 0 to T (remember that it aborts if A cheated in ZKPoK7).

5.3 Corrupted User

Game 1 (Offline guessing) Users are never issued enough attributes to decrypt messages
from the database by themselves. The transition between Game 1 and the real world is based
on the failure event (in the sense of [Sho04]) that the adversary recovers the plaintext of that
record without having queried the database for that record, or manages to get more information
about the policy of a record than what he could deduce by interacting with the database. The
security proof of the HABE scheme guarantees that the probability of this event is negligible,
thus E cannot get non-negligible advantage from this game.

Game 2 S2 generates a hiding CRS with trapdoor. S2 uses that trapdoor to fake all GS
proofs. The difference between this game and the real world is the different distribution of the
CRS, which can only be distinguished with negligible advantage based on the SXDH assumption
[GS08].

Game 3 S3 runs like S2 except that each time A asks for a key, S3 extracts x from ZKPoK4.
The difference between the two games is the knowledge error of the ZKPoK, i.e., 2−κNusers.

Game 4 S4 runs like S3 except that it chooses the values of D0, {Di,1, Di,2}ni=0 independently
from the λ′′ values of the user (but still according to the rules of the HABE scheme). S4 can
compute the correct values of {E4,i, E5,i}ni=1 with the help of x. S4 then fakes ZKPoK5 using
the rewindable black-box access. The distribution is exactly the same between the two games
and therefore the difference of advantage is zero.

30

Game 5 S5 runs like S4 except that it extracts kc and kd from ZKPoK6 each time A makes a
query. This allows S to unblind C ′ and D′′ and therefore to identify the user ϕ and the record
ψ. The difference between the two games is the knowledge error of the ZKPoK, i.e., 2−κNqueries.

Game 6 S6 runs like S5 except that if the user key ϕ or the record ψ was never issued, it
aborts. This means that A managed to fake a signature. The difference between the two games
is the advantage of the (max(Nusers, Nrecords))− SFP assumption.

Game 7 S7 runs like S6 except that each time that A queries for a record ψ on behalf of user
ϕ, S7 computes P ′ as follows:

P ′ ←

 Ĉ(ψ)
∏n
i=0 e(C

(ψ)
i,1 , D

(ϕ)
i,1)

M (ψ) e(C
(ψ)
0 , D

(ϕ)
0)

∏n
i=1 e(Q

(ψ)

i,L
(ϕ)
i ,2

, D
(ϕ)
i,2)


kckd

, (10)

where ∀i ∈ N∗n+1∀t ∈ Nni : Q
(ψ)
i,t,2

{
← C

(ψ)
i,t,2 if t ∈W (ψ)

i (component in policy);
$← G1 if t /∈W (ψ)

i (component not in policy).

We would like to point out that P ′ is computed correctly (i.e., as in Game 6) if the key ϕ

satisfies the policy of record ψ (i.e., ∀i ≥ 1 : L
(ϕ)
i ∈W (ψ)

i).

To handle the case where A queries several times for the same tuple (ψ,ϕ), S computes the

value P ′′ϕ,ψ = P ′k
−1
c k−1

d in the first query (where P ′ is as above). In subsequent queries S replies

with P ′′kckdϕ,ψ , so that the user recovers the same value of P ′ after unblinding. For the rest of the
discussion we will assume, without loss of generality, that A never queries twice for the same
tuple.

This game is interesting only for the security proof, since we “undo” the changes this game
makes in the next game. Game 7 and Game 8 are in fact identical if there is only one corrupted
user.

Lemma 7 E has only negligible advantage in distinguishing between Game 6 and Game 7 based
on the security of the HABE scheme.

See the proof in Section 5.5.

Game 8 S8 runs like S6 (and like S7) except that each time that A queries for a record ψ on
behalf of user ϕ, S8 computes P ′ as follows:

If the key ϕ satisfies the policy of the record, S8 computes P ′ like in Games 6 and 7.

Else, S8 computes P ′ randomly: P ′
$← GT.

Lemma 8 E has only a negligible advantage in distinguishing between Game 7 and Game 8
based on the DDH assumption in G2.

See the proof in Section 5.6.

31

Game 9 S9 runs like S8 except that each time that the honest database issues a record, S9

computes the ciphertext for a random plaintext M̃ under a random ciphertext policy W̃ (but
with W̃0 63 0). S9 publishes the resulting ciphertext.

Each time that A queries for a record ψ on behalf of user ϕ, S9 checks if the key satisfies
the policy of the record.

If the key ϕ does not satisfy the policy of record ψ, S9 computes P ′ randomly: P ′
$← GT.

Else if the key ϕ satisfies the policy of record ψ, S9 computes P ′ thus:

P ′ ←

 Ĉ(ψ)
∏n
i=0 e(C

(ψ)
i,1 , D

(ϕ)
i,1)

M (ψ) e(C
(ψ)
0 , D

(ϕ)
0)

∏n
i=1 e(C

(ψ)

i,L
(ϕ)
i ,2

, D
(ϕ)
i,2)


kckd

. (11)

In this case P = P ′k
−1
c k−1

d is such that when plugged in Equation 7, the latter returns the
“real” plaintext M (ψ).

Lemma 9 E has only a negligible advantage in distinguishing between Game 8 and Game 9
based on the security of the HABE scheme.

See the proof in Section 5.7.

Construction We now construct a simulator S which incorporates all steps from the previous
games. S relays all messages he gets from E to A and all return values from A to E .
S runs an honest issuer and a number of honest databases to interact with A.
S generates a hiding CRS with trapdoor and gives it to A.
When A asks for a key, S relays the query to T. If it gets back the response b = 1 from T,

S runs the issuer as in Game 4 to compute the key for A.
When S receives a record issue notification from T, it selects a random plaintext M̃ and a

random policy W̃ (where W̃0 63 0). S publishes the resulting ciphertext.
When A performs a query, S uses the rewindable black-box access to extract kc and kd from

A, and then unblinds the values C ′ and D′′ to identify ϕ and ψ (S aborts if the extraction fails,

or if no signature on C ′k
−1
c or D′′k

−1
d was ever issued). S then queries T with key ϕ for the

record ψ. S computes P ′ as described in Game 9 (i.e., random if T’s reply was ⊥, else according
to Equation 11), and fakes ZKPoK7 using its rewindable black-box access.

5.4 Corrupted Issuer + Some Corrupted Databases

If the issuer is corrupted, the only thing we have to worry about is the privacy in the query
protocol of all honest users. We don’t need to care about honest databases, since their records
can be decrypted anyway by the issuer thanks to the escrow functionality.

We assume that all users are present from the start, and that all users are able to verify
ZKPoK1 before the database is set up.

Game 1 S1 generates a hiding CRS and gives it to A. (We do this for compatibility with the
dishonest user case.) The difference between this game and the real world is negligible based
on the SXDH assumption [GS08].

Game 2 S2 runs like S1 except that it uses its rewindable black-box access of A to extract
the witnesses from ZKPoK1. S2 aborts if it fails to extract. The difference between the two
games is 2−κNusers.

32

Game 3 S3 runs like S2 except that when A publishes an encrypted record S2 extracts the
message and the ciphertext policy of that record using the escrow functionality. The difference
between the two games is zero.

Game 4 S4 runs like S3 except that it uses its rewindable black-box access of A to extract
k% from ZKPoK7. S4 aborts if it fails to extract. The difference between the two games is
2−κNqueries.

Game 5 S5 runs like S4 except that when an honest user U queries for a missing piece, S5

queries a random piece from A. The difference between the two games is zero, because of the
perfect zero-knowledge property.

Game 6 S6 runs like S5 except that when an honest user U asks for a key, S6 extracts the
witnesses from ZKPoK5. If it fails to extract, it aborts. The difference between the two games
is 2−κNusers.

Game 7 S7 runs exactly like S6 except that it aborts if the user recovers the correct message
despite the fact that his key does not satisfy the policy. This happens only when

∃j, 0 ≤ j ≤ n : εj,Lj 6= 0 (mod p) ∧ −
n∑
i=0

λiεi,Li = 0 (mod p).

There are two possibilities why this could happen: Either A was completely unaware of the
λi values when generating the record (for a given query the success probability is p−1 in this
case, which is negligible). The other possibility is that A somehow recovered λi and maliciously
adapted the εi,Li values. We show that ths can only happen with negligible probability:

Lemma 10 E has only a negligible advantage in distinguishing between Game 6 and Game 7
based on the semantic security of El-Gamal in G2.

See the proof in Section 5.8.

Construction We now construct a simulator S which incorporates all steps from the previous
games. S relays all messages he gets from E to A, and all return values from A to E .
S runs a number of honest users and honest databases to interact with A.
S generates a hiding CRS and gives it to A.
When S receives the issuer public key of A, it runs the extractor of ZKPoK5 to recover the

secret key of the issuer.
When S receives an encrypted record from A, it uses the escrow functionality to recover the

plaintext and the ciphertext policy. It then sends these to T.
When S receives a record issue notification from T, it runs the ideal world escrow to recover

the plaintext and the ciphertext policy. It then asks one of the honest databases in the real
world to generate a record with the same plaintext and policy.

When S receives a request to generate a key from T, it asks A to generate a key with the
same permissions. If A is cooperative, then S returns b = 1 to T, else it returns b = 0 to T (if
it failed to extract the witnesses from the ZKPoK, then S aborts).

When S receives a request for a key from T, it runs one of its users to query a key with the
same policy to A. If A is cooperative then S saves the key and sends b = 1 to T. Else S sends
b = 0 to T (it aborts if it fails to extract the witness).

33

When S receives a query message from T, S chooses a random record, and a random user
for which it knows the key and queries A with these. If A is cooperative in the query protocol,
S sends c = 1 to T. Else S sends c = 0 to T (remember that it aborts if A cheated in ZKPoK7).

When A queries for a message from an honest database, S simply asks T for a random
record (the ideal database doesn’t get to see neither the user index nor the record index).

5.5 Proof of Lemma 7

If there exists a PPT algorithm D which distinguishes between Game 6 and Game 7 with non-
negligible advantage, then we can construct a PPT algorithm S(D) which has rewindable black
box access to D and which plays the HABE game with non-negligible advantage.

We defines the sequence of games: Game 6-0 to Game 6-Nrecords. In game 6-ω, the value
P ′ for all records ψ ≤ ω is computed as in Game 7, and the value P ′ for all records ψ > ω is
computed as in Game 6. Clearly, Game 6-0 is exactly Game 6, and Game 6-Nrecords is exactly
Game 7. The existence of D implies the existence of Dω (for some ω) which can distinguish
between Game 6-(ω − 1) and Game 6-ω with an advantage N−1

records that of D.
The challenger starts by generating the issuer key, which he transmits to S(Dω). S(Dω)

relays it to Dω.
S(Dω) runs Dω, who may request a key with attribute list {Li} where L0 = 0. S(Dω) relays

the request to the challenger and the response back to Dω. This can be repeated polynomially
many times.

When Dω wants to encrypt a record ψ 6= ω (not the challenge record), with plaintext

M (ψ) and policy W (ψ) (with W
(ψ)
0 = {%}),21 S(Dω) computes the ciphertext under the policy

W (ψ)′ = {{0, %},W (ψ)
1 ,W

(ψ)
2 , . . . ,W

(ψ)
n } (which includes the “issuer” attribute), and sends every

component except C
(ψ)
0,0,2 (the one corresponding to the “issuer” attribute) to Dω.

When Dω wants to encrypt the challenge record ψ = ω with plaintext M (ω) and policy W (ω)

(with W
(ω)
0 = {%}), S(Dω) generates the following challenge plaintexts and policies: M (0) ←

M (ω) and W (0) ← {{%},Nn1 ,Nn2 , . . . ,Nnn} (the most liberal policy), as well as M (1) ← M (ω)

and W (1) ← W (ω) (these are acceptable, since all keys issued will satisfy neither of W (0) and

W (1)). These are then sent to the challenger. The challenger flips a bit b
$← N2 and encrypts

M (b) under policy W (b) yielding the ciphertext:

{C̃(b), C
(b)
0 , C

(b)
0,1, {C

(b)
0,0,2, C

(b)
0,%,2}, {C

(b)
i,1 , {Q

(b)
i,t,2}

ni−1
t=0 }

n
i=1}.

S(Dω) now computes C
(b)
i,t,2 as follows:

∀i ∈ N∗n+1 : ∀t ∈W (ω)
i : C

(b)
i,t,2 ← Q

(b)
i,t,2;

∀i ∈ N∗n+1 : ∀t ∈ Nni \W
(ω)
i : C

(b)
i,t,2

$← G1.

That is, S(Dω) re-randomizes all ciphertext components that are not in the policy. S(Dω) now
sends the following modified ciphertext to Dω:

{C̃(b), C
(b)
0 , C

(b)
0,1, {C

(b)
0,%,2}, {C

(b)
i,1 , {C

(b)
i,t,2}

ni−1
t=0 }

n
i=1}.

