
DISS. ETH NO. 23362

PRACTICAL COMPOSABLE CRYPTOGRAPHIC PROTOCOLS
RESISTANT AGAINST ADAPTIVE ATTACKS

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

ROBERT R. ENDERLEIN

ing. sys. com. dipl. EPF
École Polytechnique Fédérale de Lausanne

born on 2 July 1987

citizen of Coppet VD and Germany

accepted on the recommendation of

Prof. Dr. Ueli Maurer, examiner
Dr. Jan Camenisch, co-examiner

Prof. Dr. Ralf Küsters, co-examiner

2016

To my father.

Abstract

In this thesis we are interested in practical cryptographic protocols that give strong
security guarantees. This means that the protocols must remain secure in arbitrary
contexts and against adversaries who adaptively attack these protocols during their
execution, that they must have realistic prerequisites (setup assumptions, required
resources), and that they be efficient enough to be used in a practical setting. The
former can be achieved by designing the protocols in a security composition framework,
however simultaneously making them practical is challenging.

The goal of this thesis is to simplify the design of adaptively secure and practical
protocols. To that effect, we first design two protocols that satisfy the above properties,
and thereby uncover design principles that make it easier to achieve the goal. These
protocols, and many other adaptively secure protocols in the literature, assume the
existence of perfectly erasable memory. This is not always available in practice: we
therefore also study imperfectly erasable memory and how it can be improved. Finally,
we have noticed that there were problems with the existing composition frameworks
in which we designed our protocols: we have extended the basic IITM framework to
provide a sound and unambiguous framework for future protocol design.

More precisely, the contributions of this thesis are as follows.
First, we present a protocol for two-party computation of arithmetic circuits, a

primitive that is often useful in constructing higher-level protocols. Most multi-party
computation protocols rely on an honest majority of parties to securely re-use outputs
from one building block as inputs to another, however this technique is not applicable
to two-party protocols; for that reason, existing two-party protocols cannot be used
as building blocks when constructing higher-level protocols. We provide an efficient
two-party arithmetic circuit protocol, and extend it so that it supports zero-knowledge
proofs about previously stored values: higher-level protocols can then use commitments
together with those zero-knowledge proofs to efficiently and securely transfer outputs
from one block to another. Our protocol thereby simplifies the design of many higher-level
protocols.

Second, we present a protocol for two-server password-authenticated secret-sharing.
This protocol allows a user to store data on two servers protected by nothing more
than a (possibly weak) password; she can use such a protocol to bootstrap her digital

vi Abstract

identity. Even if one server is compromised, the user’s password and data are still safe:
the adversary learns no useful information and cannot for example mount a brute-force
password-recovery attack. This protocol even allows compromised servers to recover
to a secure state after being compromised. Previous work failed to provide security
guarantees in the case of a server actually being compromised.

Third, we study how to properly model erasable memory in security composition
frameworks. In practice, often only imperfectly erasable memory is available, e.g., memory
that leaks some bits of the stored data even after the data has been erased. Efficient
adaptively secure protocols, however, often assume perfectly erasable memory. We amplify
the erasability of some types of memories in order to realize memories that leak less
or do not leak at all. We further improve the cryptographic primitive, namely the
all-or-nothing transform, that we use in such realizations. Our work is applicable to
more types of erasable memories than prior work.

Fourth, we present conventions for writing adaptively secure protocols. Prior to our
work, all existing composition frameworks had a number of issues: on the one hand
the frameworks are either too general (requiring specification of too many irrelevant
details) or too restricted (certain classes of protocols cannot be modelled at all); on
the other hand, existing protocols in the literature are often underspecified. Protocols
designed in different works can thus not be combined. We address these issues by giving
an abstraction layer on top of the IITM framework and require the designer to specify
only the relevant pieces: the resulting protocol will be sound and unambiguous.

Our work simplifies the design of practical and secure protocols, by providing a useful
building block for computing arithmetic circuits, providing techniques to recover from
adaptive attacks, showing how to work in the absence of perfectly erasable memory, and
providing a sound composition framework that takes care of irrelevant details. However,
secure protocol design still remains challenging and a largely manual process, and we
hope that future work will further simplify it, by, for example, automating parts of the
design processes.

Résumé

Dans cette thèse, nous nous intéressons aux protocoles cryptographiques pratiques qui
donnent des garanties de sécurité solides. Cela signifie que ces protocoles doivent rester
sécurisés dans des contextes arbitraires et contre des adversaires qui attaquent ces
protocoles de manière adaptative au cours de leur exécution, qu’ils doivent avoir des
prérequis réalistes (hypothèses de configuration, ressources requises), et qu’ils soient
suffisamment efficaces pour être utilisés dans un cadre pratique. Le premier peut être
obtenu en concevant ces protocoles dans un cadre de composition universelle, mais les
rendre simultanément pratiques est difficile.

L’objectif de cette thèse est de simplifier la conception de protocoles pratiques et
résistants contre les attaques adaptatives. À cet effet, en premier lieu, nous concevons
deux protocoles qui satisfont les propriétés ci-dessus, et ainsi découvrons des principes de
conception qui facilitent l’atteinte de notre objectif. Ces protocoles, et de nombreux autres
protocoles résistants contre les attaques adaptatives dans la littérature, présupposent
l’existence de mémoire parfaitement effaçable. Cette dernière n’est malheureusement
pas toujours disponible dans la pratique : nous étudions donc également des mémoires
imparfaitement effaçables et comment elles peuvent être améliorées. Enfin, nous avons
remarqué l’existence de problèmes avec les cadres de composition existants dans lesquels
nous avons conçu nos protocoles : nous avons élargi le cadre de composition IITM
(machines de Turing interactives inexhaustibles) en développant un cadre correct et sans
ambigüıté pour de futurs conceptions de protocoles.

Plus précisément, les contributions de cette thèse sont les suivantes.
Tout d’abord, nous présentons un protocole pour le calcul de circuits arithmétiques

à deux joueurs, une primitive qui est souvent utile dans la construction de protocoles
de plus haut niveau. La plupart des protocoles de calcul multi -joueurs supposent que
la majorité des joueurs soient honnêtes afin de transférer les entrées et sorties d’une
primitive à une autre de manière sécurisée, mais cette technique n’est pas applicable
aux protocoles à deux joueurs ; pour cette raison, les protocoles à deux joueurs existants
ne peuvent pas être utilisés comme primitives pour des protocoles de plus haut niveau.
Nous fournissons un protocole efficace pour le calcul de circuits arithmétique pour deux
joueurs, et nous l’améliorons afin qu’il supporte des preuves à divulgation nulle de
connaissances sur les valeurs précédemment stockées : des protocoles de plus haut niveau

viii Résumé

peuvent alors utiliser un schéma de mise en gage conjointement avec ces preuves de
connaissances afin de transférer les sorties d’une primitive à une autre de manière efficace
et sûre. De cette façon, notre protocole simplifie la conception de nombreux protocoles
de plus haut niveau.

Deuxièmement, nous présentons un protocole de partage de secrets à base de mots
de passe pour deux serveurs. Notre protocole permet à une utilisatrice de stocker des
données sur deux serveurs protégés par rien de plus qu’un (petit) mot de passe ; elle
peut utiliser un tel protocole comme tremplin pour stocker son identité numérique. Dans
le cas où un serveur est compromis, le mot de passe et les données de l’utilisatrice
restent protégés : l’adversaire n’apprend aucune information utile et ne peut pas, par
exemple, retrouver le mot de passe avec une attaque par force brute. En outre, dans notre
protocole, les serveurs peuvent retourner à un état sécurisé après avoir étés compromis.
Les protocoles antérieurs ont omis de fournir des garanties de sécurité dans le cas où
l’un des serveurs est compromis.

Troisièmement, nous étudions comment modéliser correctement une mémoire effaça-
ble dans un cadre de composition universelle. Comme c’est souvent le cas en pratique,
seulement une mémoire imparfaitement effaçable est disponible, par exemple, une
mémoire qui divulgue certains bits des données stockées même après que ces derniers
aient été effacés. Cependant, la plupart des protocoles pratiques qui résistent aux attaques
adaptatives supposent que la mémoire disponsible soit parfaitement effaçable. Nous
amplifions l’effaçabilité de certains types de mémoires afin de réaliser des mémoires qui
divulguent moins de données qu’initialement ou ne divulguent absolument rien. De plus,
nous améliorons la fonction cryptographique que nous utilisons dans ces réalisations : la
transformation tout-ou-rien. Notre travail est applicable pour une plus grande variété de
mémoires effaçables que le travail préalable.

Quatrièmement, nous présentons des conventions d’écriture pour des protocoles qui
résistent aux attaques adaptatives. Avant notre travail, tous les cadres de composition
universelle existants avaient un certain nombre de défauts : d’une part les cadres sont
soit trop généraux (il est nécessaire de spécifier trop de détails inintéressants) soit trop
restreints (certaines classes de protocoles ne peuvent pas être modélisées du tout) ;
d’autre part, les protocoles existants dans la littérature sont souvent sous-spécifiés. Des
protocoles conçus dans différents travaux ne peuvent donc pas être combinés. Nous
abordons ces questions en donnant une couche d’abstraction au-dessus du cadre de
composition IITM qui permet aux concepteurs de protocoles de ne préciser que les pièces
pertinentes : le protocole résultant sera correct et sans ambigüıté.

Notre travail simplifie la conception de protocoles pratiques et sécurisés, en fournissant
une primitive utile pour le calcul de circuits arithmétiques, en fournissant des techniques
pour restorer la sécurité des joueurs après une attaque adaptative, en montrant comment
travailler en l’absence de mémoire parfaitement effaçable, et en fournissant un cadre
de composition correct et qui prend soins de détails inintéressants pour le concepteur.
Cependant, la conception de protocoles sécurisés reste encore difficile et est un processus
essentiellement manuel, et nous espérons que des travaux futurs vont la simplifier
davantage, par exemple, en automatisant certaines parties du processus de conception
de protocoles.

Contents

Acknowledgements . xiii

1 Introduction . 1

2 Preliminaries . 9
2.1 Notation . 9
2.2 Indistinguishable Distributions and Ensembles . 10
2.3 The Decisional Diffie-Hellman (DDH) Assumption 11
2.4 Cryptographic Building Blocks . 11

2.4.1 Public-Key Encryption Scheme . 12
2.4.2 Signature Scheme . 14
2.4.3 Commitment Scheme . 15
2.4.4 Pseudo-Random Generator (PRG) . 16
2.4.5 Linear Block Code (LBC) . 17
2.4.6 Ramp Secret Sharing Scheme (SSS) . 17
2.4.7 Exposure Resilient Function (ERF) . 17
2.4.8 Universal Hash Function . 18
2.4.9 All-or-Nothing Transform (AoNT) . 18

2.5 Composability Frameworks . 21
2.5.1 The UC Framework . 21
2.5.2 The GNUC framework . 24
2.5.3 The IITM Model with Responsive Environments 25
2.5.4 The Constructive Cryptography (CC) Model 30

2.6 Some Basic Ideal Functionalities . 33
2.6.1 Authenticated Channels . 33
2.6.2 One-sided–authenticated Channels . 33
2.6.3 Zero-knowledge Proofs of Knowledge and Existence 34
2.6.4 Ideal Functionalities For the CRS and Random Oracle Models . . 34

3 Practical Two-Party Computation of Arithmetic Circuits 37
3.1 Homomorphic “Mixed” Trapdoor (HMT) Commitments 38

3.1.1 A Scheme for Messages in Zn . 38

x Contents

3.1.2 A Scheme over a Prime Order Group . 39
3.2 Our Ideal Functionality Fabb . 39

3.2.1 Informal Definition of Fabb . 40
3.2.2 Formal Definition of Fabb . 41

3.3 Construction . 44
3.3.1 Realizing Πabb . 45
3.3.2 The Πmul Subroutine for Multiplication of Committed Inputs . . . 47
3.3.3 Efficiency Considerations for the Zero-Knowledge Proofs in Πabb 49

3.4 Additional Instructions for Fabb . 50
3.4.1 Instructions as Part of a Higher-Level Protocol 50
3.4.2 Modifying Fabb to Add New Instructions . 51

3.5 Security Proof . 52
3.5.1 Main Ideas . 52
3.5.2 Security Proof . 53
3.5.3 Proof of Lemma 3.5 . 54

3.6 Related Work and Comparison . 63
3.6.1 Efficiency Comparison . 64
3.6.2 Comments about the Efficiency of Related Work 65

3.7 Example of a Useful Protocol Constructed with Fabb 66
3.7.1 Ideal Functionality . 66
3.7.2 Construction . 67
3.7.3 Security . 67

4 Practical 2-Server Password-Authenticated Secret Sharing 69
4.1 Corruption in the UC Model . 71
4.2 Our Ideal Functionality F2pass . 72

4.2.1 Informal Definition of F2pass . 72
4.2.2 Formal Definition of F2pass . 74

4.3 Our Construction of TPASS Secure Against Transient Corruptions 81
4.3.1 High Level Approach of our TPASS Protocol 81
4.3.2 Key Ideas of our TPASS Protocol . 82
4.3.3 Detailed Construction of Π2pass . 85
4.3.4 Computational and Communication Complexity 91
4.3.5 Comparison with Related Work . 91

4.4 Security Proof . 94
4.4.1 Main Ideas . 94
4.4.2 Security Proof . 96

5 Memory Erasability Amplification . 107
5.1 Modelling Imperfectly Erasable Memory . 108

5.1.1 Specification of the General Imperfectly Erasable Memory Resource109
5.1.2 Instantiations of M〈Σ,ψ, ρ, κ〉 . 110

5.2 Constructing Better Memory Resources . 111
5.2.1 Admissible Converters for Constructions using Erasable Memory 112
5.2.2 Memory Erasability Amplification . 113
5.2.3 Constructing a Large Perfectly Erasable Memory from a Small One117

Contents xi

5.3 New Realizations of All-or-Nothing Transforms . 120
5.3.1 AoNT from a Protocol . 120
5.3.2 Perfectly Secure AoNT Based on Matrices with Ramp Minimum

Distance . 123
5.3.3 Realizing a Perfectly Secure AoNT over a Small Field by

Combining AoNTs . 126
5.3.4 Computationally Secure AoNT over a Large Field from a PRG . . 127

6 Conventions for Usable Universal Composability 131
6.1 Templates for Real Protocols and Ideal Functionalities 132

6.1.1 Specifying Real Protocols . 136
6.1.2 Specifying Ideal Functionalities . 139

6.2 Mapping Templates to ITMs . 142
6.2.1 Notation for the Formal Specification of ITMs 142
6.2.2 Real protocols . 144
6.2.3 Ideal protocols . 154

6.3 Programming Language for the Templates . 158
6.4 An Example Functionality and its Realization: Digital Signatures 162

6.4.1 The Ideal Functionality Fsig . 162
6.4.2 Realizing Fsig . 163

6.5 Joint State . 163
6.5.1 Conventions for Joint-State Protocols . 166
6.5.2 Joint State Realization of Signatures . 172

7 Concluding Remarks . 175

References . 177

Appendix

A Formal Definition of Ideal Functionalities . 187
A.1 Common Reference Strings FDcrs . 187
A.2 Authenticated Channels Fac . 188
A.3 One-Sided–Authenticated Channels Fosac . 189
A.4 Zero-Knowledge Proofs of Existence for One Verifier Fgzk 193

A.4.1 GNUC Formalism . 195
A.5 Zero-Knowledge Proofs of Existence for Two Verifiers F2v

gzk 195

Curriculum Vitae . 199

Acknowledgements

First of all, I thank my supervisor at IBM, Dr. Jan Camenisch. I am grateful for his
great patience and that he guided me through the realities of being a researcher. He
always provided helpful advice on focusing on the truly important things. Furthermore,
he was understanding and supportive during a difficult personal time.