In the view of Dω, this challenge ciphertext is distributed exactly as if it was encrypted under
the ciphertext policy W (ω).
S(Dω) runs Dω, who may now ask for more keys (polynomially many times).

21 Note that S7 can intercept the “IssueRecord” message from the environment E in the hybrid games.

34

To process queries by Dω, S(Dω) first extracts from ZKPoK6 to recover the key index ϕ and
the record index ψ. S(Dω) will have no problem in processing queries for the non-challenge
records ψ 6= ω to return P ′ of the requisite distribution. For the challenge record ψ = ω, S(Dω)
computes P ′ as follows, and sends the result back to Dω:

P ′ ←

 Ĉ(b)
∏n
i=0 e(C

(b)
i,1 , D

(ϕ)
i,1)

M (0) e(C
(b)
0 , D

(ϕ)
0)

∏n
i=1 e(Q

(b)

i,L
(ϕ)
i ,2

, D
(ϕ)
i,2)


kckd

. (12)

If b = 0 or if the key ϕ satisfies the policy of record ω, then all values of Qi,t,2 in the above

equation are non-random, we therefore have that P ′ = e(C
(ω)
0,%,2, D

(ϕ)
0,2)k

−1
% kckd and thus distributed

exactly as in Game 6. Else P ′ is distributed exactly in Game 7 (it contains random values that
Dω doesn’t have).

The query phase may be repeated polynomially many times.
S(Dω) runs Dω, who now finally outputs a guess of b. S(Dω) sends b to the challenger. S(Dω)

has the same advantage in the HABE security game, as Dω has in distinguishing between Game
6-(ω − 1) and Game 6-ω.

AdvGame 6–7
D ≤ max

ω

(
Nrecords ·Adv

Game 6-(ω − 1)–6-ω
Dω

)
≤ max

ω

(
Nrecords ·AdvHABE

S(Dω)

)
= negl.

5.6 Proof of Lemma 8

Difference between Game 7 and 8 In Game 7, P ′ for a given ψ and variable ϕ is not
distributed uniformly at random (informally, it’s because there isn’t enough “randomness” in
P ′ if you have multiple keys), while it is random and independant in Game 8. (Of course if
there is a single key, then both Games 8 and 7 are the same. Also if you fix ϕ and vary ψ, the
P ′ values will be uniformly random).

The proof We show that if a PPT algorithm D distinguishes between Game 7 and Game
8, we can construct an algorithm S(D) which plays the DDH game in G2 with non-negligible
advantage.

For this we make use of (NusersNrecords + 1) hybrid games Game 7-0-0 to Game 7-Nusers-
Nrecords,

22 where in Game 7-φ-ω the values of P ′ are computed as in Game 8 for all keys ϕ and
records ψ satisfying (ϕ,ψ) ≤ (φ, ω) (lexicographical comparison) and computed as in Game 7
for (ϕ,ψ) > (φ, ω). Clearly Game 7-0-0 is exactly Game 7, and Game 7-Nusers-Nrecords is exactly
Game 8.

The existence of D implies the existence of Dφω (for some φ and some ω) which can
distinguish between Game 7-φ-ω and the lexicographically preceding game with advantage

1
NusersNrecords

that of D. We now show how to construct an algorithm S(Dφω) which plays

the DDH game with advantage at least 1
Nattributes

def= 1∑n
i=1 ni

that of Dφω, which is still a non-

negligible advantage:

S(Dφω) begins by choosing a category j
$← N∗n+1 and an attribute j′

$← Nni from that
category at random. S(Dφω) receives a DDH challenge

(
gγ2 , g

δ
2, g

z
2

)
where z is either γδ or

random. S(Dφω) generates the public key of the issuer and gives them to Dφω.
S(Dφω) runs Dφω for the key issuing phase. Dφω may choose to be issued up to a polynomial

number of keys (under the restriction that L0 = 0). When S(Dφω) issues the key ϕ = φ:

First it checks that j′ = L
(φ)
j (else S(Dφω) aborts and takes a random guess), then it sets

22To simplify notation somewhat, we will ignore the games where no progress is made.

35

λ
(φ)
j = γ (without being able to compute that value), and finally computes D

(φ)
j,1 ← gs2(gγ2)aj,j′

and D
(φ)
j,2 ← gγ2 . All other components of the key are computed honestly. For all other keys

ϕ 6= φ, S(Di) computes λ
(ϕ)
j

$← Z∗p, D
(ϕ)
j,2 ← g

λ
(ϕ)
j

2 and D
(ϕ)
j,1 ← gs2(D

(ϕ)
j,2)

a
j,L

(ϕ)
j (so that it knows

the discrete logarithm of D
(ϕ)
j,2), and all other key components honestly. S(Dφω) fakes ZKPoK5

using its black-box access to Dφω.
S(Dφω) runs Dφω, who chooses a plaintext M (ω) and ciphertext policy W (ω). S(Dφω) aborts

if j′ ∈W (ω)
j .

S(Dφω) computes the ciphertext:

{C̃(ω), C
(ω)
0 , C

(ω)
0,1 , {C

(ω)
0,0,2, C

(ω)
0,%,2}, {C

(ω)
i,1 , {Q

(ω)
i,t,2}

ni−1
t=0 }

n
i=1}.

however instead of computing Q
(ω)
j,j′,2 honestly, it embeds part of the DDH challenge in that

value: it sets Q
(ω)
j,j′,2 = gδ1 (without being able to compute this value since it only knowns gδ2).

All other ciphertext components Q
(ω)
i,t,2 are computed honestly. Like in the last game however,

S(Dφω) re-randomizes all ciphertext components which are not part of the policy:

∀i ∈ N∗n+1 : ∀t ∈W (ω)
i : C

(ω)
i,t,2 ← Q

(ω)
i,t,2;

∀i ∈ N∗n+1 : ∀t ∈ Nni \W
(ω)
i : C

(ω)
i,t,2

$← G1.

and publishes the ciphertext:

{C̃(ω), C
(ω)
0 , C

(ω)
0,1 , {C

(ω)
0,0,2, C

(ω)
0,%,2}, {C

(ω)
i,1 , {C

(ω)
i,t,2}

ni−1
t=0 }

n
i=1}.

Note that S(Dφω) never needs to publish the value Q
(ω)
j,j′,2 it couldn’t compute before.

S(Dφω) generates all records ψ 6= ω in the same way (including the re-randomization of

all ciphertext components Q
(ψ)
i,t,2 not in the policy), except that it does not embed any DDH

challenge in them.
The key issuing phase may be repeated.
Dφω may now perform queries for the record ψ and key ϕ (S(Dφω) extracts ϕ and ψ from

ZKPoK4). If the key satisfies the ciphertext policy of the queried record, P ′ is computed honestly.
Else the key doesn’t satisfy the policy: if (ϕ,ψ) < (φ, ω), P ′ is computed randomly ; else if
(ϕ,ψ) ≥ (φ, ω), P ′ is computed as in Game 7:

P ′ ←

 Ĉ(ψ)
∏n
i=0 e(C

(ψ)
i,1 , D

(ϕ)
i,1)

M (0) e(C
(ψ)
0 , D

(ϕ)
0)

∏n
i=1 e(Q

(ψ)

i,L
(ϕ)
i ,2

, D
(ϕ)
i,2)


kckd

. (13)

There are however two non-trivial cases of e(Q
(ψ)

j,L
(ϕ)
j ,2

, D
(ϕ)
j,2) def= ℘

(ψ,ϕ)
j :

• To compute this pairing for an honest key ϕ 6= φ, but for the record ψ = ω containing

the DDH challenge: since λ
(ϕ)
j (the discrete logarithm of D

(ϕ)
j,2) is known to S(Dφω), the

pairing can be computed thus: ℘
(ω,ϕ)
j ← e(g1, g

δ
2)λ

(ϕ)
j .

• To compute this pairing for the key ϕ = φ containing the DDH challenge and the record

ψ = ω also containing the DDH challenge, the pairing can be computed thus: ℘
(ω,φ)
j =

e(g1, g
z
2). If z is random, then ℘

(ω,φ)
j is computed according to Game 7-φ-ω, and if z = γδ,

then ℘
(ω,φ)
j is computed according to the lexicographically preceding game.

36

Finally Dφω outputs a guess b of which game it is in. S(Dφω) returns the same guess b for
the DDH challenge. For there to be any difference between the current game and the preceding
one, the key φ must not satisfy the policy of the record ω. This means at least one attribute in
the key is not in the policy of the record; the probability that S(Dφω) hits such an attribute is
therefore at least N−1

attributes, and in all other cases it aborts and takes a random guess.

AdvGame 7–8
D ≤ max

φ,ω

(
Nrec.Nusers ·AdvGame 7-φ-ω

Dφω

)
≤ max

ω,φ

(
Nattr.Nrec.Nus. ·AdvSXDH

S(Dφω)

)
= negl.

5.7 Proof of Lemma 9

If there exists a PPT algorithm D which distinguishes between Game 8 and Game 9 with non-
negligible advantage, then we can construct a PPT algorithm S(D) which has rewindable black-
box access to D and which plays the security game of HABE with non-negligible advantage.

Again, we consider a series of hybrid games Game 8-0 to Game 8-Nrecords, where in Game
8-ω every record ψ ≤ ω is handled as in Game 9, and all records ψ > ω are handled as in Game
8. Clearly, Game 8-0 is exactly Game 8 and Game 8-Nrecords is exactly Game 9.

The existence of D implies the existence of Dω (for some ω) that can distinguish between
Game 8-(ω − 1) and Game 8-ω with advantage N−1

records that of D.
The challenger computes the issuer public key and sends it to S(Dω). S(Dω) relays it to

Dω.
S(Dω) runs Dω, who may now requests a key with attribute list {Li} where L0 = 0. S(Dω)

relays the request to the challenger and the response back to Dω. This can be repeated poly-
nomially many times.

When Dω wants to encrypt a record ψ:

• If ψ < ω, S(Dω) encrypts a random plaintext M (ψ)′ $← GT under a random policy W (ψ)′

(but with W
(ψ)
0

′
= {0}). Again, C

(ψ)
0,0,2 is remembered but not published.

• For the challenge record ψ = ω, S(Dω) sets M (0) = M (ω) and W (0) = W (ω), as well as

M (1) $← GT and selects W (1) randomly (but with W
(1)
0 = {%}), and sends these to the

HABE challenger. The challenger flips a bit b
$← N2 and encrypts M (b) under policy W (b)

(we shall denote the resulting ciphertext C(b)). S(Dω) relays the ciphertext to Dω.

• If ψ > ω, S(Dω) encrypts the plaintext M (ψ) under policy W
′(ψ) = {{0, %},W (ψ)

1 ,W
(ψ)
2 ,

. . . ,W
(ψ)
n } (including the “issuer” attribute). S(Dω) remembers the ciphertext component

C
(ψ)
0,0,2 corresponding to the “issuer” attribute but doesn’t publish it. S(Dω) sends the rest

of the ciphertext to Dω.

S(Dω) runs Dω, who may now ask for more keys (polynomially many times).
S(Dω) runs Dω, who may perform a query with a key ϕ on record ψ (S(Dω) extracts ϕ and

ψ from ZKPoK6). S(Dω) checks if the key ϕ satisfies the ciphertext policy W (ψ). If the key
doesn’t satisfy the policy, then S(Dω) computes P ′ randomly. P ′ is thus distributed exactly as
in both games. If it does then:

• For records ψ < ω, P ′ is computed as follows:

P ′ ←

 Ĉ(ψ)
∏n
i=0 e(C

(ψ)
i,1 , D

(ϕ)
i,1)

M (ψ) e(C
(ψ)
0 , D

(ϕ)
0)

∏n
i=1 e(C

(ψ)

i,L
(ϕ)
i ,2

, D
(ϕ)
i,2)


kckd

. (14)

37

• For records ψ = ω, P ′ is computed as follows:

P ′ ←

 Ĉ(b)
∏n
i=0 e(C

(b)
i,1 , D

(ϕ)
i,1)

M (0) e(C
(b)
0 , D

(ϕ)
0)

∏n
i=1 e(C

(b)

i,L
(ϕ)
i ,2

, D
(ϕ)
i,2)


kckd

. (15)

If b = 0 then P ′ = e(C
(ω)
0,%,2, D

(ϕ)
0,2)k

−1
% kckd and thus distributed exactly as in Game 8-(ω−1).

If b = 1 then P ′ is distributed exactly as in Game 8-ω.

• For records ψ > ω, P ′ is computed as:

P ′ ← e(C
(ψ)
0,0,2, D

(ϕ)
0,2)kckd .

S(Dω) sends the result P ′ back to Dω.

The query phase may be repeated polynomially many times.

S(Dω) runs Dω, who now finally outputs a guess of b. S(Dω) sends b to the challenger. S(Dω)
has the same advantage in the HABE security game, as Dω has in distinguishing between Game
8-(ω − 1) and Game 8-ω.