I am truly indebted to my supervisor at ETH, Prof. Dr. Ueli Maurer. He has an
incredible amount of patience, always had time for me, and taught me to question the
conventions of the field of cryptography instead of blindly following them.

I am grateful to Prof. Dr. Ralf Küsters for agreeing to serve as my co-examiner.
I express my deep gratitude to my parents and my grand-father for their love,

encouragement, and support. They have greatly inspired me to pursue a PhD, as they
did in their time. I dedicate this thesis to my late father who would have been so proud
to see it.

Sincere thanks also goes to Anne-Marie Cromack for proofreading my abstract,
introduction, and conclusion; to Grégory Demay and Gregory Neven for proofreading my
French abstract; and to Christian Badertscher for proofreading the acknowledgements.

It has been a great pleasure and a great honor to collaborate with Jan Camenisch,
Maria Dubovitskaya, Stephan Krenn, Ralf Küsters, Anja Lehmann, Ueli Maurer, Gregory
Neven, Franz-Stefan Preiss, Daniel Rausch, and Victor Shoup.

I was fortunate to have had wonderful colleagues at IBM Research. I thank especially
Cecilia Boschini, Christian Cachin, Jan Camenisch, Manu Drijvers, Maria Dubovitskaya,
Cedric Favre, Eduarda Freire, Alexandra Gorski, Nikola Knezevic, Daniel Kovacs,
Stephan Krenn, Anja Lehmann, Mario Lucic, Vadim Lyubashevsky, Zoltan Nagy,
Gregory Neven, Michael Osborne, Vit Pratzler, Franz-Stefan Preiss, Kai Samelin, Dieter
Sommer, and Andreas Wespi, for making the lab such a fantastic place. I especially
thank all those who contributed to my doctoral hat: I will cherish it as a memento to
all the fun we had hiking, rafting, sledding, bowling, etc.

I am equally fortunate to have had great colleagues at ETH, specially Christian
Badertscher, Sandro Coretti, Grégory Demay, Daniel Jost, Christian Matt, Gregor Seiler,
Björn Tackmann, and Daniel Tschudi.

I am lucky to have such great friends. I thank Jonas Wagner in particular, for the
amazing time we had together (hiking, skiing, paragliding, mountain biking, playing

xiv Acknowledgements

Dominion) and for his excellent book gifts; and Pierluca Borsó, for board games and
interesting discussions.

During my PhD, I had the honor of co-founding the ACM VIS commission, and made
many friends while serving in it. I particularly thank Jan Doerrie, Sandro Feuz, Daniel
Graf, Jan Hazla, Akaki Mamageishvili, Sebastian Millius, Rajko Nenadov, and Kieran
Nikko, for the great time we had organizing the various programming competitions.
A big thanks also to the VIS committees at large during those years, especially for
organizing the awesome Snowdayz.

Before my PhD, I had the pleasure of co-founding the student association PolyProg
and the Helvetic Coding Contest, and remained a member during all my PhD. I was
amazed at how much we achieved (and how much time it took away from my PhD). I
am particularly grateful to Mohamed Abouhamra Abdel-Fattah, Pierluca Borsó, Titus
Cieslewski, Christian Kauth, Oswald Maskens, Solal Pirelli, Jérémy Rabasco, Valérian
Rousset, Yannick Schäffer, Benjamin Schubert, Jakub Tarnawski, Jonas Wagner, Jean-
Paul Wenger, Johannes Würthrich, Joey Zenhäusern, and Christian Zommerfelds, all of
which have become great friends.

Robert R. Enderlein
Zurich, May 2016

1

Introduction

Until around the middle of the 20th century, cryptography was used by a small number
of people for protecting their sensitive communications, especially in military contexts.
In those times, cryptography was an art, and offered little in the way of provable security:
in fact, as late as World War II, ciphers were regularly broken [Kah96,Sin11]. Nowadays,
cryptography is pervasively used in digital communication. Anybody who does online
banking or shopping, uses e-mail or social media, and increasingly anybody who uses
a search engine or an online encyclopedia is a regular user of cryptography. Modern
cryptography is a science, and cryptographic protocols are now expected to come with
rigorous security proofs. The scope of cryptography has also been expanded beyond
ensuring the confidentiality of communication. It is now concerned with the design of
systems that need to resist malicious attempts to abuse them [Gol01], examples include
electronic auctions, electronic voting, digital cash, and securing distributed computation.

Unfortunately, in many distributed systems today, security is often an afterthought
and considered secondary to cost effectiveness and user experience. Many high-profile
security breaches reported in the media attest to this. This is especially worrisome in an
era where our personal data (family pictures, backups), our electronic tax returns, and
even our health records are being stored on remote servers, i.e., the “cloud”, that are
controlled by a third-party. This is exacerbated by the fact that many cloud computing
providers are financed by advertising, and thus have an incentive to analyze their users’
data.

Clearly, in today’s world there is a need for cryptographic protocols that are both
practical and secure. That is, they should be actually realizable in practice, be fast
enough to run on resource-constrained devices such as smartphones, and present strong
and provable security guarantees in the presence of untrusted or not well-protected cloud
hosts and in case of theft of the user’s smartphone or laptop.

Provable security. Designing and proving secure large and complex cryptographic
protocols is very challenging. Today, the security proofs of most practical protocols
consider only a single instance of the protocol and therefore all security guarantees are
lost if such a protocol is run concurrently with other protocols or with itself, in other
words, when used in practice. Better security guarantees can be obtained when using
composability frameworks—the Universal Composability (UC) framework [Can00,Can01],

2 Chapter 1. Introduction

the similar GNUC framework [HS11], the Constructive Cryptography Framework [MR11,
Mau10,Mau11b], the IITM framework [Kue06,KT13] and its extension to responsive
environments [CEK+16a], and others [PW01,CDPW07,BPW07]—which ensure that
protocols proved secure in the framework remain secure in arbitrary environments. This
also simplifies the design of protocols: high-level protocols can be composed from lower-
level “building block” protocols, and the security proofs of the higher-level protocols
can be based on the security of the building blocks and so become modular and easier.

All of these frameworks define the security of a protocol by comparing its execution
to an ideal process, where the output of the latter is computed by a trusted party that
sees the inputs of all parties [GMW87]. That is, it is proven that any attack on the real
protocol corresponds to an attack on the ideal process—which is secure by definition,
thereby the real protocol is also secure.

Although this concept is very powerful, it was shown that many interesting protocols
cannot be realized directly in such frameworks [CF01]. If one wishes to realize those,
one must at least assume a secure setup [CKL06]. There are two popular such setup
assumptions: in the so-called standard-model, one assumes that all protocol participants
agree on a common reference string (CRS) with a specific distribution; whereas in the
random oracle model, one assumes that all participants have access to a common random
function.

Practical protocols. Unfortunately, protocols proven secure in such composability
frameworks are typically one or two orders of magnitude less efficient than their traditional
counterparts with “single-instance” security. This presents us with a dilemma: on the
one hand we have secure but inefficient protocols, and on the other we have efficient
protocols that do not come with realistic security guarantees. In this thesis we try to
remedy this situation by considering practical protocols, which we define as follows.

• We eschew unrealistic setup assumptions. For example, many efficient protocols
used today rely on the random oracle model. Unfortunately random oracles do
not exist in practice and any workarounds will invalidate the security of such
protocols [CGH98]. We thus require all our protocols to be in the standard model
(with CRS). As it is impossible to achieve universal composability without some
kind of setup assumption [CKL06], a CRS seems like a reasonable, pragmatic
compromise.
• In the context of provable security, “efficient” is synonymous with polynomial

time. By that definition, zero-knowledge protocols of Hamiltonicity that require
one to transform an input to an instance of a particular NP problem (in that case,
Hamiltonian circuits) and that use a “cut-and-choose” technique (repeating the
protocol hundreds of times) are considered efficient. Likewise for protocols making
use of such proofs [CLOS02]. However, such protocols are completely impractical.
We thus require all our protocols to preserve the algebraic structure of the data we
are working with and to avoid cut-and-choose techniques.
• Similarly, we strive to minimize the actual number of expensive operations, chiefly

the number of exponentiations, that our protocols use. For example, it was
observed that using zero-knowledge proofs of knowledge is a computationally
expensive operation, as witnesses need to be verifiably encrypted as part of the

3

proof [CKS11]. By using zero-knowledge proofs of existence [CKS11] instead, one
can significantly improve the runtime of protocols.
Of course, it is understood that in many cases, our protocols will still require many
hundreds of exponentiations, hence there will always be a gap between the runtime
of our practical protocols and the runtime of “efficient” (but not necessarily secure)
protocols in use today.

• Finally, as observed before, we require our protocols to come with provable security
guarantees and operate in arbitrary contexts, hence they must be designed and
proven secure in a composition framework. Furthermore, as real computers can be
compromised by hackers or even stolen at any time during protocol execution (and
not only just before the protocol execution starts), we require all our protocols to
be resistant against adaptive attacks.

Contribution and outline. The goal of this thesis is to simplify the design of adaptively
secure cryptographic protocols that are also practical. We start by providing a practical
protocol for arithmetic circuit evaluation which realizes a cryptographic primitive
that is useful for constructing higher-level protocols, for example for constructing an
OPRF [JL09], or credential authentication and key exchange protocols [CCGS10]. Circuit
evaluation protocols are very general and can be used for realizing many additional
cryptographic protocols, such as oblivious transfer with complex access policies or
password-authenticated key exchange, but one can often achieve better constructions
by re-designing a protocol from scratch. Next, we design a protocol for password-
authenticated storage of data. Such a protocol is very relevant in practice, as users
cannot be expected to remember secure cryptographic keys. This protocol also serves as
a study for reasoning about adaptive corruption, and especially recovery from corruption.
The two protocols above, and in fact many other practical adaptively secure protocols in
the literature, assume the existence of perfectly erasable memory. Unfortunately, hard
discs and SSDs, as well as various file systems, are designed to preserve data and be
fast and not to reliably erase data. It is therefore unreasonable to assume the existence
of perfectly erasable memory. We therefore study imperfectly erasable memory in a
composition framework, for example memory that leaks a few bits of the stored data to
the adversary even after an erasure, and how to improve such memory. The ultimate
goal is of course to realize perfectly erasable memory from such imperfectly erasable ones.
Finally, we have noticed that there are problems with the currently existing composition
frameworks: such frameworks are either too general or too restricted. Frameworks of
the former type place too much burden on the protocol designer, which in practice
means that results are not stated in a precise manner (and are sometimes wrong, as
noted by Camenisch et al. [CEK+16a]), and that different works may implement certain
details in different ways and thereby prevent protocol designers from combining these
works to build higher-level protocols. Frameworks of the latter type do not permit
the designer to model certain classes of protocols at all. We provide a remedy by
proposing an abstraction layer on top of the very general IITM model with responsive
environments [CEK+16a]. It requires the designer to specify only the relevant pieces of
his protocol; irrelevant details are taken care of by the conventions we propose.

More precisely, the outline and contributions of this thesis are as follows.

4 Chapter 1. Introduction

Preliminaries. In Chapter 2, we define the notation and recall background information
used in this thesis.

Practical Two-Party Computation of Arithmetic Circuits. In Chapter 3, we present a
set of new, efficient, universally composable two-party protocols for evaluating reactive
arithmetic circuits modulo n, where n is a safe RSA modulus of unknown factorization.
This protocol is in the standard model and assumes that secure erasures are available.
Our main contribution is twofold.

First, we provide a mechanism for protocol designers to easily integrate our arithmetic
circuit functionality as a building block in their higher-level protocol in a practical yet
secure manner. Most UC-secure two-party schemes and protocols found in the literature
can not be used as building blocks for higher-level protocols because they do not offer
the proper interfaces. That is, in the case of two-party protocols it is typically not
possible to ensure that a party’s output from one building block is used as the party’s
input to another building block; this is unlike the case of multi-party protocols with
honest majority, where it is possible to secret-share all input and output values and
then, by virtue of the majority’s honesty, it is ensured that the right outputs are used
as inputs to the next building block. We solved this issue with an additional instruction
in our circuit evaluation protocol that allows parties to do a zero-knowledge proof over
values both internal and external to the circuit. By using commitments (or credentials),
it is thereby possible to securely transfer values from the circuit to another building
block and vice-versa.

Second, we provide a concrete construction of the circuit evaluation protocol that
is in itself more efficient than prior work. We achieve the latter by using crypto-
graphic primitives that work very well together. Additionally, the tools we use in our
construction—especially our novel mixed trapdoor commitment scheme—may be of
independent interest.

Our protocol can be extended with some features, such as generating random
values and computing multiplicative inverses modulo n, using standard techniques.
Other features require an extension of our ideal functionality, in particular, we add an
instruction for exponentiated output, with which we can directly implement Jarecki and
Liu’s two-party protocol for computing the following oblivious pseudorandom function
(OPRF) [JL09]:

fy(x) =

{
g1/(y+x) if gcd(y + x,n) = 1.

1 otherwise.

Here, Alice’s private input is x, Bob’s private input is y, and Alice’s output is fy(x). As
pointed out by Jarecki and Liu, OPRF’s have many useful cryptographic applications.

Practical 2-Server Password-Authenticated Secret Sharing. In Chapter 4, we provide the
first threshold password-authenticated secret sharing (TPASS) protocol that is provably
secure against adaptive corruptions, assuming data can be securely erased. TPASS
protocols enable users to share secret data among a set of servers so that they can
later recover that data using a single password. No coalition of servers up to a certain
threshold can learn anything about the data or perform an offline dictionary attack on
the password. Our protocol is a two-server protocol in the public-key setting, meaning
that servers have trusted public keys, but users do not. We also describe a recovery

5

procedure that servers can execute to recover from corruption and to renew their keys
assuming a trusted backup is available. The security of the password and the stored
secret is preserved as long as both servers are never corrupted simultaneously.