AdvGame 8–9
D ≤ max

ω

(
Nrecords ·Adv

Game 8-(ω − 1)–8-ω
Dω

)
≤ max

ω

(
Nrecords ·AdvHABE

S(Dω)

)
= negl.

5.8 Proof of Lemma 10

If there exists a PPT algorithm D which distinguishes between Game 6 and Game 7 with non-
negligible advantage, we can construct a PPT algorithm S(D) (which has rewindable black box
access to D) which can break the semantic security of El-Gamal (which would in turn break
the SXDH assumption) with advantage (NusersNrecordsNcategories)

−1 that of D, which is still a
non-negligible advantage.

S(D) receives an El-Gamal public key X̄ = gx̄2 from the challenger of the El-Gamal semantic-

security game. S(D) chooses m̄0, m̄1
$← Z∗p. It computes M̄0 = gm̄0

2 and M̄1 = gm̄1
2 and gives

them to the challenger. The challenger flips a coin b̄ and gives S(D) the ciphertexts C̄1 = M̄b̄X
r̄,

C̄2 = gr̄2. S(D) proceeds as follows: it chooses a key φ at random from the set of honest users
and a value ̄ at random. In the key issuing protocol for key φ it sends X̄ as its El-Gamal public

key. It sends C̄1 and C̄2 instead of E
(φ)
3,̄ and F

(φ)
3,̄ . All other values of E3,i and F3,i can be

computed normally (these are simply El-Gamal encryptions). S(D) then fakes ZKPoK4 using
the rewindable black-box access to D.

It extracts the values λ′i and ai,t from A in ZKPoK5. S(D) can therefore recover the values

of λ
(φ)
i = λ′i + λ′′i for all i 6= ̄ and, using the escrow functionality, can compute g

εi,t
1 from the

ciphertext components Ci,t,2.

With non-negligible probability, there will be a query in which a key ϕ that does not satisfy
the ciphertext policy of a given record, can decrypt that record anyway (if that is not the case
then D cannot have a non-negligible advantage). If ϕ 6= φ, S(D) aborts and takes a random

guess. If the ciphertext policy of record satisfies L
(φ)
̄ ∈W̄, then S(D) aborts. In all other cases

we have ε̄
,L

(φ)
̄
6= 0 (mod p) and 0 =

∑n
i=0 εi,L(ϕ)

i

λ
(ϕ)
i (mod p).

By setting λ̄ to mb + λ′̄, S(D) can test if:

g0
1

?=
n∏
i=0

(
g
εi,Li
1

)λi
.

38

S(D) outputs the value of b for which the above equation is satisfied.

AdvGame 6–7
D ≤ NrecordsNusersNcategories ·AdvEl-Gamal

S(Dω) = negl.

6 Alternative Construction

We now sketch the main idea of how one could instantiate our scheme based on the first con-
struction of Nishide et al. [NYO08]. They proved their scheme secure under static assumptions
(DBDH and D-Lin) and not directly in the generic bilinear group model. The price to pay is
that the alternative HABE scheme is not (match-concealing) secure, but only selectively se-
cure; the security proof of our alternative construction is therefore somewhat awkward. Our
alternative scheme is secure under the D-Lin, DBDH and SXDH assumptions, as well as the
max(Nusers, Nrecords)-SFP assumption in both G1 and G2.

This alternative construction shares some similarity with our main construction. The major
difference is that each attribute has two public key components. The “missing piece” is now
composed of two parts which must not be revealed separately: the query protocol is substantially
modified, and the privacy of the user is now computational (as opposed to perfect in our main
construction).

Readers are advised to read Appendix A or [NYO08, Section 3.4] before continuing reading
this section.

6.1 Selective Security

In the selective security game of HABE, which we formally define in Appendix A.2.1, the
adversary of the HABE game must announce which two policies we wishes to be challenged on
before he receives the system public key. E must provide a (polynomially-sized) set of ciphertext
policies that are going to be used by honest databases.

This means that in the security proof we need to guess the policy of the record the adversary
attacks, before we publish the issuer public key. We can achieve this by requiring either:

• that the total number of attributes in the scheme is logarithmic in the security parameter,
or

• that E publishes a polynomial-sized set of policies before the start of the protocol, and
that all honest databases only use ciphertext policies from that set.

Let Npolicies be the number of policies that can be used by honest databases. We assume that
this number is polynomial w.r.t. the security parameter.

6.2 The Construction

6.2.1 Group and CRS Setup

These are identical to our main construction.

6.2.2 Issuer Setup and Check Issuer Key

We generate the issuer public and private key according to the equations of the HABE scheme
(see Appendix A.2.2), again with the special zeroth category containing only one “Issuer”
attribute. Finally, a signing key pair that is good for message vectors of length 2 (instead of 1)
in G2 is generated.

Checking the issuer key proceeds along the same lines as in our main construction.

39

6.2.3 Database Setup and Check Database Key

During database setup, the public and private key components corresponding to the “Database
%” attribute are computed as follows:

ka%, kb%
$← Zp, A

a0,%

0,% ←
(
A
a0,0

0,0

)ka%
, A

b0,%
0,% ←

(
A
b0,0
0,0

)kb%
.

The database also generates a signing key pair that is good for message vectors of length 2 in
G1.

Checking the database key proceeds along the same lines as in our main construction.

6.2.4 Key Generation

We can easily adapt the joint key computation in our main scheme to the key generation
algorithm of the alternative HABE scheme (cf. Appendix A.2.3). The aim remains the same:
make sure neither the issuer nor the user know the values λi for i ∈ N∗n+1 (the si can be
determined by the issuer and don’t need to be generated jointly).

Also, since there are now two key components per attribute, the issuer needs to compute
the signature σ on the tuple {D0,1, D0,2} (instead of just D0,2).

6.2.5 Record Issuing

The database computes the ciphertext as in the alternative HABE scheme (see Appendix A.2.4),
except that it does not publish the ciphertext components corresponding to the “Issuer” at-
tribute. It also generates a signature σ on the tuple {C0,%,1, C0,%,2}. Finally it issues a non-
interactive GS proof to certify it computed the ciphertext component “Database %” correctly:

NIZK3′

{
(r , −r0,%) : C0 = g r1 ∧ C

−r0,%
0,%,1 =

(
A
b0,%
0,%

)
∧ C0,%,2 =

(
A
a0,%

0,%

) r (
A
a0,%

0,%

)−r0,%}.

6.2.6 Decrypting a Record

The oblivious transfer protocol must be changed substantially, since we never want the user

to see the two parts of the “missing piece” P ′1 = e(Dkd1
0,1 , C

kc1
0,%,1)k

−1
b% and P ′2 = e(Dkd2

0,2 , C
kc2
0,%,2)k

−1
a%

separately (we are unable to prove the scheme secure otherwise). We will make use of the
homomorphic property of the El-Gamal encryption to achieve this. The protocol remains 10-
move.

The ZKPoK8 in Figure 4 and Equation 16 is used to verify that the user knows the signa-

ture to {C(ψ)
0,%,1, C

(ψ)
0,%,2} and {D(ϕ)

0,1 , D
(ϕ)
0,2 } (first four lines), that both El-Gamal encryptions are

correct (next 2 lines), and that k−1
c1d1 and k−1

c2d2 are the products k−1
c1 k−1

d1 and k−1
c2 k−1

d2 respec-
tively (last line). Both parties parse vk% as {g′Z , f ′Z , g′R, f ′U , g′M , g′N , f ′M , f ′N , A′, B′} and vkI as
{g′′Z , f ′′Z , g′′R, f ′′U , g′′M , g′′N , f ′′M , f ′′N , A′′, B′′}.

40

U(ϕ)
(
CT (ψ), SU (ϕ),PD(%),PI

)
: Anonymous channel DB(%)(SD(%),PI) :

kc1, kc2, kd1, kd2, r6, r7, x
$← Z∗p,

C ′1 ← (C
(ψ)
0,%,1)kc1 , C ′2 ← (C

(ψ)
0,%,2)kc2 ,

D′′1 ← (D
(ϕ)
0,1)kd1 , D′′2 ← (D

(ϕ)
0,2)kd2 ,

σ′ ← SigRerand(σ(ψ)),

σ′′ ← SigRerand(σ(ϕ)),

X ← gxT, S1 ← Ukd11,2 , S2 ← Ukd22,1 ,
X, S1, S2 -

E6 ← e(C
(ψ)
0,%,1, D

(ϕ)
0,1)Xr6 , F6 ← gr6T ,

E7 ← e(C
(ψ)
0,%,2, D

(ϕ)
0,2)Xr7 , F7 ← gr7T .

E6, F6, E7, F7 - r8
$← Z∗p,

Parse σ′ and σ′′ as respecively

{Z ′, R′, S′, T ′, U ′, V ′,W ′} and C ′1, C
′
2, S
′, T ′, V ′,W ′ - E8 ← E

k−1
b%

6 E
k−1
a%

7 Xr8 ,

{Z ′′, R′′, S′′, T ′′, U ′′, V ′′,W ′′}. D′′1 , D
′′
2 , S

′′, T ′′, V ′′,W ′′ - F8 ← F
k−1
b%

6 F
k−1
a%

7 gr8T .
ZKPoK8 (see Equation 16)-

E8, F8�

P ← E8F
−x
8 . ZKPoK9 (see Equation 17)�

Compute M ′ from Equation 18.
If M ′ correct: return M ′; return ε
else return ⊥ .

Figure 4: Transfer protocol of alternative construction.

ZKPoK8

{(
k−1
c1 , k

−1
c2 , Z

′ , R′ , U ′ , k−1
d1 , k

−1
d2 , Z

′′ , R′′ , U ′′ , x , r7 , r8 , k
−1
c1d1 , k

−1
c2d2

)
:

A′ = e(Z ′ , g′Z) e(R′ , g′R) e(T ′, S′) e(C ′1, g
′
M)k

−1
c1 e(C ′2, g

′
N)k

−1
c2 ∧

B′ = e(Z ′ , f ′Z) e(U ′ , f ′U) e(W ′, V ′) e(C ′1, f
′
M)k

−1
c1 e(C ′2, f

′
N)k

−1
c2 ∧

A′′ = e(g′′Z , Z
′′) e(g′′R, R

′′) e(S′′, T ′′) e(g′′M , D
′′
1)k

−1
d1 e(g′′N , D

′′
2)k

−1
d2 ∧

B′′ = e(f ′′Z , Z
′′) e(f ′′U , U

′′) e(V ′′,W ′′) e(f ′′M , D
′′
1)k

−1
d1 e(f ′′N , D

′′
2)k

−1
d2 ∧

E6 = e(C ′1, D
′′
1)k

−1
c1d1X r6 ∧ F6 = g

r6
T ∧

E7 = e(C ′2, D
′′
2)k

−1
c2d2X r7 ∧ F7 = g

r7
T ∧X = g xT∧

U1,2 = S
k−1
d1

1 ∧ U
k−1
c1

1,2 = S
k−1
c1d1

1 ∧ U2,1 = S
k−1
d2

2 ∧ U
k−1
c2

2,1 = S
k−1
c2d2

1

}
. (16)

ZKPoK9

{(
k−1
a% , k

−1
b% , r8

)
:
(
A
a0,%

0,%

)k−1
a%

= A
a0,0

0,0 ∧
(
A
b0,%
0,%

)k−1
b%

= A
b0,0
0,0 ∧

E8 = E
k−1
b%

6 E
k−1
a%

7 X r8 ∧ F8 = F
k−1
b%

6 F
k−1
a%

7 g
r8
T

}
. (17)

41

M ′ ←
ĈP

∏n
i=1 e(Ci,Li,1, Di,1) e(Ci,Li,2, Di,2)

e(C0, D0)
∏n
i=0 e(C0, Di,0)

. (18)

If the user key satisfies the policy, then M = M ′.

6.3 Security Proof of Alternative Construction

Completeness follows from construction. It is also easy to adapt the escrow functionality of the
issuer.

6.3.1 Corrupted Database or Corrupted Issuer+Database

The security proof is very similar.

A user can decrypt a record iff:
∑n

i=0 ai,Liλ
(ϕ)
i ε

(ψ)
i,Li

= 0. All values of ai,j are non-zero, as
the public key is rejected if it contains neutral group elements. If only the database is malicious,
then it never sees the random values λi. The probability of a user decrypting even if his key
doesn’t satisfy the policy of the record is therefore less than p−1. If the issuer and database
are malicious, we can reduce this case to the El-Gamal semantic security game as we did in the
proof of our main contribution.

DDH in groups GT and G2 guarantees that the user has (computational) privacy in the
transfer protocol (we first replace E6 by a random number (DDH in GT (El-Gamal)), then we
replace E7 by a random number (idem), then S1 (DDH in G2—we embed the challenge in the
CRS U), then S2 (idem)).

6.3.2 Corrupted User

Games 1 to 6 from our main contribution can easily be adapted to the alternative construction.
We will not restate the modified games, which we denote by Games 1’ to 6’, here.