Our construction uses the same basic approach as the TPASS protocols of Brainard et
al. [BJKS03] and Camenisch et al. [CLN12]. During the setup phase, the user generates
shares of his key and password and sends them to the servers (together with some
commitments that will later be used in the retrieve phase). During the retrieve phase,
the servers run a subprotocol with the user to verify the latter’s password attempt
using the commitments and shares obtained during setup. If the verification succeeds,
the servers send the shares of the key back to the user, who can then reconstruct the
key. Furthermore, the correctness of all values exchanged is enforced by zero-knowledge
proofs. Like the recent work of Camenisch et al. [CLLN14], we do not require the user
to share the password during the retrieve phase but run a dedicated protocol to verify
whether the provided password equals the one shared priorly. This offers additional
protection for the user’s password in case he mistakenly tries to recover his secret from
servers different from the ones he initially shared his secret with. During setup, the user
can be expected to carefully choose his servers, but retrieval happens more frequently
and possibly from different devices, leaving more room for error.

The novelty of our protocol lies in how we transform the basic approach into an
efficient protocol secure against an adaptive adversary. The crux here is that parties
should never be committed to their inputs but at the same time must prove that
they perform their computation correctly. We believe that the techniques we use in
our protocol to achieve this are of independent interest when building other protocols
that are UC-secure against adaptive corruptions. First, instead of using (binding)
encryptions to transmit integers between parties, we use a variant of Beaver and Haber’s
non-committing encryption based on one-time pads (OTP) [BH93]: the sender first
commits to a value with a mixed trapdoor commitment scheme (see Section 3.1) and
then encrypts both the value and the opening with the OTP. This enables the recipient
to later prove statements about the encrypted value. Second, our three-party password-
checking protocol achieves efficiency by transforming commitments with shared opening
information into an Elgamal-like encryption of the same value under a shared secret
key. To be able to simulate the servers’ state if they get corrupted during the protocol
execution, each pair of parties needs to temporarily re-encrypt the ciphertext with a key
shared between them.

Memory Erasability Amplification. In Chapter 5, based on the observation that perfectly
erasable memory is not always available, we model a memory resource that is only
imperfectly erasable in the Constructive Cryptography framework. The user of that
memory resource can write data once in it, and later retrieve the data. The user may
also erase the data. The resource may be attacked by an adversary: in a successful attack
before the data was erased, the adversary obtains the entire data; after the data was
erased, the adversary obtains some residual information about the previously written
data, as determined by a leakage class. We study multiple such leakage classes. For
example, one that returns a constant number of bits (chosen by the adversary) of the
written data. We also consider leakage classes that leak bits of the data randomly, or
return a noisy version of the written data. Another important leakage class is that of
length-shrinking functions chosen by the adversary, however as we shall see, those are

6 Chapter 1. Introduction

only interesting in the case that they are applied to a part of the memory (the other
part leaking fully to the adversary), as otherwise the adversary can simply choose a
function that mimics the decoding algorithm used by the memory.

We then propose protocols to amplify the erasability of such memory resources. That
is, we propose protocols that construct erasable memory with a given leakage class from a
(weaker) memory with a different class. For example, a protocol that is essentially a thin
wrapper around an All-or-Nothing Transform (AoNT) [CDH+00], constructs a perfectly
erasable memory from a memory that leaks a constant number of bits. Protocols may use
(perfectly erasable) temporary storage to perform computation, however such temporary
storage is discarded as soon as they send a message to a non-memory resource, e.g., a
communication channel—thereby we exclude trivial protocols that bypass the memory
resources.

Finally, we propose better realizations of AoNT’s. As discussed above, AoNT’s
are a useful tool to amplify the erasability of memory. We propose several AoNT’s
with better parameters than previously known. For example, we improve the standard
construction of a perfectly-secure AoNT from a Linear Block Code (LBC), by observing
that an LBC with a large minimum distance does not yield an AoNT with optimal
privacy threshold. We propose the metric of ramp minimum distance: an LBC has
ramp minimum distance d if its k × n generator matrix has the property that for all
r ∈ {1, . . . , k}: all r × (n − (d − r)) sub-matrices have rank r; and show that LBC’s
optimized for that metric yield perfectly secure AoNT’s with better parameters than
can be achieved with the standard construction. Another example: we propose a
computationally secure AoNT that operates over a large alphabet (large enough for one
symbol to encode a cryptographic key) that is optimal: the actual data is just one symbol
shorter than the encoded data, and it is secure even if all but one of the symbols of the
encoded data leak. Such an AoNT can be realized from a Pseudo-Random Generator
(PRG) with some specific properties.

Conventions for Usable Universal Composability. In Chapter 6, we address the short-
comings of existing composition frameworks by providing an abstraction layer with
templates on top of the IITM model with responsive environments (see Section 2.5.3
and Camenisch et al. [CEK+16a]). Thereby we allow for concise yet flexible protocol
design, including handling of joint state. Finally, we provide a precise mapping from the
templates to our model for unambiguous and complete protocol specifications. More
precisely, we provide the following.

We provide an abstraction layer and templates, including the treatment of joint
state. Based on the IITM model with responsive environments/adversaries, we provide
a carefully designed abstraction layer, including templates and syntax for specifying
computations, which allow the protocol designer to specify ideal functionalities and
protocols, including joint state realization, in an unambiguously, yet convenient and
flexible way. The abstraction layer is flexible enough to allow the protocol designer to
model various forms of corruption, including top-down, bottom-up, strong and weak
static corruption as well as dynamic corruption. Unlike other frameworks, including the
UC and GNUC models, our framework allows a party to take different roles (e.g., signer
and verifier, or initiator and responder) within one session. In other models, one would
have to merge roles for this, leading to artificial protocol specifications. Allowing one
party to play different roles in one session is not only convenient but more importantly

7

it is also security relevant: by excluding the case that a party takes different roles in one
session, attacks in the real world might be missed.

We provide a precise mapping to the responsive IITM model. Protocol templates are
mapped to the responsive IITM model such that we obtain precisely specified real and
ideal protocol systems, where we make use of restricting messages in different places and
rely on the assumption that environments are responsive. In particular, the protocol
designer can rely on this, leading to simpler and more natural specifications. Also, the
mapping includes the specification of default behavior. This not only facilitates the
specification task for the protocol designer (who, hence, does not have to define certain
aspects), but importantly also guarantees that protocols are never underspecified.

Finally, we illustrate our framework by the ideal functionality Fsig for digital signa-
tures. We specify this functionality, its realization, as well as a joint-state realization
using the proposed abstraction layer and templates.

Concluding Remarks. Finally, in Chapter 7, we propose new research directions.

2

Preliminaries

This chapter defines the notation, and recalls the various cryptographic hardness as-
sumptions, cryptographic building blocks and other schemes, composition frameworks,
and basic ideal functionalities that are used throughout this thesis.

2.1 Notation

Let Ni denote the set of all natural numbers between 0 and (i− 1), let Zi denote the
ring of integers modulo i. Let N∗i and Z∗i denote Ni \ {0} and Zi \ {0}, respectively. Let
R+ denote the set of all non-negative real numbers. Let GF(q) denote the Galois field
of q elements, where q is a prime power.

A number p is a safe prime if p and (p− 1)/2 are prime numbers. A number is a
safe semi-prime if it is the product of two safe primes.

If L is a set of positive integers, let [u]L denote the subvector of u taken at all
positions in L. If S is a set, then 2S denotes the powerset of S (the set of all subsets of
S).

The probability of an event E over a random space Ω is written as Pr [Ω : E]. We
write Pr [E] if Ω is clear from the context.

If A is a deterministic Polynomial-Time algorithm, then y ← A(x) denotes the
assignment of variable y to the output of A(x). If A is a Probabilistic Polynomial-Time

(PPT) algorithm, then y
$← A(x) denotes the assignment of y to the output of A(x) when

run with fresh random coins on input x. For a set A: x
$← A denotes the assignment

of x to a value chosen uniformly at random from A. If P is a conditional probability
distribution P ∈ (X × Y 7→ [0, 1]) with ∀y ∈ Y :

∑
x∈X P(x | y) = 1, then we also write

P ∈ Y $7→ X; let x
$← P(y) denote the sampling of x ∈ X conditioned on the event Y = y,

i.e., the probability that a given x ∈ X is chosen is P(x | y). If U and P are parties, and

Sub is a two-party protocol, then let (out U ; outP)
$← 〈U .Sub(in U),P.Sub(inP)〉(in UP)

denote the simultaneous execution of the protocol by the two parties, on common input
in UP , with U ’s additional private input in U , with P’s additional private input inP ,
and where U ’s output is out U and P ’s output is outP ; we use an analogue notation for
three-party protocols.

10 Chapter 2. Preliminaries

Let Ir denote the identity matrix of size r × r, and let 0 denote the zero matrix of
appropriate size.

If u is a vector or a list, let ui or u[i] denote the ith element of u. If V is an
associative array, then V [k] ← v denotes the insertion of the value v into the array
under the identifier k. By v′ ← V [k], one denotes the retrieval of the value associated
with identifier k, and storing that retrieved value in the variable v′. If A is a (mutable)
set, A← k is a shorthand notation for inserting k into it.

Let {0, 1}∗ denote the set of all finite bit strings, and let {0, 1}+ denote the set of
all non-empty finite bit strings. Let ε denote the empty string. If s is a bitstring, then
let |s| denote the length of s.

Let Λ denote a fixed, finite alphabet of symbols (for example Unicode codepoints).
Throughout this text we will use monospace fonts to denote characters in Λ, e.g.: P or
Q. Let Λ? denote the set of strings over Λ. We use the list-encoding function 〈·〉 like in
the GNUC paper [HS11]: If a1, . . . , an ∈ Λ?, then 〈a1, ..., an〉 is a string over Λ that
encodes the list (a1, . . . , an) in some canonical way.

For a binary relation R ⊆ {0, 1}+ × {0, 1}+, let R[0] denote the language induced by
R, i.e., R[0] = {m|∃(m,m′) ∈ R}.

Throughout this thesis we denote the security parameter by η ∈ N. Let 1η denote
the string consisting of η ones. Unless otherwise noted, all algorithms in this thesis are
PPT and take 1η as extra (often implicit) input.

We use the following arrow-notation: publicData to denote the transmission of
public data over a channel that two parties have already established between themselves
(we discuss how such a channel is established in more detail later). When we write
(: dataToErase) next to such an arrow, we mean that the value dataToErase is securely
erased before the public data is transmitted. When we write

[
secretData

]
on such an

arrow, we mean that secretData is sent in a non-committing encrypted form, as will
be made clear in the sequel. All these transmissions must be secure against adaptive
corruptions in the erasure model.

2.2 Indistinguishable Distributions and Ensembles

This section recalls the notion of negligible functions, indistinguishable distributions,
and indistinguishable distribution ensembles.

Definition 2.1 (Negligible function [KL15]). A function f : N 7→ R+ is called
negligible if for all c ∈ N there exists η0 ∈ N such that for all η > η0: f(η) < η−c.

A function f(x) is called overwhelming if the function g(x) := 1− f(x) is negligible.

Definition 2.2 (Indistinguishable distributions [Gol01]). Let A and B be two
distributions. A and B are ε-(statistically) indistinguishable if their statistical distance
is no more than ε, i.e.: ∑

a∈{0,1}∗

∣∣Pr [A = a]− Pr [B = a]
∣∣ ≤ ε.

A and B are perfectly indistinguishable if they are 0-indistinguishable, i.e., they are
identical.

2.4. Cryptographic Building Blocks 11

Definition 2.3 (Computationally indistinguishable ensembles [Gol01]). Two
ensembles {A(x)}x∈L and {B(x)}x∈L indexed by elements of a language L ⊆ {0, 1}∗
are computationally indistinguishable if for every PPT algorithm D whose output is in
{0, 1}, there exists a negligible function negl such that for every x ∈ L:∣∣Pr [D(x,A(x)) = 1]− Pr [D(x,B(x)) = 1]

∣∣ ≤ negl(|x|).

We denote the ensemble {A(x)}x∈{1η|η∈N,η>η0} by the shorthand {A(1η)}1η (where
η0 is implicit), or even {A}1η (where the security parameter is implicitly given to A).

2.3 The Decisional Diffie-Hellman (DDH) Assumption

This section recalls the definition of the Decisional Diffie-Hellman Assumption (DDH).
We have chosen not to recall the definition of other cryptographic hardness assumptions,
as we will not directly need them in the rest of the thesis; instead we rely on the security
of the cryptographic schemes that we use.

Definition 2.4 (DDH Assumption [KL15]). Let ggen be a PPT algorithm that takes
as input a security parameter 1η and outputs the description of a group G, the order p
of the group, and a generator g.

The DDH assumption for the group generator ggen holds if the following two ensembles
are computationally indistinguishable:

• {(G, p, g, gx, gy, gz)}1η for (G, p, g)
$← ggen(1η) and x, y, z

$← Zp.

• {(G, p, g, gx, gy, gx·y)}1η for (G, p, g)
$← ggen(1η) and x, y

$← Zp.

DDH over prime-order groups. In Chapter 4, we consider the DDH assumption
over prime-order groups. In that context, ggen generates a group of prime order: for
example, a prime-order subgroup of Zq where q is a large prime; here the size of p in
bits should be approximately equal to 2η. Ecrypt-II has made recommendation on size
of q relative to the security parameter [BCC+11].

DDH over safe-semiprime-order groups. In Chapter 3, we consider the DDH
assumption over a subgroup of Zq where the order is a safe semi-prime. We refer to
the Ecrypt-II [BCC+11] recommendations for suggestion on the size of the two primes
relative to η. We stress that in that context, the factorization of the group order is not
sent to the distinguisher.

2.4 Cryptographic Building Blocks

This section recalls the definition of the various cryptographic schemes that we use
throughout this thesis. It covers encryption schemes, signature schemes, commitment
schemes, pseudo-random generators (PRG), linear block codes (LBC), secret sharing
schemes (SSS), exposure-resilient functions (ERF), universal hash functions, and all-or-
nothing transforms (AoNT).

12 Chapter 2. Preliminaries

2.4.1 Public-Key Encryption Scheme

A public-key encryption scheme (also called cryptosystem) is a triplet of PPT algorithms

(kgen, enc, dec). The algorithm kgen : 1η
$7→ (pk , sk) takes the security parameter as

input and outputs a public and a secret key. The algorithm enc : (pk , pt)
$7→ ct

takes as input a public key and a plaintext, and outputs a ciphertext. The algorithm
dec : (sk , ct) 7→ (pt ′ or ⊥) takes as input a secret key and a ciphertext, and outputs a
plaintext (or an error symbol).