Game 7’ S7′ runs like S6′ except that instead of computing E8 and F8 honestly in the transfer
protocol it computes:

E8 ← PXr8 , F8 ← gr8T .

Where the “missing piece” P is computed honestly (using x):

P ← e(C
(ψ)
0,%,1, D

(ϕ)
0,1)kb% e(C

(ψ)
0,%,2, D

(ϕ)
0,2)ka% .

Using the rewindable black-box access of A, S7′ fakes ZKPoK9. The difference between
Games 6’ and 7’ is zero, since all values have exactly the same distribution in both games.

Game 8’ Is similar to Game 7. P is computed thus:

P ←
M e(C0, D0)

∏n
i=0 e(C0, Di,0)

Ĉ
∏n
i=1 e(Ci,Li,1, Di,1) e(Qi,Li,2, Di,2)

.

Where ∀i ∈ N∗n+1∀t ∈ Nni : Q
(ψ)
i,t,2

{
← C

(ψ)
i,t,2 if t ∈W (ψ)

i ;
$← G1 if t /∈W (ψ)

i .

The difference between Game 7’ and Game 8’ is negligible. We omit the proof, since it is
very similar to the proof in Section 5.5, except that S(Dω) needs to guess (before the start
of the game) the policy that will be used for the challenge record, and abort if his guess was
wrong. The advantage loss will be an additional factor N−1

policies.

42

Game 9’ Is similar to Game 8. If the key ϕ does not satisfy the policy of record ψ, S9′

computes P
$← GT . The difference between the two games is negligible. The proof is very

similar to the proof in Section 5.6 and is omitted.

Game 10’ Is similar to Game 9. S10′ also encrypts a random message under a random policy.
If the key ϕ doesn’t satisfy the policy of record ψ, P is computed randomly. If the key does
satisfy:

P ←
M (ψ) e(C0, D0)

∏n
i=0 e(C0, Di,0)

Ĉ
∏n
i=1 e(Ci,Li,1, Di,1) e(Ci,Li,2, Di,2)

.

P is such that the user recovers the “real” plaintext M (ψ) at the close of the transfer protocol.
The difference between the two games is negligible. We omit the proof, since it is very

similar to the proof in Section 5.7, except that S(Dω) needs to guess (before the start of the
game) the policy that will be used for the challenge record, and abort if his guess was wrong.
The advantage loss will be an additional factor N−1

policies.

7 Implementation

The source code of the implementation is IBM-confidential and will not be pub-
lished as part of this thesis.

We implemented the scheme presented in Section 4 in the C++ programming language
and using the PBC Library23 [Lyn07]. We wrote our own library to handle the interactive
and non-interactive zero-knowledge proofs.24 Our implementation currently works on “D”-type
curves [Lyn07], which, according to the author of the library, are type-3 curves where the SDXH
assumption is believed to hold. We also wrote a workaround in our code for a bug we found in
the PBC library.25

We wrote a separate program for each of the algorithms described in Section 2.3,26 and one
program for each of the parties for each of the protocols.27 All programs have a command-line
interface. We wrote a script (preparedemo.sh), which runs a semi-automatic demonstration of
the scheme as a whole: it opens separate terminals for each of the following parties: the trusted
CRS generator, the issuer, the database, and the user; and gives instruction for running the
programs.

All keys and ciphertexts are stored in files on disk (in the demo, the issuer, database, and
user each have a separate folder) in an ad-hoc data format. Group elements from G1 and
G2 are represented with the standard elliptic-curve point compression technique28 to reduce
storage and transmission size. All programs communicate via TCP/IP, but no effort is made
to establish secure channels. All programs also abort when they detect an error.

When a value supposedly in G1, G2, or GT is read from disk for the first time, or read from
the network, the library checks that it is on the elliptic curve, and our code checks that its order
is either 1 or p.

23The PBC library can be downloaded at http://crypto.stanford.edu/pbc/.
24We used the six-move variant of the perfect ZKPoK, instead of the four-move variant.
25In version 0.5.10, when generating a random element from G2, the result may not lie in a cyclic group of

order p, but in a group of order a multiple of p. According to the author of the library this does not cause
problems in general, “because it turns out the pairing computation works the same for all coset representatives”.
However, our code checks the order of all elements received from untrusted sources, and therefore fails. See
http://groups.google.com/group/pbc-devel/browse_thread/thread/3af23f1c261a8b80.

26IssuerSetup, DatabaseSetup, IssueRecord, CheckRecord, as well as the CRS generator.
27CheckIssuerKey for I, D, and U ; IssueKey for I, and U ; CheckDatabaseKey for D, and U ; Query for D and U .
28Representing only the x-coordinate of the point and the sign of the y-coordinate

43

http://crypto.stanford.edu/pbc/
http://groups.google.com/group/pbc-devel/browse_thread/thread/3af23f1c261a8b80

Our program can be used to encrypt files of arbitrary size instead of just elements of GT: We
derive a symmetric key from the plaintext group element M ∈ GT and then encrypt the file with
an authenticated encryption scheme, specifically AES-256-GCM (which is a NIST standard).29

If a user does not have permissions to access a record, he will derive an incorrect symmetric
key from the recovered plaintext group element M ′, and thus the decryption of the symmetric
ciphertext will fail with an error message.

We have not fully optimized the scheme: the implementation can be made faster by changing
the way some of the computation is performed, for example by doing pre-computations, multi-
exponentiations, and multi-pairings. We believe that more careful programming can lower the
run-time of some parts of the code by a factor of 1.5–2 (especially in the ZKPoK protocols).

7.1 Measured Efficiency

IS ICI IK DCI DS DCD DR DQ UCI UK UCD UCR UQ
0.000

1.000

2.000

3.000

4.000

5.000

6.000

53.819 56.936

T1(n=5,V=22)

T2(n=5,V=220)

T3(n=50,V=220)

R
u

n
ti

m
e

(s
ec

on
d

s)

Figure 5: Run times (excluding idle time) of the algorithms and protocols in our implementa-
tion. T1 uses the same policies and attributes as in the example of Section 2.2 and as shown
in Figure 1: using ≈ 2158 group size, 5 categories, and 22 attributes total. Between T1 and T2
we multiply the number of attributes by 10 while keeping the number of categories constant.
Between T2 and T3 we multiply the number of categories by 10 while keeping the number of
attributes constant. We recommend you contrast these results with the theoretical predictions
of Table 3.
IS is IssuerSetup, ICI is CheckIssuerKey for I, IK is IssueKey for I. DCI is CheckIssuerKey for
D, DS is DatabaseSetup, DCD is CheckDatabaseKey for D, DR is IssueRecord, DQ is Query for
D. UCI is CheckIssuerKey for U , UK is IssueKey for U , UCD is CheckDatabaseKey for U , UCR
is CheckRecord, UQ is Query for U .

29We use the Crypto++ library for that. It’s available at http://www.cryptopp.com/.

44

http://www.cryptopp.com/

We performed measurements of the run times of all the programs of our implementation. The
results are summarized in Figure 5. The experiments were run on Ubuntu Linux 10.10, x86 (32
bit) architecture, on an Intel T2600 processor clocked at 2.16GHz. All TCP/IP communication
ran on localhost. The reported run times exclude idle time: we summed the “user” and “sys”
components of the time utility (and ignored the “real” component); for algorithms the error
introduced by this choice are too small to be noticeable; for protocols, the times of both parties
should be added together to get a good estimate of the “real” run time.

We performed 4 experiments:

• T1: We used the example of Section 2.2 (and Figure 1) with a group size of ≈ 2158.30

There are 5 categories and 22 attributes total in this experiment. The policy of the record
had 10 well-formed ciphertext components, and 12 random ciphertext components (same
as Figure 1).

• T2: Same ≈ 2158 group order, 5 categories, 220 attributes total. The policy of the record
contained 100 well-formed ciphertext components.

• T3: Same ≈ 2158 group order, 50 categories, 220 attributes total. The policy of the record
contained 100 well-formed ciphertext components.

• T4: The setting of T2, but with a ≈ 2289 group order.31

A graph of the run times of experiments T1–T3 are shown in Figure 5 (the exact figures
are available with the source of this report). The run times under setting T4 (larger group
elements) were between 2.90 and 3.62 times slower than the T2 setting, suggesting that the
security parameter κ contributes to the overall run time as O(κ2) instead of the expected
O(κ3).

The run times of our benchmark closely reflect the theoretical predictions of Table 3.32

We observe that most run times are low enough to be reasonable for practical applications.

8 Extensions

8.1 Revocation of Keys

Key revocation lists (KRLs) allows the issuer to revoke certain keys he issued without compro-
mising the privacy guarantees of the users. The KRLs are public, and users can prove to the
database in zero-knowledge that their key has not been revoked. The concept we are going to
describe now has been introduced by Nakanishi et al. [NFHF09] and used in a recent paper by
Camenisch et al. [CDNZ11].

8.1.1 Additional Security Guarantees

Database Security Cheating users who have been revoked cannot successfully engage in a
query protocol with an honest database (assuming the honest database has received a copy of
the latest KRL).

30Using the d159.param curve (D type curve with discriminant 62003, ≈ 2159 base field size, ≈ 2158 group
order).

31Using a D type curve with discriminant 285707, ≈ 2311 base field size, ≈ 2289 group order. This curve was
found with the PBC library’s listmnt program, and generated with the library’s gendparam program.

32The algorithms/protocols IS, ICI, DCI and UCI are supposed to run in time linear to the number of attributes;
IK, UK, UCR and UQ in time linear to the number of categories; DR in time linear to the sum of the number
of categories and attributes; DS, DCD, DQ, UCD in constant-time.

45

User Security If a user engages successfully in a query protocol, the only information the
database can deduce is that the user’s key has not been revoked. The identity, and choice of
record of that user remain private.

8.1.2 Modified and Additional Algorithms

To make KRL deployment possible, the interfaces of the IssuerSetup algorithm and Query pro-
tocol of Section 2.3 must be modified, and new algorithms GenerateKRL and CheckKRL are
introduced.

• IssuerSetup takes an additional parameter Nkrlsize, an estimate of the total number of users
in the system.

• GenerateKRL: I(PK,SK, F)
$→ KRL(krlid).

The issuer runs this algorithm to revoke all users in the subset F . The issuer needs to
provide his public and secret keys. The output of the algorithm is a key revocation list
KRL(krlid), where krlid is counter that is incremented each time this function is called.

• CheckKRL: ∀R ∈ U ∪ D: R(KRL(krlid))
$→ b.

Upon receiving a new KRL from the issuer, each user and database runs this algorithm
to test whether it is correctly formed or not. The output is a bit b indicating the result
of this check.

• In the Query protocol, the user takes the most recent KRL KRL(krlid) as additional input,
and the database takes the serial number krlid of the most recent KRL as additional
input. The protocol fails if the user and database have a different version of the KRL,
or if the user is on the list of revoked users in the KRL. Internally, the user performs a
zero-knowledge set-membership proof [CCS08] for the database that he is in the set of
non-revoked users.

8.1.3 Modified Real and Ideal World

The environment may send a new message 〈E , I, “UpdateKRL”, F 〉 at any time after issuer
setup, where F is a subset of revoked users, to the issuer. In the real world I calls GenerateKRL
and broadcasts the new KRL to all users and databases (∀R ∈ U∪D). The latter then run Check-
KRL, and if the output is 1, they relay the subset F to the environment 〈R, E , “NewKRL”, F 〉.
In the ideal world, I relays the message 〈I,T, “UpdateKRL”, F 〉 to T. T saves the subset F
and broadcasts the message 〈T,∀R ∈ U ∪D, “NewKRL”, F 〉 to all users and databases, who in
turn relay 〈R,T, “NewKRL”, F 〉 to the environment.

When in the ideal world, T receives a “Query” message from user Uϕ, it additionally checks
if Uϕ is in the set of revoked users F ; if so, T aborts the query protocol.

8.1.4 Construction

We need to modify the IssueKey and Query protocols, modify the IssuerSetup and CheckIssuerKey
algorithms, and describe the GenerateKRL and CheckKRL algorithms.

IssuerSetup The signing and verification key pair sgkI and vkI must now be able to sign a
message consisting of two elements of G2 (instead of just one).

The issuer generates a new signing and verification key pair sgkK and vkK which are able
to sign messages consisting of three elements of G1, and a new signing and verification key pair
sgkR and vkR which are able to sign messages consisting of one element of G1.

46

The issuer then generates Nkrlsize + 1 signatures:
{
σ̂i ← Sign(gi1, sgkR)

}Nkrlsize

i=0
.

The issuer adds the signing keys sgkK and sgkR to his private key. He adds the verification

keys vkK and vkR, as well as all signatures
{
σ̂i
}Nkrlsize

i=0
to his public key (notice the public key

has now size linear in the number of users).

CheckIssuerSetup The issuer additionally needs to prove knowledge of his new signing keys.

The users and databases need to check signatures
{
σ̂i
}Nkrlsize

i=0
with vkR.

IssueKey The issuer issues the signature σ not on D0,2, but instead on {D0,2, g
ϕ
2 } (ϕ, the

user index, now becomes explicit).

GenerateKRL The issuer generates a set of intervals of valid keys {starti, endi}Nintervals
i=1

(where Nintevals ∈ N, starti, endi ∈ Zp), where the union of all intervals
⋃Nintervals
i=1 [starti, endi]

contains all non-revoked users IDs, and contains no revoked user ID. Furthermore, we require
than 0 ≤ endi − starti ≤ Nkrlsize.

The issuer increments the counter krlid and generates signatures on the following message
tuple with his key sgkK :{

ςi ← Sign({gkrlid1 , gstarti1 , gendi1 }, sgkK)
}Nintervals

i=1
. (19)

The KRL consists of the list of intervals and their signature:
{

krlid,
{

starti, endi, ςi
}Nintervals

i=1

}
.

CheckKRL Upon receiving a KRL, the user and database need to check that all the signa-
tures ςi are correct, and that ∀i ∈ N∗intervals+1 : (endi − starti) ∈ NNkrlsize+1.

Query In the query phase, the user needs to find the interval j in the most recent KRL
KRL(krlid) containing his user ID ϕ: startj ≤ ϕ ≤ endj . (The user can find such an interval
if and only if his key has not been revoked.) The user then proves possession of the following
signatures in zero-knowledge to the database:

• The signature ςj of {gkrlid1 , g
startj
1 , g

endj
1 } under the key vkK , where the user does not reveal

startj and endj , but reveals krlid.

• The signature σ̂endj−ϕ of g
endj −ϕ
1 under the key vkR, thus proving that ϕ < endj .33

• The signature σ̂ϕ−startj of g
ϕ− startj
1 under the key vkR, thus proving that ϕ > startj .

• The signature σ(ϕ) of {D(ϕ)
0,2 , g

ϕ
2 } under the key vkI (similar to our main construction).

• The signature σ(ψ) of C
(ψ)
0,%,2 under the key vk% (same as in our main construction).

8.1.5 Possible Improvements

There are many possible improvements for this membership proof, see for example Nakanishi
et al. [NFHF09] or the paper derived from Rafik Chaabouni’s master thesis [CCS08].

33Actually, ϕ and endj are elements of Zp but here you should consider them as integers in Np, so that the
less-than operator is well defined.

47

8.2 Record Revocation Lists (RRL)

In the scheme as described, it is not possible for a database to revoke a record once it is issued.
We can fix this problem by using the same idea as for revoking user keys, except that each
database maintains its own RRL instead of the issuer. Each database must also publish its own
signatures on the values 0, . . . , Nkrlsize.

After a record has been revoked, only a dishonest issuer (through the escrow functionality),
or a combination of dishonest database and dishonest user can recover the plaintext.

8.3 Key / Record Expiration

Key and record expiration can be handled with revocation lists. Each time a record or key
expires, it is revoked by the issuer resp. the database.

If the key indexes and record indexes are ordered strictly by expiration date, the number of
intervals inside the RRLs and KRLs will never increase, however the revocation lists have to be
recomputed each time a key or a record expires.

If it is expected that a significant number of records will be revoked, it might become very
expensive to re-generate the RRL/KRL each time. An alternative solution would be to add an
additional group element representing the expiration time of the key/record in the signatures
of the key or ciphertext components. The users would then have to do a range proof [CCS08]
that the expiration time of their key and record are larger than the current time.

8.4 Anonymity Revocation

Under certain circumstances it might be desirable to revoke the user’s anonymity of certain
database queries. To that effect, we introduce a new player trusted by all parties: the anonymity
revoker (AR). In practice AR could for example be a judge in a court of law. The AR publishes
two El-Gamal public keys (one in G1 and one in G2). During each query phase, the user encrypts

his unblinded value D
(ϕ)
0,2 and the unblinded ciphertext component C

(ψ)
0,%,2 with the public keys

of AR. The user then integrates the resulting El-Gamal ciphertext in ZKPoK6.

The anonymity of the transaction can be revoked by asking the AR to decrypt the ciphertext.
Note that the AR might choose to decrypt only the user identifier or only the record identifier.

8.5 Preventing Denial-of-service

We do not address Denial-of-Service issues in this paper. One could imagine that the users have
to pay for the privilege of interacting with the database [CDN10] or do a proof-of-work similar
to HashCash [Bac02].

8.6 Only Allow Databases Vetted by the Issuer

This is easy to implement: the database needs to get a signature of the issuer on it’s value A0,%

(after a proof of knowledge that it knows k%) and publishes it with its public key. Honest users
must check this signature before interacting with the database.

8.7 Allow Everybody to Publish Records

Instead of requiring that everybody who wishes to publish records has to setup a database,
one could also imagine allowing users to issue records themselves, and “entrust” them to the
database of their choice.

48

A user who wishes to publish a record, encrypts the record as described in Section 4.2.7 under
a database’s public key (except for the signature on C0,%,2), and computes NIZK3 by himself.
The user then proves in interactive zero-knowledge to the database that he knows the plaintext34

and the policy of the ciphertext he wishes to entrust to the database. If the database accepts
the proofs, it computes the signature on C0,%,2 and broadcasts the now complete ciphertext to
all users.

If the database is corrupt, it can’t decrypt the user’s entrusted record without help from
either the corrupted issuer, or a corrupted user who happens to have a key that satisfies the
policy.

9 Conclusion

We created a scheme that allows a database to publish records that are protected by an hidden
access control policy, and which users can access without revealing their identity or choice of
record. An extension to our scheme allows the key issuer to revoke the user’s keys. We have
proved our scheme secure in the generic bilinear group model.

Our alternative construction removes the need for the full-fledged generic bilinear group
model, at the cost however of introducing the unnatural concept of selective security.

Our construction uses attribute-based encryption, and is more efficient and allows for more
powerful access control policies than prior work, which was based on anonymous credentials.
Finally, we have implemented our scheme, and experimentally validated the theoretical run-time
predictions.

9.1 Future Work

In the future it would be interesting to find a construction that would fix the major shortcomings
of our scheme, namely: remove the unfettered access the issuer has over the published records,
and prove our scheme secure under more standard and non-interactive assumptions than the
generic bilinear group model.

A very recent paper by Okamoto and Takashima introduced the concept of fully secure
functional encryption over prime order groups [OT10]. It would be interesting to see if we can
adapt your results to work with their scheme.

34 Instead of proving the clause Ĉ = M Y r , which we can’t do with the sigma-protocol–based zero-knowledge
proofs, the user proves the clause Ĉ = gmT Y r , where m is the discrete logarithm of M . In practice M

is computed randomly and used only to derive a symmetric key, so there is no problem in computing m
$←

Z∗p, M ← gmT .

49

References

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. In Tal
Rabin, editor, Advances in Cryptology CRYPTO 2010, volume 6223 of Lecture Notes
in Computer Science, pages 209–236. Springer Berlin / Heidelberg, 2010. (Cited on

pages 7, 16, 20, 21 and 63.)

[AHO10] Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Signing on elements
in bilinear groups for modular protocol design. Cryptology ePrint Archive, Report
2010/133, 2010. http://eprint.iacr.org/. (Cited on pages 7, 16, 17, 21 and 63.)

[ASM06] Man Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-taa. In Roberto
De Prisco and Moti Yung, editors, Security and Cryptography for Networks, vol-
ume 4116 of Lecture Notes in Computer Science, pages 111–125. Springer Berlin /
Heidelberg, 2006. (Cited on page 20.)

[Bac02] Adam Back. Hashcash – A denial of service counter-measure. 2002. http://www.

cypherspace.org/hashcash/hashcash.pdf. (Cited on page 48.)

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the sdh
assumption in bilinear groups. Journal of Cryptology, 21:149–177, 2008. (Cited on

pages 17 and 20.)

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications. In Proceedings of the twentieth annual ACM symposium on Theory
of computing, STOC ’88, pages 103–112, New York, NY, USA, 1988. ACM. (Cited

on page 18.)

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In Proceedings of the 2007 IEEE Symposium on Security and Privacy,
SP ’07, pages 321–334, Washington, DC, USA, 2007. IEEE Computer Society. (Cited

on page 7.)

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. (Cited on page 11.)

[CCS08] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for set mem-
bership and range proofs. In Josef Pieprzyk, editor, Advances in Cryptology - ASI-
ACRYPT 2008, volume 5350 of Lecture Notes in Computer Science, pages 234–252.
Springer Berlin / Heidelberg, 2008. (Cited on pages 46, 47 and 48.)

[CDM00] Ronald Cramer, Ivan Damgrd, and Philip MacKenzie. Efficient zero-knowledge
proofs of knowledge without intractability assumptions. In Hideki Imai and Yuliang
Zheng, editors, Public Key Cryptography, volume 1751 of Lecture Notes in Computer
Science, pages 354–373. Springer Berlin / Heidelberg, 2000. (Cited on pages 7, 17, 24,

56, 58, 59 and 60.)

[CDN09] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Oblivious transfer with
access control. In Proceedings of the 16th ACM conference on Computer and com-
munications security, CCS ’09, pages 131–140, New York, NY, USA, 2009. ACM.
(Cited on pages 8 and 11.)

50

http://eprint.iacr.org/
http://www.cypherspace.org/hashcash/hashcash.pdf
http://www.cypherspace.org/hashcash/hashcash.pdf

[CDN10] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Unlinkable priced oblivi-
ous transfer with rechargeable wallets. In Radu Sion, editor, Financial Cryptography
and Data Security, volume 6052 of Lecture Notes in Computer Science, pages 66–81.
Springer Berlin / Heidelberg, 2010. (Cited on page 48.)

[CDNZ11] Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory Zaverucha.
Oblivious transfer with hidden access control policies. In Dario Catalano, Nelly
Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, Public Key Cryptography
PKC 2011, volume 6571 of Lecture Notes in Computer Science, pages 192–209.
Springer Berlin / Heidelberg, 2011. (Cited on pages 6, 8, 11, 15, 18, 26 and 45.)

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous creden-
tials from bilinear maps. In Matt Franklin, editor, Advances in Cryptology CRYPTO
2004, volume 3152 of Lecture Notes in Computer Science, pages 56–72. Springer
Berlin / Heidelberg, 2004. (Cited on page 20.)

[CM09] Sanjit Chatterjee and Alfred Menezes. On Cryptographic Protocols Employing
Asymmetric Pairings – The Role of Ψ Revisited. Cryptology ePrint Archive, Report
2009/480, 2009. http://eprint.iacr.org/. (Cited on page 16.)

[CNS07] Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive oblivious
transfer. In Moni Naor, editor, Advances in Cryptology - EUROCRYPT 2007, vol-
ume 4515 of Lecture Notes in Computer Science, pages 573–590. Springer Berlin /
Heidelberg, 2007. (Cited on pages 6, 7, 8, 9, 11 and 56.)

[CS97a] J. Camenisch and M. Stadler. Proof systems for general statements about discrete
logarithms. Institute for Theoretical Computer Science, ETH Zrich, Tech. Rep. TR,
260, 1997. (Cited on pages 56 and 59.)

[CS97b] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups. In Burton Kaliski, editor, Advances in Cryptology CRYPTO ’97, volume
1294 of Lecture Notes in Computer Science, pages 410–424. Springer Berlin / Hei-
delberg, 1997. 10.1007/BFb0052252. (Cited on page 17.)

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7:1–32, 1994. (Cited on page 18.)

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryp-
tographers. Discrete Applied Mathematics, 156(16):3113 – 3121, 2008. Applications
of Algebra to Cryptography. (Cited on pages 7 and 16.)

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Nigel Smart, editor, Advances in Cryptology EUROCRYPT 2008, vol-
ume 4965 of Lecture Notes in Computer Science, pages 415–432. Springer Berlin /
Heidelberg, 2008. (Cited on pages 7, 18, 29, 30, 32, 61, 62 and 63.)

[GSW10] Essam Ghadafi, Nigel. Smart, and Bogdan Warinschi. Grothsahai proofs revisited.
In Phong Nguyen and David Pointcheval, editors, Public Key Cryptography PKC
2010, volume 6056 of Lecture Notes in Computer Science, pages 177–192. Springer
Berlin / Heidelberg, 2010. (Cited on pages 18 and 63.)

[KM06] Neal Koblitz and Alfred Menezes. Another look at generic groups. In Advances in
Mathematics of Communications, pages 13–28, 2006. (Cited on page 17.)

51

http://eprint.iacr.org/

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Nigel Smart, editor, Ad-
vances in Cryptology EUROCRYPT 2008, volume 4965 of Lecture Notes in Com-
puter Science, pages 146–162. Springer Berlin / Heidelberg, 2008. (Cited on page 7.)