Correctness. A cryptosystem is correct if, except with negligible probability over the key

generation (pk , sk)
$← kgen(1η), for all admissible plaintexts pt : pt = dec(sk , enc(pk , pt)).

Explicit randomness. It is sometimes necessary to make the randomness used during

key generation or encryption explicit. To that effect, we sometimes write kgen : 1η
$7→

(pk , sk , r) and enc : (pk , pt)
$7→ (ct , r); here r represents all random choices that were

made in the algorithm. We also write kgen : (1η, r) 7→ (pk , sk) and enc : (pk , pt , r) 7→ ct
to denote the deterministic algorithms that take the randomness r as input.

Compatibility with zero-knowledge proofs. A cryptosystem is compatible with Fgzk, if one
can efficiently prove knowledge of sk given pk , one can prove knowledge of a plaintext
given a ciphertext, and one can prove further equations involving such a plaintext. We
will use a shorthand notation to denote such proofs, e.g.: sk , pt : (pk , sk) ∈ kgen()∧pt =
dec(ct , sk) denotes a proof that a (well-formed) secret key and plaintext is known such
that a given ciphertext decrypts to that plaintext with the secret key corresponding to
a given public key.

2.4.1.1 Security against Chosen-Plaintext Attacks (CPA)

Semantic security game. The CPA security game (also called semantic security game)
Gss is defined as follows:

• Gss(1
η) starts by choosing a public and secret key (pk , sk)

$← kgen(1η) and sends
pk to the adversary.
• Gss then expects two plaintexts (pt0, pt1) of equal length from the adversary. It

then flips a coin b
$← {0, 1} and encrypts ptb: ct

$← enc(pk , ptb). It then sends ct
to the adversary.
• Gss now expects a guess b′ ∈ {0, 1} from the adversary. It outputs 1 if b = b′ and

0 otherwise.

Definition 2.5 (CPA security [KL15]). A cryptosystem is CPA-secure if for all
PPT adversaries A, there exists a negligible function negl, such that for all security
parameters η ∈ N larger than some constant η0: the probability that Gss(1

η) outputs 1
when interacting with A(1η) is no more than 1/2 + negl(η) (here the probability is taken
over the random choices of both Gss and A).

2.4. Cryptographic Building Blocks 13

2.4.1.2 Controlled-Ring Homomorphic (CRH) Encryption Schemes

A “controlled ring” homomorphic (CRH) cryptosystem [IPS09] corresponding to a ring

family R is a tuple of PPT algorithms (rgen, rkgen, enc, dec, add,mul), where rgen : 1η
$7→

id generates a ring identifier from a security parameter, and rkgen : (1η, id)
$7→ (pk , sk)

generates a key pair from the security parameter and ring identifier, with the following
properties:

• Let kgen(1η)
$7→ (pk , sk) be defined as follows: id

$← rgen(1η) then output the
result of rkgen(1η, id). It is required that (kgen, enc, enc) is a semantically secure
cryptosystem. The set of values that can be encrypted by enc are the elements of
Rid .

• Let negl be a negligible function. For any security parameter η ∈ N larger than some

constant η0: for any two plaintexts pt1, pt2: let (pk , sk)
$← kgen(1η), let ct1, ct2

be two ciphertexts such that ct i
$← enc(pk , pt i), and let ct3

$← add(pk , ct1, ct2),

and let ct4
$← enc(pk , pt1 + pt2). The distributions of ct3 and ct4 must be

negl(η)-indistinguishable.
• Let negl be a negligible function. For any security parameter η ∈ N larger than

some constant η0: for any two plaintexts pt , α: let (pk , sk)
$← kgen(1η), let ct

be the ciphertext such that ct
$← enc(pk , pt), and let ct ′

$← mul(pk , ct , α), and

let ct ′′
$← enc(pk , pt · α). The distributions of ct ′ and ct ′′ must be negl(η)-

indistinguishable.

In the sequel, we drop pk from add and mul if the public key is clear from context.

Examples. An example of a CRH cryptosystem is Camenisch-Shoup [CS03,DJ03]. In
Chapter 3, we will use Jarecki and Shmatikov’s variant of the latter [JS07], described
hereafter. The Pailler cryptosystem [Pai99], is an uncontrolled -ring homomorphic
cryptosystem [IPS09], as the plaintext ring cannot be fixed before key generation. The
ElGamal cryptosystem (and the variant thereof where messages are in the exponent)
does not fit this definition.

Simplified Camenisch-Shoup Encryption with Short Randomness. An example of a
CRH encryption scheme that is compatible with Fgzk is the simplified version of Came-
nisch-Shoup encryption with a short private key and short randomness, described by
Jarecki and Shmatikov [JS07]. It is semantically secure if Paillier’s Decision Composite
Residuosity Assumption [Pai99] holds.

The ring generation algorithm outputs is a safe semiprime n := id : messages are then
in Zn . Note that the factorization of n is not output. We refer to the Ecrypt-II [BCC+11]
recommendations for suggestion on the size of n relative to η.

The key generation algorithm computes x
$← Zb√nc, g ′

$← Z∗n2 , g ← g ′
2n

, y ← gx .
It then outputs the public key pk := (g , y) and the secret key sk := x .

To encrypt the message pt ∈ Zn : r
$← Zb√nc, u ← gr, e ← yr(n + 1)pt (mod n2);

the ciphertext is ct := (u, e).

To decrypt: pt ′′′ ← (e/ux)2, pt ′′ ← pt′′′−1
n (over the integers), pt ′ ← pt ′′ · 2−1

(mod n); output pt ′.

14 Chapter 2. Preliminaries

2.4.1.3 Security against Chosen-Ciphertext Attacks (CCA2)

Labels. Some cryptosystems allow one to attach a non-malleable label ` to ciphertexts.

Thereby enc is now (pk , pt , `)
$7→ ct and dec is now (sk , ct , `) 7→ (pt ′ or ⊥). One can also

make the randomness explicit in the obvious manner.
Such a crytosystem with labels is correct if for all labels `: the (regular) cryptosystem

where the label is fixed to ` is correct.

CCA-2 security game (with labels). The following CCA-2 security game Gcca for
a cryptosystem with labels is adapted from Shoup [Sho01].

• Gcca(1η) starts by choosing a public and secret key (pk , sk)
$← kgen(1η) and sends

pk to the adversary. The first phase now starts.
• Upon receiving (oracle, ct , `) from the adversary during the first phase: Gcca

decrypts the ciphertext pt ← dec(sk , ct , `) and sends pt to the adversary. This
query may be repeated many times.
• Upon receiving (challenge, pt0, pt1, `

′) from the adversary where pt0 and pt1 have

the same size: Gcca flips a coin b
$← {0, 1}, encrypts ptb: ct ′

$← enc(pk , ptb, `
′), and

remembers `′. It then sends ct ′ to the adversary. The second phase now starts.
• Upon receiving (oracle, ct , `) from the adversary during the second phase such

that (ct , `) 6= (ct ′, `′): Gcca decrypts the ciphertext pt ← dec(sk , ct , `) and sends
pt to the adversary. This query may be repeated many times.
• Upon receiving (guess, b′) from the adversary: Gcca outputs 1 if b = b′ and 0

otherwise.

Definition 2.6 (CCA-2 security [Sho01]). A cryptosystem is CCA-2-secure if for
all PPT adversaries A, there exists a negligible function negl, such that for all security
parameters η ∈ N larger than a constant η0: the probability that Gcca(1η) outputs 1 when
interacting with A(1η) is no more than 1/2 + negl(η) (here the probability is taken over
the random choices of both Gcca and A).

Example. The Cramer-Shoup cryptosystem in a hybrid setting over a group G of
prime order q [CS98, Section 5.2], modified so that it includes the label ` in the hash
function used during encryption, is an example of a cryptosystem with labels. Such a
cryptosystem is CCA-2 secure provided that the DDH assumption holds.

2.4.2 Signature Scheme

A signature scheme is a triplet of PPT algorithms (gen, sig, ver). The algorithm gen :

1η
$7→ (pk , sk) takes a security parameter as input and outputs a public and secret key.

The algorithm sig : (m, sk)
$7→ σ takes as input a message and a secret key, and outputs

a signature. The algorithm ver : (m,σ, pk) 7→ b takes as input a message, a signature,
and a public key, and outputs a bit that indicates whether the signature is valid.

Correctness. A signature scheme is correct if, except with negligible probability

over the key generation (pk , sk)
$← gen(1η), it holds that for every legal message m:

1 = ver(m, sig(m, sk), pk).

2.4. Cryptographic Building Blocks 15

Existential unforgeability against chosen-message-attack (EUF-CMA) game.
The existential unforgeability against chosen-message-attack (EUF-CMA) game Geufcma

is defined as follows:

• Geufcma(1η) starts by generating a key pair: (pk , sk)
$← gen(1η). It initializes a list

of messages msglist. Finally, it sends pk to the adversary.
• Whenever receiving (sign,m) from the adversary, sign the message σ ← sig(m, sk)

and add m to msglist. Send σ to the adversary.
• Upon receiving (forge,m, σ) where m 6∈ msglist, and such that ver(m,σ, pk) = 1:

output 1.

Definition 2.7 (EUF-CMA security [KL15]). A correct signature scheme is EUF-
CMA secure if for all PPT adversaries A, there is a negligible function negl, such that
for all security parameters η larger than a constant η0, the probability that Geufcma(1η)
outputs 1 when interacting with A(1η) is no more than negl(η) (here the probability is
taken over the random choices of both Geufcma and A).

2.4.3 Commitment Scheme

A commitment scheme is a triplet of PPT algorithms (cgen, com, cvfy). The algorithm
cgen takes as input a group description and outputs parameters pc. The algorithm

com(pc, a)
$7→ (ca, oa) takes as input these parameters and a value to commit, and

outputs a commitment and an opening. The algorithm cvfy(pc, ca, oa, a) 7→ {0, 1}
verifies whether oa is a valid opening for commitment ca and the committed value a.

In the sequel, we drop pc from com and cvfy if it is clear from context which
parameters are used. We also write com(a, oa) 7→ ca when the opening is chosen outside
of the commitment algorithm.

Correctness. A commitment scheme is correct, if except for negligible probability over

the group generation and parameter generation pc
$← cgen(ggen(1η)), for all admissible

values a we have that (ca, oa)
$← com(pc, a) implies that cvfy(pc, ca, oa, a) = 1.

Hiding game. The hiding game for commitments Gch is defined as follows [KL15]:

• Gch(1η) starts by choosing parameters pc
$← cgen(ggen(1η)) and sends pc to the

adversary.
• Gch then expects two messages a0 and a1 from the adversary. It then flips a coin

b
$← {0, 1} and commits to ab: (cab , oab)

$← com(pc, ab). It then sends cab to the
adversary.

• Gss now expects a guess b′ ∈ {0, 1} from the adversary. It outputs 1 if b = b′ and
0 otherwise.

Binding game. The binding game for commitments Gcb is defined as follows [KL15]:

• Gcb(1η) starts by choosing parameters pc
$← cgen(ggen(1η)) and sends pc to the

adversary.
• Gcb then expects two messages a0 and a1, two openings oa0 and oa1 , and a single

commitment ca from the adversary. It outputs 1 if a0 6= a1, cvfy(pc, ca, oa0 , a0) = 1
and cvfy(pc, ca, oa1 , a1) = 1 and 0 otherwise.

16 Chapter 2. Preliminaries

Definition 2.8 (Perfectly-hiding secure commitment scheme [KL15]). A com-
mitment scheme is perfectly hiding and secure for a given group generator ggen(1η)
if:

• It is correct.
• For all (not necessarily PPT) adversaries A and for all security parameters η ∈ N

larger than some constant η0: the probability that Gch(1η) outputs 1 when interacting
with A is exactly 1/2 (here the probability is taken over the random choices of both
Gch and A).
• For all PPT adversaries A, there exists a negligible function negl, such that for all

security parameters η ∈ N larger than some constant η0: the probability that Gcb(1η)
outputs 1 when interacting with A is no more than negl(η) (here the probability is
taken over the random choices of both Gcb and A).

Definition 2.9 (Statistically-biding secure commitment scheme [KL15]). A
commitment scheme is statistically-binding and secure for a given group generator
ggen(1η) if:

• It is correct.
• For all PPT adversaries A, there exists a negligible function negl, such that for

all security parameters η ∈ N larger than some constant η0: the probability that
Gch(1η) outputs 1 when interacting with A is no more than 1/2 + negl(η) (here the
probability is taken over the random choices of both Gch and A).
• For all (not necessarily PPT) adversaries A, there exists a negligible function negl,

such that for all security parameters η ∈ N larger than some constant η0: the
probability that Gcb(1η) outputs 1 when interacting with A is no more than negl(η)
(here the probability is taken over the random choices of both Gcb and A).

Compatibility with zero-knowledge proofs. A commitment scheme is compatible
with Fgzk, if one can efficiently prove knowledge of the committed value a and the opening
oa given the commitment ca, and one can prove further equations involving a and oa.
We will use a shorthand notation to denote such proofs, e.g.: a, oa : cvfy(ca, oa, a).

Homomorphic commitments. A commitment scheme is homomorphic if there ex-
ists two PPT algorithms cadd(pc, ca0 , ca1 , . . .) 7→ cs and cmul(pc, ca, b) 7→ cp, such
that: (∀i : 1 = cvfy(pc, cai , oai , ai)) implies that 1 = cvfy(pc, cs,

∑
i oai ,

∑
i ai); and

1 = cvfy(pc, ca, oa, a) implies that 1 = cvfy(pc, cp, oa · b, a · b). In the sequel, we drop pc
from cadd and cmul if it is clear from context which parameters are used.

2.4.4 Pseudo-Random Generator (PRG)

An `-pseudo-random generator (PRG) is a polynomial-time algorithm prg(a) 7→ x,
that takes as input a seed a ∈ {0, 1}∗ and outputs a string x ∈ {0, 1}∗; let `(n) be a
polynomial with ∀n ∈ N : `(n) > n, it is required that |x| = `(|a|).

Definition 2.10 (Computationally secure PRG [KL15]). An `-PRG is secure if

the following two ensembles are computationally indistinguishable: {b}1η for b
$←

{0, 1}`(η); and {prg(a)}1η for a
$← {0, 1}η.

2.4. Cryptographic Building Blocks 17

2.4.5 Linear Block Code (LBC)

A linear block code over a field Φ, with block length n and message length k is denoted
by: (Φ, n, k)-LBC. Such an LBC is described by a k × n generator matrix G whose
entries are in Φ. To encode a message a (a row vector of length n whose entries are in
Φ), one multiplies it with the generator matrix: x← aG.

An LBC has minimum distance d if one can still recover the original message a from
x even if up to (d− 1) positions of x have been erased. This is equivalent to requiring
that all k × (n− (d− 1)) sub-matrices of G have rank k.