[LOS+10] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hierar-
chical) inner product encryption. In Henri Gilbert, editor, Advances in Cryptology
EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 62–
91. Springer Berlin / Heidelberg, 2010. (Cited on pages 7 and 8.)

[Lyn07] Lynn, Ben. On the Implementation of Pairing-Based Cryptography. PhD thesis,
Stanford University, June 2007. (Cited on page 43.)

[NFHF09] Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki. Revocable group
signature schemes with constant costs for signing and verifying. In Stanislaw Jarecki
and Gene Tsudik, editors, Public Key Cryptography PKC 2009, volume 5443 of
Lecture Notes in Computer Science, pages 463–480. Springer Berlin / Heidelberg,
2009. (Cited on pages 6, 8, 45 and 47.)

[Nis08] Takashi Nishide. Cryptographic Schemes with Minimum Disclosure of Private In-
formation in Attribute-Based Encryption and Multiparty Computation. PhD thesis,
University of Electro-Communications, September 2008. (Cited on pages 6, 8, 19 and 54.)

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries. In Michael
Wiener, editor, Advances in Cryptology CRYPTO 99, volume 1666 of Lecture Notes
in Computer Science, pages 573–590. Springer Berlin / Heidelberg, 1999. (Cited on

page 8.)

[NYO08] Takashi Nishide, Kazuki Yoneyama, and Kazuo Ohta. Attribute-based encryp-
tion with partially hidden encryptor-specified access structures. In Steven Bellovin,
Rosario Gennaro, Angelos Keromytis, and Moti Yung, editors, Applied Cryptogra-
phy and Network Security, volume 5037 of Lecture Notes in Computer Science, pages
111–129. Springer Berlin / Heidelberg, 2008. (Cited on pages 6, 7, 8, 9, 16, 18, 19, 20, 24,

39, 54 and 55.)

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In Tal Rabin, editor,
Advances in Cryptology CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 191–208. Springer Berlin / Heidelberg, 2010. (Cited on page 49.)

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of
secure reactive systems. In Proceedings of the 7th ACM conference on Computer
and communications security, CCS ’00, pages 245–254, New York, NY, USA, 2000.
ACM. (Cited on page 11.)

[PW01] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In Security and Privacy, 2001. S&P
2001. Proceedings. 2001 IEEE Symposium on, pages 184–200. IEEE, 2001. (Cited on

page 11.)

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Proceedings of the 16th annual international conference on Theory and application

52

of cryptographic techniques, EUROCRYPT’97, pages 256–266, Berlin, Heidelberg,
1997. Springer-Verlag. (Cited on page 17.)

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.
(Cited on pages 28 and 30.)

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, Advances in Cryptology EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 457–473. Springer Berlin / Heidelberg, 2005. (Cited on

page 7.)

[Yao82] Andrew C. Yao. Protocols for secure computations. Foundations of Computer Sci-
ence, Annual IEEE Symposium on, 0:160–164, 1982. (Cited on page 8.)

53

http://eprint.iacr.org/

A Hidden–ciphertext-policy Attribute-based Encryption

In this section we present the full construction of both Hidden–ciphertext-policy Attribute-based
Encryption schemes by Nishide et al. [NYO08], so that the interested reader may compare it
with our construction.

A.1 Match-concealing Secure Construction

The second construction of Nishide et al.’s HABE scheme [NYO08]—which is the one we use
in our main contribution—is proven secure in the generic bilinear group setting [Nis08], and
requires type-3 pairings. It allows the issuer to add attributes and categories after system set-up.
Unlike our scheme, the issuer is assumed to be trusted.

A.1.1 Trusted Issuer Setup

The trusted issuer chooses the number of categories n and the number of different attributes
possible for each category {ni}ni=1. He computes:{{

ai,t
$← Z∗p

}ni
t=1

}n
i=1
, w, β

$← Z∗p,{{
Ai,t ← g

ai,t
1

}ni
t=1

}n
i=1
, Y ← gwT , B ← gβ1 .

The secret key of the issuer is {w, β, {{ai,t}nit=1}ni=1}.
His public key is {Y,B, {{Ai,t}nit=1}ni=1, n, {ni}ni=1}.

A.1.2 User Key Generation

Let L = [L1 ∈ Nn1 , L2 ∈ Nn2 , . . . , Ln ∈ Nnn] be the attribute list the user wishes to get in his
key. The issuer computes:

s
$← Z∗p, {λi

$← Z∗p}ni=1,

D0 ← g
(w+s)/β
2 ,

{
Di,1 ← g

s+ai,Liλi
2

}n
i=1
,

{
Di,2 ← gλi2

}n
i=1
.

The key of the user is
{
D0, (Li, Di,1, Di,2)ni=1

}
.

A.1.3 Issue Record

Let M ∈ GT be the record to encrypt, and let W (ψ) = [W
(ψ)
0 , . . . ,W

(ψ)
n] where ∀i ∈ N∗n+1 :

Wi ⊂ Nni be the hidden ciphertext policy.

The encryptor computes the following values:

{
ri

$← Z∗p
}n
i=1
, r ←

n∑
i=1

ri (mod p), Ĉ ←MY r,

{{
εi,t ← 0

}
∀t∈Wi

}n
i=1
,

{{
εi,t

$← Z∗p
}
∀t∈Nni\Wi

}n
i=1
, C0 ← Br,{

Ci,1 ← gri1

}n
i=1
,

{{
Ci,t,2 ← Arii,tg

εi,t
1

}ni
t=1

}n
i=1

.

The ciphertext is:
{
Ĉ, C0,

{
Ci,1, {Ci,t,2}nit=1

}n
i=1

}
.

54

A.1.4 Offline Record Decryption

Given a key with attribute list L = [L1, . . . Ln], the user computes the following value when he
wishes to decrypt a record:

M ′ ←
Ĉ
∏n
i=1 e(Ci,1, Di,1)

e(C0, D0)
∏n
i=1 e(Ci,Li,2, Di,2)

= Mg
−

∑n
i=1 λiεi,Li

T . (20)

The recovered message M ′ is equal to M if the key satisfies the record policy (i.e., if all
εi,Li are equal to zero). Intuitively, if the key does not satisfy the policy of the record, then the
message is blinded by a random value, and the user cannot decrypt.

A.2 Selectively Secure Construction

The first construction of Nishide et al.’s HABE scheme—which we use in our alternative
construction—is proven selectively secure under the DBDH and D-Lin assumption [NYO08],
and can be used with all 3 types of pairings. We will present the type-3 variant here, which we
used in our alternate construction.

A.2.1 Selective security

In the selective security setting, the adversary A must commit to the challenge ciphertext
policies W (0) and W (1) before he receives the system public key. The HABE Game in Section
3.5.1 is modified as follows [NYO08]:

(0) A sends the two ciphertext policies W (0) and W (1) to the challenger.

(1, 2) Same as in Section 3.5.1.

(3) A submits two messages M (0), M (1) to the challenger. The latter flips a coin b, encrypts
M (b) under policy W (b) and sends the resulting ciphertext to A.

(4, 5) Same as in Section 3.5.1.

A.2.2 Trusted Issuer Setup

The trusted issuer chooses the number of categories n and the number of different attributes
possible for each category {ni}ni=1. He computes:{{

ai,t, bi,t, ci,t
$← Z∗p

}ni
t=1

}n
i=1
, w

$← Z∗p,
{{
Ai,t ← g

ci,t
1

}ni
t=1

}n
i=1
, Y ← gwT .

The secret key of the issuer is {w, {{ai,t, bi,t, ci,t}nit=1}ni=1}.
His public key is {Y, {{Aai,ti,t , A

bi,t
i,t }

ni
t=1}ni=1, n, {ni}ni=1}.

A.2.3 User Key Generation

Let L = [L1 ∈ Nn1 , L2 ∈ Nn2 , . . . , Ln ∈ Nnn] be the attribute list the user wishes to get in his
key. The issuer computes:

{si, λi
$← Z∗p}ni=1, s←

n∑
i=1

si (mod p), D0 ← gw−s2 ,

{
Di,0 ← g

si+ai,Libi,Lici,Liλi
2

}n
i=1
,

{
Di,1 ← g

ai,Liλi
2

}n
i=1
,

{
Di,2 ← g

bi,Liλi
2

}n
i=1
.

55

The key of the user is
{
D0, {Li, Di,0, Di,1, Di,2}ni=1

}
.

A.2.4 Issue Record

Let M ∈ GT be the record to encrypt, and let W (ψ) = [W
(ψ)
0 , . . . ,W

(ψ)
n] where ∀i ∈ N∗n+1 :

Wi ⊂ Nni be the hidden ciphertext policy.
The encryptor computes the following values:{{

ri,t
$← Z∗p

}ni
t=1

}n
i=1
, r

$← Z∗p, Ĉ ←MY r,{{
εi,t ← 0

}
∀t∈Wi

}n
i=1
,

{{
εi,t

$← Z∗p
}
∀t∈Nni\Wi

}n
i=1
, C0 ← gr1,{{

Ci,t,1 ← A
bi,tri,t
i,t g

εi,t
1

}ni
t=1

}n
i=1
,

{{
Ci,t,2 ← A

ai,t(r−ri,t)
i,t

}ni
t=1

}n
i=1

.

The ciphertext is:
{
Ĉ, C0,

{{
Ci,t,1, Ci,t,2

}ni
t=1

}n
i=1

}
.

A.2.5 Offline Record Decryption

Given a key with attribute list L = [L1, . . . , Ln], the user computes the following value when he
wishes to decrypt a record:

M ′ ←
Ĉ
∏n
i=1 e(Ci,Li,1, Di,1) e(Ci,Li,2, Di,2)

e(C0, D0)
∏n
i=1 e(C0, Di,0)

= Mg
∑n
i=1 ai,Liλiεi,Li

T .

The recovered message M ′ is equal to M if the key satisfies the record policy (i.e., if all
εi,Li are equal to zero). Intuitively, if the key does not satisfy the policy of the record, then the
message is blinded by a random value, and the user cannot decrypt.

B Sigma-Protocol

Let x def=
{(
xi ∈ Zp

)ux
i=0
,
(
γi ∈ G1

)ug
i=0
,
(
ηi ∈ G2

)uh
i=0

}
and let A : x × y 7→ {0, 1} (1 meaning

“satisfied” and 0 “not satisfied”) be defined:

ng∧
i=0

(
Gi =

n1,i∏
j=0

g
xν1,i,j
1,i,j

) nh∧
i=0

(
Hi =

n2,i∏
j=0

h
xν2,i,j
2,i,j

) nt∧
i=0

(
Ti =

n3,i∏
j=0

t
xν3,i,j
3,i,j

n4,i∏
j=0

e(g4,i,j , ην4,i,j)

n5,i∏
j=0

e(γν5,i,j , h5,i,j)
)
,

where y def=
{
ux, ug, uh, ng, nh, nt,

(
n1,i

)ng
i=0
,
(
n2,i

)nh
i=0
,
(
n3,i, n4,i, n5,i

)nt
i=0
,∈ N,((

ν1,i,j

)n1,i

j=0

)ng
i=0
,
((
ν2,i,j

)n2,i

j=0

)nh
i=0
,
((
ν3,i,j

)n3,i

j=0

)nt
i=0
∈ Nux+1,((

ν4,i,j

)n4,i

j=0

)nt
i=0
∈ Nug+1,((

ν5,i,j

)n5,i

j=0

)nt
i=0
∈ Nuh+1,((

t3,i,j
)ni,3
j=0

, Ti
)nt
i=0
∈ GT,((

g1,i,j

)ni,1
j=0

, Gi
)ng
i=0
,
((
g4,i,j

)ni,4
j=0

)nt
i=0
∈ G1,((

h2,i,j

)ni,2
j=0

, Hi

)nh
i=0
,
((
h5,i,j

)ni,5
j=0

)nt
i=0
∈ G2

}
.

A Sigma protocol Σ(P ↔ V) is run between two PPT interactive machines P and V. It
is a protocol in which P can convince V that he knows a witness x that satisfies the relation
A(y, x) (on common input y), without revealing anything about x to the honest verifier [CS97a,
CDM00, CNS07].

56

In Camenisch-Stadler notation (c.f. Equation 3 in Section 3.3), we write:

Σ

{((
xi ∈ Zp

)ux
i=0
,
(
γi ∈ G1

)ug
i=0
,
(
ηi ∈ G2

)uh
i=0

)
:

ng∧
i=0

(
Gi =

n1,i∏
j=0

g
xν1,i,j
1,i,j

)
nh∧
i=0

(
Hi =

n2,i∏
j=0

h
xν2,i,j
2,i,j

) nt∧
i=0

(
Ti =

n3,i∏
j=0

t
xν3,i,j
3,i,j

n4,i∏
j=0

e(g4,i,j , ην4,i,j)

n5,i∏
j=0

e(γν5,i,j , h5,i,j)
)}

.