2.4.6 Ramp Secret Sharing Scheme (SSS)

A (ramp) secret sharing scheme consists of two algorithms senc : a
$7→ x and sdec :

(x, L) 7→ a. The algorithm senc takes as input a message of length k symbols of some
field Φ, and outputs m shares (each share is also an element of Φ). The algorithm sdec
takes as input n shares and a list of the indexes of those shares, and outputs a message.

Reconstruction. The SSS has perfect reconstruction if the original message can be
recovered by decoding with exactly n shares.

Privacy. The SSS has a privacy threshold of d if d shares reveal nothing about the
message.

We denote a (ramp) SSS scheme over a field Φ, for message length k, outputting m
shares, where decode expects n shares, with perfect reconstruction, and with privacy
threshold d as: (Φ,m, n, d, k)-SSS. Statistically secure and computationally secure SSS
also exist, but we will not need them for this thesis (but see Section 2.4.9).

Example of perfect SSS’s are Shamir’s secret sharing scheme [BM84] and variants
thereof [FY92,CC06].

2.4.7 Exposure Resilient Function (ERF)

An exposure resilient function (ERF) [CDH+00] is an algorithm erf(b) 7→ x that takes
as input a random string and outputs a key. It is secure if the output is indistinguishable
from random even if up to a certain number of symbols of the input are known.

Definition 2.11 (Statistically secure ERF [CDH+00]). A d-ERF erf ∈ Φn 7→ Φk

over some field Φ is ε-secure if for any set L ⊂ {1, . . . n} of size at most d, the following
two distributions are ε-indistinguishable:

• ([b]L,x0) for b
$← Φn and x0 ← erf(b).

• ([b]L,x1) for b
$← Φn and x1

$← Φk.

We denote such an erf as (an ε-secure) (Φ, n, d, k)-ERF. Perfect security means that
ε = 0.

18 Chapter 2. Preliminaries

Computational security. In the context of computational security, the function erf
takes as additional input a (usually implicit) security parameter; Φ, n, k, and d may
depend on that security parameter.

Definition 2.12 (Computationally secure ERF [CDH+00]). A (PPT) d(η)-ERF
erf(1η,b) 7→ x where b ∈ Φ(η)n(η) is (computationally) secure if for any set L ⊂
{1, . . . n(η)} of size at most d(η), the following two ensembles are computationally
indistinguishable:

• {([b]L,x0)}1η for b
$← Φ(η)n(η) and x0 ← erf(1η,b).

• {([b]L,x1)}1η for b
$← Φ(η)n(η) and x1

$← Φ(η)k(η).

In the sequel we also denote such a secure ERF as (Φ, n, d, k)-ERF, where the security
parameter is implicit.

2.4.8 Universal Hash Function

Definition 2.13 (Universal hash function [CW79]). A function h : Σ ×Φ 7→ Φ′ is
called an ε-almost universal hash function if:

∀x,x′ ∈ Φ such that x 6= x′ : Pr
[
k

$← Σ; h(k,x) = h(k,x′)
]
≤ ε.

If ε = 1/|Φ′|, one simply says that h is a universal hash function.

2.4.9 All-or-Nothing Transform (AoNT)

An all-or-nothing transform (AoNT) [CDH+00] is similar to an SSS with m = n, and

consists of two algorithms aenc(a)
$7→ x and adec(x) 7→ a.

Definition 2.14 (Statistically secure AoNT [CDH+00]). A d-AoNT with aenc ∈
Φk

$7→ Φn and adec ∈ Φn 7→ Φk over some field Φ is ε-secure if:

• For all messages a ∈ Φk, a = adec(aenc(a)).
• For any set L ⊂ {1, . . . n} of size at most d, and for any two messages a0,a1 ∈ Φk

the following two distributions are ε-indistinguishable:
(a0,a1, [aenc(a0)]L) and (a0,a1, [aenc(a1)]L).

We denote such an AoNT as (an ε-secure) (Φ, n, d, k)-AoNT. Perfect security means that
ε = 0.

Computational security. In the context of computational security, the two functions
aenc and adec take as additional input a (usually implicit) security parameter; Φ, n, k,
and d may depend on that security parameter.

Definition 2.15 (Computationally secure AoNT [CDH+00]). A d(η)-AoNT with

(PPT) aenc(1η,a)
$7→ x and (PPT) adec(1η,x) 7→ a where a ∈ Φ(η)k(η) and x ∈ Φ(η)n(η)

is (computationally) secure if:

2.4. Cryptographic Building Blocks 19

• For all security parameters η larger than a constant η0 and for all messages
a ∈ Φ(η)k(η): a = adec(aenc(m)).
• For any set L ⊂ {1, . . . n(η)} of size at most d(η), and for any two messages

a0,a1 ∈ Φk(η) the following two ensembles are computationally indistinguishable:
{(a0,a1, [aenc(1η,a0)]L)}1η and {(a0,a1, [aenc(1η,a1)]L)}1η .

In the sequel we also denote such a secure AoNT as (Φ, n, d, k)-AoNT, where the security
parameter is implicit.

AoNT with public part. A (Φ, n+ ν, d, k)-AoNT has a ν-public part, if in the above
definitions the last ν symbols of aenc(a) are output in addition to [aenc(a)]L.

Realization from a SSS. It is easy to realize a perfect (Φ, n, d, k)-AoNT from any
(Φ,m, n, d, k)-SSS, by simply ignoring all shares after the first n ones. This technique
also works in the statistical and computational case.

Realization from an ERF. It is easy to realize an ε-secure (Φ, n+k, d, k)-AoNT with

a k-public part from any ε-secure (Φ, n, d, k)-ERF [CDH+00]: aenc(a)
$7→ b||(erf(b) +

a) where b
$← Φn; and adec(b||x) 7→ x − erf(b). This technique also works in the

computational case.

2.4.9.1 Perfect AoNTs based on Shamir’s Secret Sharing

Blakely and Meadows’s secret sharing scheme [BM84] can be used to directly realize a
perfect (Φ, (k + d), d, k)-AoNT for all (k, d) ∈ N2, all fields Φ, and where (2k + d) < |Φ|.
It is based on Shamir’s secret sharing scheme.

Franklin and Young’s ramp secret sharing scheme [FY92] can be used to directly
realize an AoNT with the same parameters, but the bound on the field size is now
improved to (k + d) < |Φ|. Their scheme uses polynomial interpolation over GF(|Φ|). In
a nutshell, their scheme works as follows. To encode a message: choose a polynomial of
degree (k + d− 1) over GF(|Φ|); set the first k coefficients to be equal to the message,
and the other d coefficients randomly. Evaluate the polynomial at (k + d) distinct
non-zero locations. To decode, use Lagrange interpolation to recover the coefficients of
the polynomial.

Working in small fields. The two schemes above require the field size |Φ| to depend
on the parameters k and d. If one needs an AoNT that operates on a smaller field
Σ, e.g., GF(2), one can simply encode each element of Φ as multiple elements of Σ.
Thereby one immediately gets an ε-secure (Σ, (α · (k+d)), d, αk)-AoNT from an ε-secure
(Φ, (k+ d), d, k)-AoNT where α = log(|Φ|)/ log(|Σ|) ∈ N. Notice that the realized AoNT
only achieves a privacy threshold of d and not αd: intuitively, if parts of a symbol is
leaked, one must consider the whole symbol to be compromised.

There exist more complex secret sharing scheme’s that can be use to realize AoNTs
with better parameters, such as Chen and Cramer’s ramp secret sharing scheme [CC06]
based on curves of high genus. We do not consider their results further in this chapter.

20 Chapter 2. Preliminaries

2.4.9.2 Perfect AoNTs from Linear Block Codes

Linear block codes can be used to create perfect ERFs, and thus by using the standard
transformation by Canetti et al. [CDH+00], can be used to create perfect AoNTs.

Let G be the k × n matrix with elements in GF(q) with minimum distance d (i.e.,
G is the generator matrix of a linear block code with minimum distance d).

Let M be the following (n+ k)× (n+ k) matrix:

M :=

[
In 0
G Ik

]
.

To encode the data column-vector a ∈ GF(q)k, aenc(a) selects a random column-vector
b← GF(q)n, and returns the vector

y←M

[
b
a

]
=

[
b

Gb + a

]
:=

[
b
x

]
.

To reconstruct the data, adec(y) computes[
b
a

]
←M−1y =

[
b

x−Gb

]
and outputs a. Hence this AoNT is a perfect (Φ, (n+ k), d, k)-AoNT.

2.4.9.3 Statistical AoNTs from Universal Hash Functions

Universal hash functions can be used to create very good statistical ERFs, and hence
(using the standard transformation) very good AoNTs [CEGL08a, Lim08, CDH+00,
BBCM95]. Given a {0, 1}ν ×{0, 1}n 7→ {0, 1}k universal hash function h, one can realize
the following ({0, 1}, n+ (ν + k), d, k)-AoNT with a (ν + k)-public part:

• aenc(a) : Choose b
$← {0, 1}n and k

$← {0, 1}ν . Set x ← h(k,b) + a. Return
b||k||x. (Here k and x are in the public part.)
• adec(b||k||x) 7→ x− h(k,b).

The AoNT is (2 · 2(k+d−n)/2)-secure [CDH+00,CEGL08b].

2.4.9.4 Computational AoNTs

Canetti et al. [CDH+00] showed how to stretch the output of an ERF with a PRG to
obtain an ERF with larger output size (but the privacy threshold will remain unchanged).
Let erf be a computationally secure (Φ, n, d, k)-ERF and let prg be a secure (Φ, k,m)-
PRG. Then the ERF: b 7→ prg(erf(b)) is a computationally secure (Φ, n, d,m)-ERF.
From that, one can realize a computationally secure AoNT.

2.5. Composability Frameworks 21

2.5 Composability Frameworks

Protocols constructed for and proven secure in a composability framework can be securely
composed in arbitrary ways. Many such frameworks have been developed [Can00,Can01,
PW00,MR11,HS11,KT13,CDPW07].

All of these frameworks define the security and functional properties of a protocol
by specifying an ideal process, where the output of the latter is computed by a trusted
party that sees the inputs of all parties [GMW87]. A real protocol realizes the ideal
process if no efficient distinguisher can decide whether it is interacting with the ideal
process plus a simulator or the real protocol plus an adversary.

The composition theorem in the various frameworks then guarantees that a secure
protocol π can be used in arbitrary contexts: more precisely, a secure higher-level
protocol that uses the ideal version of π as a subroutine remains secure when it uses π
directly.

In this thesis we use the UC framework [Can00,Can01], the GNUC framework [HS11,
HS15], the IITM framework [Kue06,KT13] with responsive environments [CEK+16a],
and the constructive cryptography (CC) framework [MR11,Mau11b,Mau10]. A short
summary of these frameworks follows.

2.5.1 The UC Framework

We now give an informal overview of the UC framework (version of 2013) [Can00],
discuss how corruption is handled in that framework, give a brief overview of universal
composition with joint state, and finally discuss some of the problems with the framework.

2.5.1.1 The UC Framework in a Nutshell

The UC framework is the most popular framework for representing cryptographic
protocols and analysing their security. The framework defines a model of protocol
execution, where programs are modelled as interactive Turing machines (ITM). The
adversary is modelled as an additional ITM, and has some control over the scheduling of
messages between individual machines. Informally, a real protocol is said to realize an
ideal protocol (and is thus secure), if for all adversaries there exists an ideal adversary
(or simulator) such that no environment can distinguish a protocol execution of the real
protocol with the adversary (real world) from an execution of the ideal protocol with
the simulator. The security of protocols is preserved when the protocol is combined
with itself or other protocols that are run in an adversarially controlled manner, thanks
to the universal composition operation. The following overview is adapted from Section
2 of [Can00] (version of 2013).

The computational model. The basic computing unit, called a machine, represents
a running instance of an algorithm. Such a machine can be formalized as an interactive
Turing machine.

Several such machines may run alongside each other and provide information to each
other. A machine M can provide information to a machine M ′ in three ways: either by
providing input, providing subroutine output, or by sending a message.

22 Chapter 2. Preliminaries

An execution of several such machines M1,M2, . . . on input x starts by running
the initial machine M1 with input x. Thereafter, whenever a machine M provides
information to a machine M ′, M is suspended, and the execution of M ′ begins. Thereby,
at any single point in time, only a single machine is active.

Protocols. A protocol is an algorithm for a distributed system, i.e., a collection of
computer programs that are to be run by different participants. An instance of a
protocol within a system of machines is a sequence of machines that relate to each other
as part of a protocol execution.

Some machines in a protocol may be subroutines of other machines. If a machine M ′

is a subroutine of machine M , then M will provide input to M ′ and M ′ will provide
subroutine output to M . In an instance of a protocol π, a machine that is not the
subroutine of any other machine is also called a main party of that instance.

Polynomial time machines and protocols. The UC framework restricts its attention
to systems where each of the machines runs in probabilistic polynomial time (PPT)
to the difference between the number of bits it received as input and the number of
bits it output to subroutines. As pointed out by the Hofheinz and Shoup [HS11], there
are issues with this definition, especially since formally one needs to provide variable
amounts of padding to the input of a protocol depending on its intended realization
(number of subroutines).

Protocol execution (bare model). The “real-world” execution of a protocol π
consists of a system of machines (E ,A, π1, . . . , πm), where E is called the environment,
A the adversary, and where π1, . . . , πm are then machines of the instance of π.

The machines can interact as follows. The environment E can provide inputs to
the adversary and to the main parties of the instance. The adversary A can provide
subroutine output to the environment or send a message to any of the machines πi. A
machine πi may send messages to the adversary, provide inputs to its subroutines, and
provide subroutine output to the machine it is a subroutine of (i.e., to its parent). Main
parties may additionally provide subroutine output to the environment.

Let Exec(π,A, E)(z) denote the random variable (over the local random choices of
all machines) describing the output of the environment E that is given input z in a
system of machines (E ,A, π1, . . . , πm) as described above. Without loss of generality,
such output is a single bit. Let Exec(π,A, E) denote the ensemble {Exec(π,A, E)(1η)}1η
of distributions over {0, 1}.1

Ideal functionalities and protocols. An ideal process is a special protocol in the
above model of protocol execution. Such an ideal protocol consists of an ideal func-
tionality F that interacts with a certain number of dummy (main) parties; this ideal
protocol is denoted idealF . The ideal functionality can be though of as a program for
a trusted party, and is a subroutine of all the dummy parties.

The dummy parties forward all input to F and forward all subroutine output from
F to the environment as subroutine output.

1 In the non-uniform model of computation, one would consider the following ensemble instead:
{Exec(π,A, E)(z)}z∈{0,1}∗ .

2.5. Composability Frameworks 23

Definition 2.16 (Protocol emulation). A protocol π (UC-)emulates protocol φ if for
any adversary A, there exists an adversary S—also called simulator—such that, for
any environment E, the ensembles Exec(π,A, E) and Exec(φ,S, E) are (computationally)
indistinguishable.

Definition 2.17 (Realizing functionalities). Protocol π (UC-)realizes an ideal func-
tionality F if π emulates idealF .

Using protocols as subroutines. A protocol ρ uses protocol φ as a subroutine if some
or all the programs in ρ use programs of φ as a subroutine. Stated differently, a protocol
instance (φ1, φ2, . . .) is a subroutine of protocol instance (ρ1, ρ2, . . .), if each machine φi
appears as a machine in (ρ1, ρ2, . . .) and is a subroutine of some other machine ρj . An
instance of ρ may use multiple subroutine instances of φ.

Subroutine substitution. Let ρ be a protocol that uses φ as subroutine, and let π
be a protocol that emulates φ. Then by ρφ→π one denotes the protocol that is identical
to ρ except that: for each instance of φ that is a subroutine of this instance of ρ, and
for all i, the ith machine of the instance of φ is replaced by the ith machine of π. In
case ρ uses multiple instances of φ, ρφ→π uses multiple instances of π.

Theorem 2.18 (Universal composition theorem). Let ρ, φ, π be protocols such that
ρ uses φ as subroutine and such that π emulates φ. Then ρφ→π emulates ρ.

2.5.1.2 Adaptive Corruption in the UC Framework

The UC model defines several types of party corruptions, the most important being
static, adaptive, and transient corruptions. In protocols secure against static party
corruptions, parties are either honest or corrupt from the start of the protocol and do
not change their corruption status. In protocols secure against adaptive corruptions,
parties can become corrupted at any time; once corrupted, they remain so for the rest of
the protocol. Finally, transient corruptions [Can00] are similar to adaptive corruptions,
but parties can recover from corruption and regain their security. At all times, the
environment is aware of the corruption status of all parties.2

Corruption of a party. When a party becomes corrupted, all of its internal state excluding
the parts that were explicitly erased () is handed over to the adversary A. A then
controls that party. The ideal functionalities that were used as subroutines are notified of
the corruption, and may provide additional information or capabilities to A. Note that
A can always choose to let a corrupted party follow the honest protocol, but passively
monitor the party’s internal state.

2.5.1.3 Joint State

The composition theorem of UC assumes that the local state of and randomness used
by each protocol instance is independent from that of each other protocol instance. It is

2 This can be achieved with the help of special messages that are sent to the environment
upon each party corruption or recovery from corruption.

24 Chapter 2. Preliminaries

therefore not possible for the components to have any amount of joint state. However,
in practice, it is desirable for protocols to have some amount of joint state, for example
by sharing instances of encryption or signature schemes.

The UC model with joint state (JUC) [CR03] fixes the above issue by providing a
new composition theorem. In a nutshell, let ρ be a high-level protocol that uses multiple
instances of a sub-protocol π; let π̂ be a protocol such that one instance of π̂ emulates
multiples instances of π; then the JUC theorem guarantees that the protocol ρ where all
instances of π are replaced by a single instance of π̂, emulates ρ.

Thereby, one can analyze the protocol ρ with the assumption that all instances of
the sub-protocol π are independent, and be guaranteed that the protocol remains secure
even if the sub-protocols have some joint state.

2.5.1.4 Problems with the UC Framework

Over the years, several problems were discovered in the UC framework and its multiple
updates [HS11,KT13,CEK+16b]. The chief problems are that formally the composition
theorem does not hold and that the definition of runtime is flawed. Furthermore, many
aspects of the UC model are only described informally: see [CEK+16b] for a list. The
existence of these problems was one of the reasons why alternative frameworks, such as
GNUC, IITM, and Constructive Cryptography, were developed.

Cryptographers continue to use the UC framework to design protocols, even if,
formally, security proofs in that framework cannot be sound due to the above-mentioned
problems. One possible explanation for this is that the problems of the framework are
limited to edge cases: it is hoped that distinguishing attacks due to the flaws of the
framework do not translate to any attacks in reality. Furthermore, an overwhelming
majority of these security proofs are not fully formal themselves, and it is expected that
any omissions or flaws in the framework could be fixed, or that one can easily translate
the protocol to another framework. Thereby these security proofs are not formal proofs,
but rather compelling arguments.

2.5.2 The GNUC framework

The GNUC framework [HS11,HS15] fixes a number of flaws of the UC framework while
trying to retain as much compatibility with UC as possible, thereby making it easier for
protocol designers familiar with UC to start using GNUC. We therefore do not describe
the GNUC framework in full, but only in comparison to UC.

To fix UC’s flaws, GNUC imposes a strict hierarchical structure on protocols, requires
hierarchical corruption, and changes the definition of runtime. In GNUC, unlike UC,
it is the environment that corrupts top-level machines (and corrupted machines can
corrupt their subroutines), thereby enforcing top-down corruption. However a number of
protocols cannot be realized in GNUC. For example, the adversary cannot send messages
to any machine from which it did not yet receive any messages: this requires somewhat
unnatural definitions for, e.g., channel functionalities, where the recipient must first send
a message to the functionality to indicate that he is ready before he can receive messages.
The discussion by Küsters and Tuengerthal [KT13] shows additional examples.

2.5. Composability Frameworks 25

2.5.3 The IITM Model with Responsive Environments

The IITM model was introduced in [Kue06] and revised in [KT13] with a more general
runtime notion. The IITM model addresses UC’s flaws in a different way than GNUC,
thereby achieving formal correctness without GNUC’s limitations. The main difference
between UC/GNUC and IITM is that machines now perform computation in two modes:
a deterministic CheckAddress mode where the machine determines whether to accept
a message, and a Compute mode where the actual computation happens. The IITM
model also has simpler runtime requirements for protocols compared to UC/GNUC.
Thereby a machine cannot exhaust its runtime if it receives too many garbage messages
from the adversary. However, this comes at a cost: the composition of two protocol
systems satisfying the runtime requirements does not necessarily result in a protocol
that does (in practice however, it is often easy to prove that a given composed protocol
satisfies the requirements).

A short overview of the parts of the IITM model, and the parts of the IITM model
with responsive environments [CEK+16a], that are needed for this thesis follow.

2.5.3.1 The IITM Model

Inexhaustible interactive Turing machines. An inexhaustible interactive Turing
machine (IITM or simply ITM) is a probabilistic Turing machine with a number of
named input and output tapes which determine how different ITMs are connected in a
system of ITMs. There might exist several instances of an ITM, called ITIs, in a run
of a system of ITMs. As detailed below, an instance of an ITM M runs in one of two
modes: CheckAddress and Compute. The former is used to address the different
instances of an ITM in a run, while in the latter the actual computation is performed.
In CheckAddress mode the runtime of the ITM is bounded by a (fixed) polynomial in
the length of the security parameter, the current input message, and the configuration
of the machine. The runtime limit in Compute will be discussed in the sequel.

Systems of ITMs. A system Q of ITMs is a set Q = {M1, . . .,Mk} of ITMs M1, . . . ,Mk,
where the way ITMs in this system are connected is defined by the names of the tapes
of these machines. More specifically, for every tape named t, it is required that at most
two of these ITMs have a tape named t and, if two ITMs, say Mi and Mj have a tape
named t, then one must be an input tape, say of Mi, and the other one an output tape of
Mj . In other words, the two machines are connected via t, and hence an instance of Mj

can send messages to an instance of Mi. In this thesis, we use the convention that Mi

and Mj are then also connected in the other direction, i.e., Mi has an output tape and
Mj an input tape named t′. One often refers to t′ by t−1, and call it the corresponding
tape to t (with opposite direction). Also, one often refers to the bidirectional pair (t, t′)
simply by t. Tapes in Q that connect two machines are called internal tapes of Q
and all others are called external tapes of Q. The latter are further grouped into I/O
tapes to communicate with other protocols, and network tapes to communicate with the
adversary. When talking about the I/O and network interfaces of the system one refers
to the set of external I/O and network tapes, respectively.

There are two special tapes, named start and decision, respectively. A system may
have at most one machine with an input tape named start; start must not be an output

26 Chapter 2. Preliminaries

tape. This machine is called the master ITM. The tape decision may occur as an
(external) output tape in a system only, not as an input tape.

A system Q2 is said to be connectable to a system Q1 if Q2 connects to the external
tapes of Q1 only, i.e., tapes with the same name in Q2 and Q1 are external tapes of
Q2 and Q1, respectively, and they have opposite directions, i.e., an input tape in one
system is an output tape in the other. By {Q1,Q2} one denotes the composition of
the connectable systems Q1 and Q2, defined in the obvious way. Note that {Q1,Q2}
again is a system of ITMs as defined above. For example, if Q1 = {M1,M2} and
Q2 = {M3,M4,M5}, then {Q1,Q2} = {M1, . . .,M5}.

Running a system. In a run of a system Q, an unbounded number of instances of
each ITM in Q may be spawned. An instance of a machine, say Mi in Q, can send
a message to an instance of another machine Mj in Q if and only if Mi and Mj are
connected via tapes. Which instance of Mj gets to process the message sent by the
instance of Mi is determined by running the instances of Mj in mode CheckAddress.

More specifically, in a run of a system Q(1η) with security parameter η, only one
ITI is active at any time and all other ITIs wait for new input. The first machine to be
activated is the master ITM in Q, by writing the empty message on start;3 if no master
ITM exists, the run of Q terminates immediately. If a message m is written by some
ITI on one of its output tapes, say on t (initially, as mentioned, the empty message is
written on start), and there is a machine, say M , in Q, with an input tape named t,
then it is decided as follows which instance of M gets to process m.

The instances of M are run in CheckAddress mode in the order of their creation,
until one instance accepts m. This instance (if any) then runs in Compute mode with
input m written on its input tape t. If no instance accepted m, a fresh instance of M is
spawned and run in mode CheckAddress and if it accepts m, it gets to process m on
its input tape t in Compute mode. Otherwise, the freshly created instance is deleted
again, m is dropped, and the empty message is written on start in order to trigger
the master ITM (of which there might be several instances as well, where again their
CheckAddress is used to decide which one gets to process the message). After running
an ITI in mode CheckAddress, the configuration is set back to the state before it was
run in CheckAddress; thus, this mode does not and cannot change the configuration
of a machine.

When an instance of M processes a message in mode Compute, it may write at
most one message, say m′, on one of its output tapes, say t′, and then stop. If there
is an ITM with an input tape named t′ in the system, the message m′ is delivered to
one instance of that ITM on tape t′ as described above. If the instance of M stops
without output or there is no ITM with an input tape t′, then (an instance of) the
master ITM is activated. A run stops as soon as a message is written on decision, no
master instance accepted the incoming message, or in mode Compute a master ITI did
not produce output. The overall output of a run is defined to be the one-bit message
that is output on decision, or zero if decision was not written to. The probability that

3 If a system is run with external input, then this input is written on start. Note that the
IITM model supports both uniform and non-uniform environments/machines. For ease of
presentation, only the former setting is considered.

2.5. Composability Frameworks 27

E

M1 ≡
S

M2
P

F ′

D ′1 D ′2
I′A

E

F

D1 D2

IR

Fig. 2.1: The setup for the universal composability experiment (P ≤ I) and internal
structure of protocols. Here E is an environmental system, A and S are adversarial
systems, and P and I are protocol systems. Horizontal arrows correspond to pairs of
network tapes, and vertical/oblique arrows to pairs of I/O tapes.

the overall output of a run of Q(1η) is b ∈ {0, 1} is denoted by Pr [Q(1η) = b], where
the probability is taken over the random choices of all the ITIs in runs of Q.

Equivalent systems. Two systems that produce overall output 1 with almost the
same probability are called equivalent: two systems Q1 and Q2 are equivalent (Q1 ≡ Q2)
if and only if |Pr [Q1(1η) = 1]− Pr [Q1(1η) = 1]| is negligible in η.

Types of systems. To define simulation, one distinguishes between protocol systems,
adversarial systems, and environmental systems. These are arbitrary systems (in the
sense defined above), but where only environmental systems may have start and decision
tapes; in particular, only the environment may contain the master ITM. Adversarial
systems (A,S), environmental systems (E), and protocol systems (P, I) are connected
as illustrated in Figure 2.1. In the IITM model neither any specific internal structure of
P or I nor any specific addressing mechanism or corruption behavior is fixed; P and I
are arbitrary systems which can be freely specified by the protocol designer.

Runtime requirements for environmental and protocol systems. Compared to
other frameworks, the IITM model uses very general and simple runtime notions. An
environmental system E has to be universally bounded, i.e., there exists a polynomial
p such that for every system Q connectable to E the overall runtime of E in mode
Compute is bounded by p(η) in every run of E |Q with security parameter η. Given
a system Q, one denotes by Env(Q) the set of all environmental systems that can be
connected to Q. A protocol system P has to be environmentally bounded, i.e., for every
environmental system E there exists a polynomial p such that for every η the overall
runtime of P in mode Compute is bounded by p(η) in every run of E | P with security
parameter η, except for a negligible set of runs.

Simulation and Universal Composability. Informally, P realizes or emulates I,
denoted by P ≤ I, if and only if for all adversarial systems A connectable to P there
exists an adversarial system S (the simulator) connectable to I such that for all E one
has that {E ,A,P} ≡ {E ,S, I}. Intuitively, I is an ideal protocol which formally specifies
a cryptographic task in an ideal way, while P is a real protocol which tries to realize
this task in a real setting such that for all attacks on P there is one on I such that

28 Chapter 2. Preliminaries

both attacks are indistinguishable for any environment, and hence, P is as secure as I,
where the latter is secure by definition. The above security notion corresponds to the
classical notion of universally composable security. In the IITM model also the notions
dummy UC, strong simulatability, black-box simulatability, and reactive simulatability
have been formulated and shown to be equivalent [KT13], which is an important sanity
check for a UC-like model.

The IITM model enjoys general composition theorems, which, for instance, allow
one to replace an ideal protocol I by its realization P, and hence, allow for modular
protocol design.

2.5.3.2 IITM with Responsive Environments

When modeling protocols in the IITM model, it is often necessary to initialize new
instances of ITMs with, e.g., their corruption status, keys, or algorithms. For this
purpose, the adversary is asked to provide this information. This information is provided
with meta messages that are not present in reality, but are used for modeling purposes
only. A protocol designer would typically expect the adversary to provide the necessary
information right away. However, in all current UC-like frameworks the adversary
is not bound to provide an answer right away, but he could activate other machines
and influence their state before answering the request. This often leads to unintended
behavior and artificial situations, which the protocol designer has to handle in protocol
specifications and which make the protocol specifications unnecessarily complex and
cumbersome, and possibly even unreasonable.

To circumvent that problem, Camenisch et al. [CEK+16a] have introduced the concept
of responsive environments: the adversary and the environment must immediately answer
certain meta messages and thereby provide certain important meta information right
away.