B.1 Properties of Sigma Protocols

3-move Let ¢P and ¢V be some random coins (a polynomial-length string of random bits),35

let A(y, x) be the relation associated with the sigma protocol, then Σ(P ↔ V) consists of the
following deterministic polynomial-time algorithms:

• Commit : P(y, x, ¢P)→ a.

• Challenge : V(y, ¢V , a)→ c, which must generate c independently of a.

• Open : P(y, x, ¢V , a, c)→ z.

• Verify : V(y, ¢V , a, c, z)→ b.

We also write OutV(P ↔ V) def= b.

Perfect completeness If A(y, x) = 1 then Pr¢V ,¢P [OutV(P ↔ V)
$?
= 1] = 1.

Special soundness There exists a PPT algorithm E , called the extractor, that, given access
to two transcripts

(
a, c, z

)
and

(
a′, c′, z′

)
where a = a′ and c 6= c′, can recover a witness x′ such

that A(y, x′) = 1 with probability 1.

Special honest-verifier zero-knowledge There exists a PPT algorithm S (called the sim-
ulator) that on input c produces an accepting transcript (a, c, z). Furthermore, the transcripts

produced by the simulator for random c’s (c
$← Zp;S(c)), and the transcripts produced by the

honest prover and verifier P ↔ V are perfectly indistinguishable.

B.2 Construction

In the following we will abuse the symbol
$← for deterministic polynomial-time algorithms. It

must be understood that these deterministic polynomial-time algorithms use their supply of
random coins to generate random values.

B.2.1 Commit

The prover P computes:

(
ri

$← Zp
)ux
i=0
,

(
ag,i ←

n1,i∏
j=0

g
rν1,i,j
1,i,j

)ng
i=0
,

(
ah,i ←

n2,i∏
j=0

h
rν2,i,j
2,i,j

)nh
i=0
,

(
πi

$← G1

)ug
i=0
,

(
ρi

$← G2

)uh
i=0
,

(
at,i ←

n3,i∏
j=0

t
rν3,i,j
3,i,j

n4,i∏
j=0

e(g4,i,j , ρν4,i,j)

n5,i∏
j=0

e(πν5,i,j , h5,i,j)
)nt
i=0
,

35This formalism allows us to transform all PPT interactive machines into deterministic machines with extra
input.

57

and outputs the message a def=
((
ag,i
)ng
i=0
,
(
ah,i
)nh
i=0
,
(
at,i
)nt
i=0

)
.

B.2.2 Challenge

The verifier V computes c
$← Zp and outputs c.

B.2.3 Open

The prover P recomputes ri, πi, ρi from his random coins, computes:(
zi ← ri − cxi (mod p)

)ux
i=0
,

(
ζi ← πi γi

−c)ug
i=0
,

(
ξi ← ρi ηi

−c)uh
i=0
,

and outputs the message z def=
((
zi
)ng
i=0
,
(
ζi
)nh
i=0
,
(
ξi
)nt
i=0

)
.

B.2.4 Verify

The verifier V outputs 1 if and only if the following holds:

ng∧
i=0

(
ag,i

?= Gci

n1,i∏
j=0

g
zν1,i,j
1,i,j

) nh∧
i=0

(
ah,i

?= Hc
i

n2,i∏
j=0

h
zν2,i,j
2,i,j

)
nt∧
i=0

(
at,i

?= T ci

n3,i∏
j=0

t
zν3,i,j
3,i,j

n4,i∏
j=0

e(g4,i,j , ξν4,i,j)

n5,i∏
j=0

e(ζν5,i,j , h5,i,j)
)
.

B.2.5 Extractor

From two transcripts (a, c, z) and (a′, c′, z′) where a = a′ and c 6= c′ the extractor E can recover
the witness as follows:(

xi ←
zi − z′i
c′ − c

)nx
i=0
,

(
γi ← (ζi/ζ

′
i)

1/(c′−c))ng
i=0
,

(
ηi ← (ξi/ξ

′
i)

1/(c′−c))nh
i=0
.

B.2.6 Simulator

The simulator S receives an arbitrary c in his input, computes:

(
zi

$← Zp
)ux
i=0
,
(
ag,i ← Gci

n1,i∏
j=0

g
zν1,i,j
1,i,j

)ng
i=0
,

(
ah,i ← Hc

i

n2,i∏
j=0

h
zν2,i,j
2,i,j

)nh
i=0
,

(
ζi

$← G1

)ug
i=0
,

(
ξi

$← G2

)uh
i=0
,
(
at,i ← T ci

n3,i∏
j=0

t
zν3,i,j
3,i,j

n4,i∏
j=0

e(g4,i,j , ξν4,i,j)

n5,i∏
j=0

e(ζν5,i,j , h5,i,j)
)nt
i=0
,

and finally outputs the transcript

(((
ag,i
)ng
i=0
,
(
ah,i
)nh
i=0
,
(
at,i
)nt
i=0

)
, c,
((
zi
)ng
i=0
,
(
ζi
)nh
i=0
,
(
ξi
)nt
i=0

))
.

C Perfect Zero-knowledge Proof of Knowledge

Perfect Zero-knowledge Proofs of Knowledge can be constructed by combining several Sigma
protocols (see Appendix B) [CDM00]. We first recall the properties of perfect ZKPoK and then
give the construction.

58

C.1 Properties of Perfect ZKPoK

A perfect ZKPoK protocol is run between two parties P and V, which we model as PPT
interactive machines. The following properties hold:

4-move Let ¢P and ¢V be some random coins, let A(y, x) be the relation associated with
the ZKPoK, then ZKPoK(P ↔ V) consists of the following deterministic polynomial-time algo-
rithms: V(y, ¢V)→ m1, P(y, x, ¢P ,m1)→ m2, V(y, ¢V ,m1,m2)→ m3, P(y, x, ¢P ,m1,m2,m3)→
m4, V(y,m1,m2,m3,m4)→ b. We also write OutV(P ↔ V) def= b.

Perfect completeness If A(y, x) = 1 then Pr¢V ,¢P [OutV(P ↔ V)
$?
= 1] = 1.

Computational soundness There exists a PPT algorithm E (extractor) that, given black-
box access to a PPT interactive machine P ′ (which may or may not follow the protocol honestly),
can extract the witness x from P ′ with a probability larger than P ′ can convince the honest
verifier V minus a negligible knowledge error µ:

Pr[E(P ′) $→ x′, A(y, x′) ?= 1] ≥ Pr[OutV(P ′ ↔ V)
$?
= 1]− µ, and µ = negl.

Usually we have that µ = 1/p (knowledge error is the inverse of the total number of challenges).

Perfect zero-knowledge There exists a PPT algorithm S (simulator) that, given black-box
access to a PPT interactive machine V ′ (which may or may not follow the protocol honestly),
outputs a transcript that is perfectly indistinguishable from the transcript produced by V ′ ↔ P
(with the honest prover).

C.2 Extensions to Sigma Protocols

C.2.1 Disjunctions of Sigma Protocols

Given two sigma protocols Σ1(P1 ↔ V1) and Σ2(P2 ↔ V2) for relations A1(y1, x1) and A2(y2, x2)
it is possible to construct a third protocol ΣOR(POR ↔ VOR) def= Σ1 ∨ Σ2 for the relation
AOR(yOR, xOR) def= A1(y1, x1)∨A2(y2, x2), i.e., where POR proves that he either knows a witness
for the first protocol, or a witness for the second protocol.

The construction is deceptively simple: Σ1 and Σ2 are run concurrently, except that VOR

sends only a single challenge cOR in the second move. POR may then choose c1 and c2 such that
c1 + c2 = cOR. Roughly speaking, this allows him to run the simulator of the sigma protocol he
doesn’t know the witness for, and adapt the challenge accordingly; however no such shortcut
exists for the other sigma protocol, which he must therefore perform honestly [CS97a].

Without loss of generality, let’s assume that POR knows the witness x1. The OR-protocol
runs as follows [CS97a, CDM00]:

(1) POR runs P1 to generate the commitment a1, and runs the simulator of Σ2 to get a
transcript

(
a2, c2, z2

)
. He sends a1 and a2 to VOR.

(2) VOR generates c
$← Zp and sends it to POR.

(3) POR sets c1 ← (c− c2) and runs P1 to generate the opening z1. He sends c1, c2, z1, z2 over
to VOR.

59

(Check) VOR checks that c1 + c2 = c and runs V1 and V2 to check the transcripts
(
a1, c1, z1

)
and

(
a2, c2, z2

)
. If both return 1, then VOR does as well.

C.2.2 Sigma Protocol of Commitment Relationship

Given a transcript (a3, c3, z3) for a sigma protocol Σ3(P3 ↔ V3) for relation A(y3, x3), it is possi-
ble to construct another sigma protocol Σ4(P4 ↔ V4) for a relationA(y4

def= commit rel(y3, a3), x4
def=(

c3, z3

)
), where P4 proves he knows the opening z3 and the challenge c3 for the commitment a3

(P4 does not need to know the witness x3).

We work with Σ3 of the form:

Σ3

{((
xi ∈ Zp

)ux
i=0
,
(
γi ∈ G1

)ug
i=0
,
(
ηi ∈ G2

)uh
i=0

)
:

ng∧
i=0

(
Gi =

n1,i∏
j=0

g
xν1,i,j
1,i,j

)
nh∧
i=0

(
Hi =

n2,i∏
j=0

h
xν2,i,j
2,i,j

) nt∧
i=0

(
Ti =

n3,i∏
j=0

t
xν3,i,j
3,i,j

n4,i∏
j=0

e(g4,i,j , ην4,i,j)

n5,i∏
j=0

e(γν5,i,j , h5,i,j)
)}

.

We implicitly define commit rel as follows. The sigma protocol Σ4 associated to the commitment
relationship for the transcript

(
a3, c3, z3

)
of Sigma protocol Σ3 is:

Σ4

{(
c3 ,
(
z̃i ∈ Zp

)ux
i=0
,
(
ζi ∈ G1

)ug
i=0
,
(
ξi ∈ G2

)uh
i=0

)
:

ng∧
i=0

(
a3,g,i = G

c3
i

n1,i∏
j=0

g
z̃ν1,i,j
1,i,j

)
nh∧
i=0

(
a3,h,i = H

c3
i

n2,i∏
j=0

h
z̃ν2,i,j
2,i,j

) nt∧
i=0

(
a3,t,i = T

c3
i

n3,i∏
j=0

t
z̃ν3,i,j
3,i,j

n4,i∏
j=0

e(g4,i,j , ξν4,i,j)

n5,i∏
j=0

e(ζν5,i,j , h5,i,j)
)}

,

where a3
def=
((
a3,g,i ∈ G1

)ng
i=0
,
(
a3,h,i ∈ G2

)nh
i=0
,
(
a3,t,i ∈ GT

)nt
i=0

)
was the commitment message,

c3 the challenge, and where z3
def=
((
z̃i ∈ Zp

)ux
i=0
,
(
ζi ∈ G1

)ug
i=0
,
(
ξi ∈ G2

)uh
i=0

)
was the opening

in the transcript of Σ3.

C.3 The Construction

We will describe the conceptually simpler 6-move variant of perfect ZKPoK, which runs in two
parts of three moves each. The 4-move protocol is obtained by merging the second and third
message of part one with the first and second message of part two [CDM00].

Let Σ3(P3 ↔ V3) be a sigma protocol for the relation A3(x3, w3). We now show how to
construct a perfect zero-knowledge proof of knowledge ZKPoK(P ↔ V) for the same relation:

(1–3) V runs the simulator of Σ3 to generate a transcript
(
a3, c3, z3

)
. Let Σ4(P4 ↔ V4) be

the sigma protocol associated to the commitment relationship for that transcript. We have
A4(commit rel(a3, x3),

(
c3, z3

)
). V sends a3 to P. V and P then run P4 and V4 respectively, so

that V can prove he knows the transcript. The protocol aborts if V4 returns 0.

(4–6) Let ΣOR(POR,VOR) ← Σ3 ∨ Σ4. P and V now run respectively POR and VOR. The
protocol completes successfully if VOR returns 1.

60

D Groth-Sahai Zero-knowledge Proofs

Let y def=
{
n ∈ N,

(
ni ∈ N, Gi ∈ G1,

(
νi,j ∈ Nu+1, gi,j ∈ G1

)ni
j=0

)n
i=0

}
and let x def=

{
xi
}u
i=0

and

let A(y, x) be the following statement:

n∧
i=0

(
Gi =

ni∏
j=0

g
xνi,j
i,j

)
.

A Groth Sahai non-interactive zero-knowledge proof allows a prover P to generate a proof π
certifying that there exists an x such as A(y, x) is satisfied (on public input y), without revealing
x. Groth-Sahai proofs can also be used to prove more general statements than the one above
[GS08], but this is out of the scope of this document.

D.1 Types of Common Reference String (CRS)

Two flavors of CRS are defined for GS proofs:

• Either a binding CRS (also called real CRS). The GS proofs will then be perfectly binding
and computationally hiding. This is the type of CRS that is used with honest GS proofs.
In a real scheme, all participants rely on a trusted third party to generate a binding CRS
without trapdoor for them.