Responsive environments. To define responsive environments (and later in the
security notions also responsive adversaries), one first needs to define restrictions.
Restrictions capture the messages that the environment/adversaries need to answer
immediately. For our conventions (see Section 6.2), we fix a specific restriction, which,
however, allows for a flexible use of restricting messages.

Definition 2.19 (Restriction [CEK+16a]). Let R ⊆ {0, 1}+ × {0, 1}+ be a set of
tuples of non-empty messages. Recall that R[0] := {m|∃m′ : (m,m′) ∈ R}. The set R is
called a restriction if and only if the following holds true:
There exists an algorithm A which for all inputs of the form (m,m′) runs in at most
polynomial time in the length of m′ and outputs 1 iff m ∈ R[0] and (m,m′) 6∈ R. In all
other cases, A outputs 0.
A message m ∈ R[0] is called a restricting message.

Responsive environments can now be defined. Note that given any system Q, an
environmental system may connect to all external (network and I/O) tapes of Q.

Definition 2.20 (Responsive environments [CEK+16a]). An environmental sys-
tem E is called responsive for a system Q with respect to a restriction R, if in an

2.5. Composability Frameworks 29

overwhelming set of runs of {E ,Q} every restricting message from Q (on a network
tape) is immediately answered, i.e., for any (restricting) message m ∈ R[0] sent by Q
on a network tape, the first message m′ that E sends back to Q is written on the same
bidirectional network tape and satisfies (m,m′) ∈ R. By EnvR(Q) ⊆ Env(Q) one denotes
the set of responsive environmental systems for Q.

Security Notions for Responsive Environments. The notion of strong simulata-
bility in the context of responsive environments now follows. Roughly speaking, P
realizes I w.r.t. strong simulatability if and only if there exists a simulator S such that
for all environments E one has that {E ,P} ≡ {E ,S, I}. (Hence, the real adversary is
dropped completely and E may connect directly to the network tapes of P.)

From now on, we consider responsive environments only. Consequently, we require
protocol systems Q to be environmentally bounded only for all environments in EnvR(Q).
One call such systems R-environmentally bounded.

Definition 2.21 (Responsive simulators [CEK+16a]). Let P and I be (R-environ-
mentally bounded) protocol systems. Let S be an adversarial system such that S can
be connected to I, the set of external tapes of S is disjoint from the set of I/O-tapes
of I, {S, I} and P have the same external interface, and {S, I} is R-environmentally
bounded. Then, S is called a responsive simulator if in an overwhelming set of runs of
{E ,S, I} every restricting message from I (on a network tape) is immediately answered
(in the sense of Definition 2.20). One denotes the set of all such simulators for protocol
systems P and I by SimPR(I).

This definition ensures that restricting messages from I are answered without activating
another machine of I (and with an expected response), even if I is connected to a
simulator (on its network interface). This allows us to consider {E ,S} to be a responsive
environment for I. This is crucial to prove the composition theorems and to prove that
strong simulatability is a transitive relation.

Definition 2.22 (Strong simulatability with responsive environments
[CEK+16a]). Let P and I be protocol systems, the real and ideal protocol, respec-
tively. Then, P realizes I with respect to responsive environments (P ≤SSR I or simply
P ≤ I) if and only if there exists S ∈ SimPR(I) such that {E ,P} ≡ {E ,S, I} for every
E ∈ EnvR(P).

Camenisch et al. have shown that ≤ is a reflexive and transitivity relation. They also
analogously define UC security (UC), dummy UC (dumUC), black-box simulatability
(BB), and reactive simulatability (RS) for responsive environments, and prove that
these notions are equivalent to the above notion.

Composition Theorems for Responsive Environments. The composition theo-
rems proved in the IITM model (with general environments) can be generalized to
responsive environments as well. The following theorem handles the concurrent compo-
sition of any (fixed) number of potentially different protocols.

Theorem 2.23 (Composition theorem [CEK+16a]). Let R be a restriction. Let
k ≥ 1, Q be a system of IITMs without start and decision tape, and P1, . . . ,Pk, I1, . . . , Ik
be protocol systems such that all systems have pairwise disjoint sets of network tapes
and the following conditions are satisfied:

30 Chapter 2. Preliminaries

1. For all j ≤ k: Pj ≤R Ij
2. Q,P1, . . . ,Pk are connectable and {Q,P1, . . .,Pk} is R-environmentally bounded.

Then, {Q,P1, . . .,Pk} ≤R {Q, I1, . . ., Ik}.

The usual composition theorem is the special case k = 1 and R = ∅. Camenisch et
al. also provide a second composition theorem which guarantees the secure composition
of an unbounded number of copies of the same protocol system.

Note that in all the above theorems, only minimal assumptions about the ideal
and real protocols were made. It is not necessary to fix any internal structure of these
protocols, a specific addressing mechanism, or corruption conventions.

2.5.4 The Constructive Cryptography (CC) Model with Random Systems

The model of constructive cryptography (CC) was introduced by Maurer [Mau10,Mau11b]
and was based on an earlier work by Maurer and Renner [MR11]. Unlike the UC, GNUC,
and IITM frameworks, whose computational model is based on interactive Turing
machines and whose security definitions are thus necessarily complex, the Constructive
Cryptography model uses a top-down approach where the definition of lower levels
of abstractions (such as the machine model) is not required for proving theorems at
higher levels. Results stated in CC are thus simpler than equivalent results in the other
frameworks.

In this thesis, we consider CC instantiated with random systems [Mau02]. We provide
a short overview of the parts that are needed for understanding the rest of this thesis.

2.5.4.1 Random Systems

Many cryptographic primitives and protocols can be described as random systems
generating for each input xk an output yk. In full generality such a system can be
described by a sequence of conditional probability distributions, however in this work
we will chiefly describe such systems using algorithms.

Connecting random systems. Two random systems can be connected at the in-
terface level, the result being another random system whose behaviour is defined via
an interaction of the two sub-systems: a message input on a non-shared interface is
processed by the corresponding sub-system, and a message that is output on an interface
of the “shared” interface by one of the sub-systems, is then immediately processed as an
input on a corresponding interface of the other sub-system.

2.5.4.2 Constructive Cryptography (CC)

CC considers three important types of random systems: resources, converters, and
distinguishers, which we describe next.

2.5. Composability Frameworks 31

Resources. Resources have a finite set of interfaces I, where resources that can be
accessed by multiple parties have one interface for each party. Two resources can
be composed in parallel, the result being another resource whose interfaces are the
disjoint union of the interfaces of the two systems; interfaces of such a system can
also be merged into a single interface (it is assumed that there is an implicit “message
routing” happening behind the scenes). An example of a resources is an authenticated
communication channel.

In this chapter we chiefly consider AEW-Resources which have I = {Alice,Eve,
World}. Here the Alice interface corresponds to a party. The Eve interface corresponds
to adversarial access to the resource. The World interface, introduced by Gaži et
al. [GMT], models the influence of the environment on the resource, and is used to
monitor the actions of the adversary or limit his capabilities; we will further comment
on this interface in Section 2.5.4.2.

Converters. Converters model the local strategies employed by a party (or the adver-
sary) on a resource. Converters have one inner interface and one outer interface. The
inner interface of a converter may be connected to an interface i ∈ I of a resource, the
result being another resource for which the outer interface of the converter serves as
the new interface i. If the converter outputs a message on the inner interface, then that
message is immediately input to the interface i of the resource, and vice-versa.

Converters attached to a party interface are also called a protocol.

Distinguishers. A distinguisher (also called an environment) has n+ 1 interfaces. One
interface, which we call Init serves as trigger to start the computation, and outputs
a single “result” bit (thus ending the computation). The other n interfaces can be
connected to a resource (here an output on one of the interfaces is immediately used as
an input to another interface). We write Pr [DR = 1] to denote the probability that a
distinguisher D connected to resource R, when activated (with an empty message) on
Init, eventually outputs the bit 1 on Init. The goal of a distinguisher is to distinguish
between two resources by outputting different bits when connected to one or the other.

The advantage of a distinguisher D for two resources R and S is defined as: ε =
|Pr [DR = 1] − Pr [DS = 1] |. We say that the two resources R and S are statistically

equivalent within ε, denoted R
ε≡ S, if the advantage of every distinguisher is no more

than ε. We also write R ≡ S if the two resource are perfectly equivalent (ε = 0).

Construction of Resources. An important goal in cryptography is to construct
a resource S with some desired properties from a resource R that is assumed to be
available by using a protocol π. In that respect, constructive cryptography follows the
real-world/ideal-world approach of UC and its variants [Can00, Can01, PW00, HS11,
KT13,CDPW07].

The “real world” consists of the protocol execution of one honest party and the
adversary (and influence from the environment) and is modelled as the composition of
the resource R with the protocol π.

In the “ideal world”, the ideal resource S, specifying the desired functional and
security goals, is composed with a simulator σ—a converter for the Eve interface. The
purpose of σ is to adapt the Eve-interface of S so that it matches the one of πR.

32 Chapter 2. Preliminaries

Rπ ≈ S
Alice

interface

interface

Eve

σ

interfaceWorld

Fig. 2.2: The constructive statement in the context of an AEW-resource. Protocol/con-
verter π constructs S from R if there exists a simulator σ such that: the resource R with
the protocol π attached Alice-interface is indistinguishable from the resource S with σ
attached to its Eve-interface.

Definition 2.24. The protocol π (securely) constructs S from R within ε, denoted

R
π

ε S, if: ∃σ : πR
ε≡ Sσ. Perfect constructions (ε = 0) are denoted R

π
S.

Figure 2.2 shows this graphically in the context of AEW-Resources. In this chapter, we
do not explicitly show the availability condition [MR11].

Composability. An important property of Definition 2.24 is its composability. That is if:

R
π1

ε1 T and T
π2

ε2 S, then R
π2◦π1

(ε2+ε1) S.

Computational security. In the context of computational security, one only considers
protocols, resources, distinguishers, and simulators that can be modelled as probabilistic
polynomial time (PPT) algorithms. In the sequel we assume that all of these random
systems receive the security parameter 1η as implicit input.

The overall runtime of a computation must also be polynomial in the security
parameter. For the random systems considered in this chapter, this is always the case.

The definition of equivalent systems and secure constructions needs to be adapted to
the computational setting: two (PPT) resources R and S are computationally indistin-
guishable, denoted R ≈ S, if for all (PPT) distinguishers D, there is a negligible function
negl such that for all security parameters η larger than a constant η0:∣∣Pr [DR = 1]− Pr [DS = 1]

∣∣ ≤ negl(η).

Definition 2.25. In a computational setting, a (PPT) protocol π (securely) constructs

S from R, denoted R
π

c S, if there exists a (PPT) simulator σ such that πR ≈ Sσ.

Adaptive Attacks and the World Interface. One of the most desirable security
properties of cryptographic schemes is resistance against adaptive attacks. To that effect
one wishes to model resources that have certain security guarantees while no attack has
happened, and different (weaker) guarantees after an attack.

Resources that have only party interfaces and an Eve-interface cannot be used in
such a setting, as in the distinguishing experiment there is no way of ensuring that both
resources R and S are in the same attacked-or-not state, i.e., that we are comparing
like-with-like: a simulator σ can often launch an attack on S without this being visible

2.6. Some Basic Ideal Functionalities 33

to the distinguisher, and hence the distinguisher is tasked with distinguishing πR in
a non-attacked state, with Sσ in an attacked state—a meaningless experiment. It is
thus necessary to enable the distinguisher to either check whether a resource has been
attacked or not, or to actually enable such an attack without going through the simulator.
To that effect Gaži et al. [GMT] have introduced the concept of a World-interface.4

Through the World-interface, the distinguisher can directly access the resource. This
access is chiefly used to alter the state of the resource and make it “weak” in some
form. This weakness does not have to be a binary state: one can envisage multiple
levels of weakness, or, e.g., a resource with three “components” (each of which can be
made separately weak by sending different messages on the World-interface) where at
least two must be made weak before the resource itself becomes weak. Whether the
resource ultimately allows a specific attack by the adversary on the Eve-interface may
depend on not just weakness status, but also the rest of its internal state. The concept
of World-interface is thus more general than the concept dynamic corruption of UC and
its variants.

2.6 Some Basic Ideal Functionalities

This section describes the ideal functionalities we use as subroutines in our constructions.
These are authenticated channels (Fac), one-sided–authenticated channels (Fosac), zero-
knowledge proofs of existence (Fgzk). In the common reference string (CRS) or random
oracle models, protocols may also use special ideal functionalities for CRS (FDcrs) or
random oracles. We also briefly discuss those. Each composition framework requires a
different instantiation of these ideal functionalities. Here we restrict ourselves to the
instantiations in the UC and GNUC models.

2.6.1 Authenticated Channels

Let Fac be a single-use authenticated channel [HS11]. Such a channel provides the
guarantee to the recipient that the received message originated from the sender (and
was not modified in transit). It does not guarantee confidentiality of the message.
Appendix A.2 provides a formal definition of Fac in the UC model; we refer to the
GNUC paper [HS11] for the formal definition in the GNUC model.

2.6.2 One-sided–authenticated Channels

Let Fosac be a multi-use channel where only one party, the server, authenticates himself
towards the other party, the client. The server has the guarantee that in a given session
all messages come from the same client. Note that the first message from the client to the
server is not authenticated and can be modified (hijacked) by the adversary—the original
client will be excluded from the rest of the interaction. Appendix A.3 provides a formal
definition of Fosac in the UC model. We also refer to the work of Barak et al. [BCL+05]
for a formal treatment of communication without or with partial authentication.

4 Note that the UC [Can00,Can01], GNUC [HS11], and IITM with conventions [CEK+16a]
models all allow the environment to directly check (UC, IITM) or enable (GNUC) attacks
by (ab)using the party interfaces.

34 Chapter 2. Preliminaries

2.6.3 Zero-knowledge Proofs of Knowledge and Existence

A zero-knowledge proof [GMR89] is a two-party protocol where, for a fixed binary
relation R and a common input x, the prover can convince the verifier that he knows
a witness w such that R(x,w) = 1, and the verifier learns nothing from this protocol
(except for the fact that such a w exists).

Camenisch et al. [CKS11] have extended the standard functionality for zero-knowledge
Fzk of Canetti et al. [Can00, CLOS02] to also support proofs of existence (Fgzk). In
a realization, these proofs of existence are cheaper than the corresponding proofs
of knowledge, but they impose limitations on the simulator S in the security proof.
Following Hofheinz and Shoup [HS11], in a realization of Fgzk, the prover reveals the
statement to be proven only in the last message. This is crucial for our construction,
as this allows the prover to erase () witnesses and other data before disclosing the
statement to be proven. Appendix A.4 provides a formal definition of Fgzk in both the
UC and GNUC models.