• Or a hiding CRS (also called simulated CRS). The GS proofs will be perfectly hiding and
computationally binding. This type of CRS is used only when proving security and never
in a real scheme.

These two kinds of CRS are computationally indistinguishable from each other under the SXDH
assumption.

D.2 Security Properties

We now define some properties satisfied by GS-proofs [GS08]. We can construct GS proofs that
are perfectly complete, sound and zero knowledge for the limited subset of equation types we
use.36

A non-interactive proof system for a relation A(y, x) consists of four PPT algorithms: A
bilinear group setup algorithm G, a CRS generation algorithm K, an honest prover P and an
honest verifier V.

For GS-proofs, G will output a description of a bilinear group gk given a security parameter
κ. K takes as input gk and outputs a binding CRS U. The prover P takes as input (gk,U, y, x)
and outputs a proof π. The verifier V takes as input (gk,U, y, π) and outputs 1 if he accepts the
proof or 0 if he rejects the proof.

In what follows, the bilinear group setup gk
$← G(1κ) is implied to save space.

Perfect Completeness The proof made by an honest prover will always be accepted by an
honest verifier. Formally for all unbounded adversaries A [GS08]:

Pr
[
U

$← K(gk), (y, x)
$← A(gk,U), π

$← P(gk,U, y, x), V(gk,U, y, π)
$?
= 1

∣∣∣ A(y, x) = 1
]

= 1.

36For general GS proofs, it might not possible to achieve the Zero-Knowledge property, but only a weaker
notion of Composable Witness Indistinguishability.

61

Perfect Soundness The proof made by a dishonest prover for an unsatisfiable statement will
never be accepted by an honest verifier. Formally for all unbounded adversaries A [GS08]:

Pr
[
U

$← K(gk), (y, π)
$← A(gk,U), V(gk,U, y, π)

$?
= 0

∣∣∣ @x : A(y, x) = 1
]

= 1.

Composable Non-Interactive Zero Knowledge (NIZK) Informally, (Composable) NIZK
means that a PPT simulator which has access to a trapdoor t of the CRS (or who can pro-
gram the CRS) can produce accepting proofs for any statement for which he does not know the
witness.

Formally there exists a PPT CRS simulator S1 (generating a hiding CRS and a trapdoor)
and a PPT simulator S2 such that for all PPT adversaries A [GS08]:
A cannot distinguish a binding CRS from a hiding CRS:∣∣∣Pr

[
U

$← K(gk), A(gk,U)
$?
= 1
]
− Pr

[
{U, t} $← S1(gk), A(gk,U)

$?
= 1
]∣∣∣ = negl,

and A can’t determine if the proof was simulated when using a hiding CRS, even if given access
to the trapdoor to the CRS :

{U, t} $← S1(gk), (y, x)
$← A(gk,U, t) such that A(y, x) = 1,

Pr
[
π

$← P(gk,U, y, x) A(π)
$?
= 1
]

= Pr
[
π

$← S2(gk,U, y, t) A(π)
$?
= 1
]
.

Composable NIZK implies the standard notion of zero-knowledge.

D.3 Construction

D.3.1 Transformation

Let 1G1

def= g0
1 be the neutral element of G1. The first step of the GS proof is to transform the

statement
∧n
i=1Gi =

∏ni
j=0 g

xνi,j
i,j into the equivalent statement

∧n
i=1 1G1 = G

ϕ
i

∏ni
j=0 g

xνi,j
i,j . To

that effect we introduce a dummy unknown ϕ = −1 (the prover will publish the random value
su+1 he uses to commit to ϕ).

Roughly speaking, the simulator can achieve zero knowledge in the hiding setup by setting
all unknowns—including ϕ—to zero when computing the proof (the statement will thus trivially
be satisfied), and publish a value of su+1 that tricks the verifier into thinking that the statement
was proven for ϕ = −1 [GS08, Section 8].

D.3.2 CRS Setup

Binding CRS Setup The honest CRS generation algorithm K computes:

a, t
$← Z∗p, U1,2 ← ga2, U2,1 ← gt2, U2,2 ← gat2 .

The CRS is {U1,2,U2,1,U2,2}. The random elements {a, t} are discarded.

Hiding CRS Setup The CRS Simulator S1 computes:

a, t
$← Z∗p, U1,2 ← ga2, U2,1 ← gt2, U2,2 ← gat−1

2 .

The CRS is {U1,2,U2,1,U2,2}. The trapdoor is {a, t}. Note that this type of CRS is only used
in the security proofs, and never in the real scheme.

62

D.3.3 Computing the Proof

Let’s define xu+1
def= ϕ def= −1 and ∀i ∈ Nn+1 : gi,ni+1

def= Gi. The prover P computes the proof
as follows:

(
si

$← Zp
)u+1

i=0
,
(
di,1 ← U

xi
2,1g

si
2

)u+1

i=0
,
(
di,2 ← (U2,2g2)xi Usi1,2

)u+1

i=0
,
(
θi ←

ni+1∏
j=0

g
sνi,j
i,j

)n
i=0
.

The proof that P publishes is
{(
di,1, di,2

)u
i=0
, su+1,

(
θi
)n
i=0

}
.

D.3.4 Verification

The verifier V first recomputes the commitments to ϕ = −1:

du+1,1 ← U−1
2,1g

su+1

2 , du+1,2 ← (U2,2g2)−1U
su+1

1,2 .

He returns 1 if and only if the following statement is satisfied [GSW10]: 37

n∧
i=0

(ni+1∏
j=0

e(gi,j , dνi,j ,1) ?= e(θi, g2) ∧
ni+1∏
j=0

e(gi,j , dνi,j ,2) ?= e(θi,U1,2)
)
.

E Structure-preserving Signatures

In this section we recall the construction of structure-preserving signatures for vectors of n ∈ N∗
group elements by Abe et al. [AFG+10, Section 5] [AHO10].

We show here how to sign a message tuple in G2. For messages in G1 we simply need to
switch the groups G1 and G2 in everything that follows.

E.1 Existential Unforgeability under Chosen-message Attack

A signature scheme is existentially unforgeable under chosen-message attack (EUF-CMA) if no
PPT adversary A can win the following game with non-negligible advantage:

(1) The challenger generates the signing keys (for message tuples of size n ∈ N∗) and hands
over the verification key vk to A.

(2) A selects a message tuple M =
(
m1 ∈ G2, . . . ,mn ∈ G2

)
of his choice. The challenger

then generates the signature σ on that message tuple and hands it to A. This step may be
repeated polynomially many times.

(3) A outputs a message tuple M ′ and a signature σ′. A wins if σ′ is a valid signature on M ′,
and M ′ is different from all message tuples M he has queried for in step (2).

Abe et al.’s signature scheme is EUF-CMA provided the `-SFP assumption holds in G1, G2

(with ` being the number of queries the adversary makes).

37We take the verification equations from Ghadafi et al.[GSW10], as the equations in the original paper [GS08]
are not correct.

63

E.2 Key Generation (SigKeyGen)

To create a signing and verification key pair for message tuples of size n, one computes the
following:

gR
$← G∗1, γZ , α

$← Z∗p,
(
γM,i

$← Z∗p
)n
i=1
,
(
gM,i ← g

γM,i
R

)n
i=1
, gZ ← gγZR , A← e(gR, g

α
2),

fU
$← G∗1, δZ , β

$← Z∗p,
(
δM,i

$← Z∗p
)n
i=1
,
(
fM,i ← f

δM,i
U

)n
i=1
, fZ ← f δZU , B ← e(fU , g

β
2).

The verification key is vk def=
{
gZ , fZ , gR, fU ,

(
gM,i, fM,i

)n
i=1
, A,B

}
.

The signing key is sgk def= {α, β, γZ , δZ ,
(
γM,i, δM,i

)n
i=1
}.

E.3 Signing (Sign)

To sign a message tuple M =
(
m1 ∈ G2, . . . ,mn ∈ G2

)
we proceed as follows:

ζ, ρ, τ
$← Z∗p, R← gρ−γZζ2

n∏
i=1

m
−γM,i
i , S ← gτR, T ← g

(α−ρ)τ−1

2 , Z ← gζ2 ,

ϕ, ω
$← Z∗p, U ← gϕ−δZζ2

n∏
i=1

m
−δM,i
i , V ← fωU , W ← g

(β−ϕ)ω−1

2 .

The signature is σ def= {Z,R, S, T, U, V,W}.

E.4 Verification (SigVerify)

A signature is correct if the following two equations hold:

A
?
= e(gZ , Z) e(gR, R) e(S, T)

n∏
i=1

e(gM,i,mi),

B
?
= e(fZ , Z) e(fU , U) e(V,W)

n∏
i=1

e(fM,i,mi).

E.5 Re-randomizing a Signature (SigRerand)

To partially re-randomize a signature σ (for the message tuple m) we proceed as follows:

ρ
$← Z∗p, γ

$← Z∗p, R′ ← RT ρ, S′ ← (Sg−ρR)γ , T ′ ← T γ
−1
,

τ
$← Z∗p, ω

$← Z∗p, U ′ ← UW τ , V ′ ← (V f−τU)ω, W ′ ←Wω−1
.

The re-randomized signature σ′ def= {Z,R′, S′, T ′, U ′, V ′,W ′} is also a valid signature for the
message tuple m.

The variables S, T, V,W are information theoretically independent of Z and m. One can
therefore reveal these values in a Zero-Knowledge proof.

64

E.6 ZKPoK of Private Key (SignKeyZKPoK)

We define the following shorthand notation to prove knowledge of the signing key corresponding
to a verification key: ZKPoKSigKey(vk). By this we mean:

ZKPoK

{(
α, β , γZ , δZ ,

(
γM , δM

)n
i=1

)
: A = e(gR, g2)α ∧B = e(fU , g2)β∧

gZ = g
γZ
R ∧ fZ = f

δZ
U

n∧
i=1

(
gM,i = g

γM,i
R ∧ fM,i = f

δM,i
U

)}
.

65

	Table of Contents
	Introduction
	Motivation
	Ingredients
	Our Contribution
	Related Work

	Definitions
	Syntax
	Record Policies
	Algorithms and Protocols
	Security
	Real World
	Ideal World

	Security Properties
	Limitations

	Preliminaries
	Bilinear Maps
	Assumptions
	Perfect Zero-knowledge Proofs of Knowledge
	Non-interactive Zero-knowledge Proofs
	Hidden–ciphertext-policy Attribute-based Encryption
	Security Game for HABE

	Structure-Preserving Signatures

	Our Construction
	Main Idea
	The Construction
	Group Setup
	CRS Setup
	Issuer Setup
	Check Issuer Key
	Database Setup
	Check Database Key
	Issue Record
	Check Record
	Issue Key
	Query

	Theoretical Efficiency

	Security Analysis
	Completeness
	Corrupted Database
	Corrupted User
	Corrupted Issuer + Some Corrupted Databases
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10

	Alternative Construction
	Selective Security
	The Construction
	Group and CRS Setup
	Issuer Setup and Check Issuer Key
	Database Setup and Check Database Key
	Key Generation
	Record Issuing
	Decrypting a Record

	Security Proof of Alternative Construction
	Corrupted Database or Corrupted Issuer+Database
	Corrupted User

	Implementation
	Measured Efficiency

	Extensions
	Revocation of Keys
	Additional Security Guarantees
	Modified and Additional Algorithms
	Modified Real and Ideal World
	Construction
	Possible Improvements

	Record Revocation Lists (RRL)
	Key / Record Expiration
	Anonymity Revocation
	Preventing Denial-of-service
	Only Allow Databases Vetted by the Issuer
	Allow Everybody to Publish Records

	Conclusion
	Future Work

	References
	Hidden–ciphertext-policy Attribute-based Encryption
	Match-concealing Secure Construction
	Trusted Issuer Setup
	User Key Generation
	Issue Record
	Offline Record Decryption

	Selectively Secure Construction
	Selective security
	Trusted Issuer Setup
	User Key Generation
	Issue Record
	Offline Record Decryption

	Sigma-Protocol
	Properties of Sigma Protocols
	Construction
	Commit
	Challenge
	Open
	Verify
	Extractor
	Simulator

	Perfect Zero-knowledge Proof of Knowledge
	Properties of Perfect ZKPoK
	Extensions to Sigma Protocols
	Disjunctions of Sigma Protocols
	Sigma Protocol of Commitment Relationship

	The Construction

	Groth-Sahai Zero-knowledge Proofs
	Types of Common Reference String (CRS)
	Security Properties
	Construction
	Transformation
	CRS Setup
	Computing the Proof
	Verification

	Structure-preserving Signatures
	Existential Unforgeability under Chosen-message Attack
	Key Generation (SigKeyGen)
	Signing (Sign)
	Verification (SigVerify)
	Re-randomizing a Signature (SigRerand)
	ZKPoK of Private Key (SignKeyZKPoK)