Notation. When specifying the predicate to be proven, we use a combination of the
Camenisch-Stadler notation [CS97] and the notation introduced by Camenisch, Krenn,
and Shoup [CKS11]; for example: Fgzk{(α, β ; ∃γ) : y = gγ ∧ z = gαkβhγ} is used for
proving the existence of the discrete logarithm to the base g, and of a representation
of z to the bases g, k, and h such that the h-part of this representation is equal to
the discrete logarithm of y to the base g. Furthermore, knowledge of the g-part and
the k-part of the representation is proven. Variables quantified by (knowledge) can
be extracted by the simulator S in the security proof, while variables quantified by ∃
(existence) cannot.

By writing a proof on an arrow:
π0

we denote the performance of such
an interactive zero-knowledge proof protocol secure against adaptive corruptions with
erasures. If additional public or secret data is written on the arrow, or data to be erased
besides the arrow, then this data is transmitted with, or erased before, respectively, the
last message of the proof protocol. The predicate of the proof may depend on that data.

Proofs with two verifiers. Let F2v
gzk be the three-party ideal functionality to denote the

parallel execution of two independent zero-knowledge proofs with the same prover and
same specification, but two different verifiers. The prover waits for a reply from both
verifiers before sending out the last message of each proof. This gives the prover the
opportunity to erase the same witnesses in both proofs. Appendix A.5 provides a formal
definition of F2v

gzk in the UC model. The proof that the special composition theorem by

Camenisch, Krenn, and Shoup [CKS11] holds also for F2v
gzk is very similar to the proof

that it holds for Fgzk and is omitted.

2.6.4 Ideal Functionalities For the CRS and Random Oracle Models

Canetti and Fischlin [CF01] showed that certain ideal functionalities, such as a com-
mitment functionality, cannot be realized in the plain model. Commitments and other
functionalities can however be realized in the common reference string model or the
random oracle model. Special ideal functionalities for CRS or random oracles can be
used by protocols in the respective model. In this thesis we will chiefly work in the CRS
model.

2.6. Some Basic Ideal Functionalities 35

2.6.4.1 Common Reference String

Let FDcrs be a common reference string functionality, which provides to all parties a
common string distributed according to some distribution D. We make use of several
distributions in this thesis: FG3

crs provides a uniform CRS over G3 for some group G
and Fgzk

crs provides a CRS as required by Camenisch et al.’s protocol π, the intended

realization of Fgzk [CKS11]. Appendix A.1 provides the formal definition of FG3

crs in the
UC model; we refer to the GNUC paper [HS11] for the formal definition in the GNUC
model.

2.6.4.2 Random Oracles

A random oracle provides a common random function to all protocol participants [BR93].
Although random oracles have been used to prove the security of many schemes, Canetti
et al. [CGH98] have shown that the random oracle model is unsound: there exist
protocols that are secure in the random oracle model, but where any implementation of
the random oracle results in an insecure protocol.

3

Practical Two-Party Computation of Arithmetic
Circuits

In this chapter we are interested in practically useful UC-secure building block protocols
that provide interfaces so that parties in higher-level protocols can prove to each other
that their inputs to one building block protocol correspond to the outputs of another
building block protocol. More precisely, we provide a set of two-party protocols for
evaluating an arithmetic circuit over Zn , where n is a safe semi-prime, with reactive inputs
and outputs. The protocols accept as (additional) inputs and provide as (additional)
outputs tailored commitment values which, in conjunction with UC zero-knowledge
proofs, make them a useful building block for higher-level protocols.

We demonstrate the usefulness of our protocols by providing as example application
an oblivious pseudorandom function (OPRF) evaluation (see Section 3.7) and point out
that our protocols can be used to implement the subprotocols required by Camenisch et
al.’s credential authenticated identification and key-exchange protocols [CCGS10] (see
Section 6.3 of their paper).

Apart from being the only protocols that allow for their use as building blocks, ours
are also more efficient than existing UC-secure two-party reactive circuit evaluation
protocols [DN03, IPS09,DO10a,BDOZ11] which were designed to be used as standalone
protocols. The complexity of our protocols can be summarized as follows: if the circuits
involved have t gates, the communication complexity is O(t) elements of Zn2 (and groups
of similar or smaller order) and the computational complexity is O(t) exponentiations in
Zn2 (and groups of similar or smaller order). We report on an experimental comparison
of our protocols with relevant prior work in Section 3.6.1. We show that our protocols
are practical, and that small circuits can be run in a few seconds—for examplethe OPRF
computation above (for a 1248-bit modulus) would run in 0.84 seconds on the authors’
laptop computers.

Roadmap. In Section 3.1 we present our new mixed trapdoor commitment scheme. We
describe our ideal functionality Fabb for circuit evaluation in Section 3.2, and construct
a concrete protocol in Section 3.3. In Section 3.4 we add additional features to our
functionality. We prove our protocol secure in Section 3.5. In Section 3.6 we disucuss
related work, and compare the efficiency of our protocols with relevant related work. In
Section 3.7 we show how one can easily construct an OPRF using our protocol.

38 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

3.1 A New Dual-Mode Homomorphic “Mixed” Trapdoor
(HMT) Commitment Scheme

We now construct a commitment scheme which we will use instead of traditional UC
commitment schemes [CF01] in our circuit evaluation protocol. Our commitment scheme
works well with proofs of existence using Fgzk, resulting in an efficiency gain in the
overall protocol.1 To the best of our knowledge, this is a novel scheme.

We define a mixed trapdoor commitment scheme to be a commitment scheme that
is either: perfectly hiding and equivocable; or statistically binding, depending on the
distribution of the CRS. Mixed trapdoor commitments are similar to UC commitments
[CF01] in that 1) the simulator can equivocate commitments in the security proof
without being caught, even if he has to provide all randomness used to generate the
commitment to the adversary; and 2) the simulator can use an adversary who equivocates
commitments2 to solve a hard cryptographic problem. However unlike UC commitments,
in mixed trapdoor commitments 3) the simulator does not need to extract the openings
or the committed values from Fgzk.

Definition 3.1 (Homomorphic Mixed-trapdoor (HMT) commitment). A se-
cure homomorphic mixed-trapdoor (HMT) commitment scheme for a given group gen-
erator ggen is a tuple of PPT algorithms (cgen0, cgen′0, cgen1, com, cvfy, ctrd, cadd, cmul,
cpc) such that:

• (cgen0, com, cvfy, cadd, cmul) is a homomorphic perfectly-hiding secure commitment
scheme for ggen that is compatible with zero-knowledge proofs,
• (cgen1, com, cvfy, cadd, cmul) is a homomorphic statistically-binding commitment

scheme for ggen that is compatible with zero-knowledge proofs,

• the ensembles {pc}1η where pc
$← cgen0(ggen(1η)) or pc

$← cgen1(ggen(1η)) or

(pc, tc)
$← cgen′0(ggen(1η)) are pairwise computationally indistinguishable,

• given a trapdoor tc obtained through (pc, tc)
$← cgen′0(ggen(1η)), it is possible to

equivocate commitments: given that 1 = cvfy(pc, ca, oa, a) we have that for all b:
1 = cvfy(pc, ca, ctrd(pc, tc, ca, oa, a, b), b),
• and given a commitment ca it is possible to extract a Pedersen commitment [Ped92]

to a with opening oa with cpc(pc, ca).

3.1.1 A Scheme for Messages in Zn

We now provide the construction of a mixed trapdoor commitment scheme based on
Elgamal encryption. Such a scheme is secure if the DDH assumption holds for the
following group generator ggen, which generates a group of safe-semiprime order n.

1 The efficiency gain due to using proofs of existence instead of proofs of knowledge outweighs
the efficiency loss due to the more complex commitment scheme.

2 As the commitment scheme is malleable, the protocol designer must take into account that
the adversary might base his commitments on the simulator’s commitments. Such problems
can usually be avoided by requiring that for all new commitments, a proof of knowledge of
the committed value is performed.

3.2. Our Ideal Functionality Fabb 39

Group generator ggen(1η). Let n
$← rgen(1η) (in the sequel, rgen is the same algorithm

as used for the CRH cryptosystem). Find the first prime p such that p = k · n + 1
for some k ∈ N. Find a generator g of a subgroup of Zp of order n. Output (p,n, g).
According to a heuristic3 by Wagstaff [WJ79]: p < n · (log n)2.

Algorithm cgen0(p,n, g). w , tc
$← Zn ;m ← 0; h ← gw ; y ← gmhtc; u ← g tc; output

(p, g ,n, h, y , u). Here (y , u) is the Elgamal encryption of gm with the public key (g , h).

Algorithm cgen′0(n). Idem, except that tc is output as well.

Algorithm cgen1(n). Idem to cgen0 except that m
$← Zn . In practice, one can also

choose h, y , and u at random from the subgroup generated by g .

Algorithm com(pc, a). oa
$← Zn ; ca1 ← yahoa ; ca2 ← uagoa ; output ((ca1, ca2), oa).

Notice that the commitment is a re-randomized ElGamal encryption of gm·a.

Algorithm cvfy((ca1, ca2), oa, a). Check that ca1 = yahoa and ca2 = uagoa , and that
ca1 and ca2 are in the subgroup generated by g .

Algorithm ctrd(pc, tc, (ca1, ca2), oa, a, b). Output (a− b) · tc + oa.

Algorithm cadd(pc, (ca0 ,0 , ca0 ,1), (ca1 ,0 , ca1 ,1), . . .). Output (
∏
i cai,0 ,

∏
i cai,1).

Algorithm cmul(pc, (ca0, ca1), b). Output (cab0, cab1).

Algorithm cpc(pc, (ca0, ca1)). Output ca0.

3.1.2 A Scheme over a Prime Order Group

We now provide a similar construction for group generators ggen that output a group
description G for a group of prime order q with generator g where the DDH problem is
hard.

Algorithm cgen0(G, q, g). This is similar to the construction for messages in Zn above,

except that w , tc
$← Zq and that the output is (G, g, q, h, y , u).

Algorithm cgen1(n). Idem to cgen0 except that m
$← Zq.

Algorithm com(pc, a). This is similar to the construction for messages in Zn above,

except that oa
$← Zq.

Other algorithms. All other algorithms are the same as the construction for messages
in Zn above.

3.2 Our Ideal Functionality Fabb

In this section, we will start by giving a short informal definition of the ideal functionality
Fabb (arithmetic black box) for doing computation over Zn . We then provide the formal
definition of Fabb using the notation of GNUC [HS11]. It is not necessary to read
Subsection 3.2.2 to understand the construction of our scheme.
3 We confirmed this experimentally for 250 randomly generated 1248-bit safe RSA moduli.

40 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

Arithmetic circuits. We denote our basic ideal functionality for verifiably evaluating
arithmetic circuits modulo n by Fabb (our functionality is similar to Nielsen’s arithmetic
black box [Nie03], hence the name). Parties compute the circuit step-by-step in a
reactive manner by sending identical instructions with identical common input to Fabb.
(For some instructions, one party must additionally provide private input to Fabb.) We
assume that a higher-level protocol orchestrates the steps the parties take.
Fabb processes instructions from the two parties of the following types: Input: a

party inserts a value in Zn into the circuit; Linear Combination: a linear combination of
values in the circuit is computed; Multiplication: the product of two values in the circuit
is computed; Output: a value in the circuit is output to a party; Proof: a party can
prove an arbitrary statement to the other party in zero-knowledge involving values that
she input in the circuit, values she got as an output, and values external to the circuit.

A party can use the Proof instruction to prove that the value inside a commitment
used in the higher-level protocol is the same as a value in the circuit. This instruction
thus makes it easy and practical to compose Fabb with a higher-level protocol. To input
a committed value from a higher-level protocol into the circuit, P would first use the
Input instruction to set the value in the circuit, and then use the Proof instruction to
convince Q that the new value corresponds to what was in the commitment. Similarly
to transfer a value from the circuit to the higher-level protocol, P would first get the
value with the Output instruction, generate a commitment in the higher-level protocol,
and then use the Proof instruction to convince Q that the commitment contains the
value that was output by the circuit.

3.2.1 Informal Definition of Fabb

The functionality Fabb reacts to a set of instructions. Per convention, both parties must
agree on the instruction and the shared input before Fabb executes it. An instruction
may require P and Q to send multiple messages to Fabb in a specific order, however
Fabb may run other instructions concurrently while waiting for the next message. More
precisely P and Q can: provide inputs to Fabb; ask it do to a linear combination or
multiplication of previous inputs or intermediate results; ask it to output a value to one
of them; and do an arbitrary zero-knowledge proof involving inputs/outputs to/from
the circuit and external witnesses. These instructions can be arbitrarily interleaved,
intermediate results output and new inputs be provided. The input values provided by
P and Q may depend on output values obtained. Following the GNUC formalism, each
message sent to Fabb is prefixed with a label which contains, among others, the name of
the instruction to execute, the current step in the instruction this message refers to, and
the shared input ϕ; the private inputs are always part of the message body.

State. The ideal functionality Fabb is stateful. It maintains an associative array V ,
mapping identifiers (in Λ?) to integer values (in Zn).

Instructions. These are the instructions supported by Fabb:

• Input from P: P ’s private input is the value v. Fabb parses the shared input ϕ as
〈k〉, where k will be the identifier associated to the value v, and sets V [k]← v.
• Input from Q: Q’s private input is v. Fabb parses ϕ as 〈k〉, and sets V [k]← v.

3.2. Our Ideal Functionality Fabb 41

• Linear combination: Fabb parses ϕ as 〈m, k0, v0, 〈k1, v1〉, . . ., 〈km−1, vm−1〉〉 and

sets: V [k0]← v0 +
∑m−1
i=1 V [ki] · vi.

• Multiplication: Fabb parses ϕ as 〈k0, k1, k2〉 and sets: V [k0]← V [k1] ·V [k2].
• Output to P: Fabb parses ϕ as 〈k〉, and sends V [k] (as a delayed output) to P.
• Output to Q: Fabb parses ϕ as 〈k〉, and sends V [k] (as a delayed output) to Q.
• Proof by P: This instruction can be used to prove a statement about values that

were input/output to/from from the circuit (Fabb) and witnesses from a higher-level
protocol. P ’s private input is 〈x,wk, 〈〉〉. Fabb parses ϕ as 〈m, 〈k0, ..., km−1〉, R〉,
where is R is a binary predicate that is compatible with Fgzk and which can involve
1) values that were input by P to Fabb, 2) values that were output to P from Fabb,
and 3) witnesses external to Fabb; x is an instance for R; wk is a list of witnesses
that are external to the circuit whose knowledge are proven; and k0, . . . , km−1

are identifiers of values in the circuit that were input by P or output to P. Fabb

checks if the predicate holds, i.e., if R
(
x, wk ∪ (V [k0], . . . ,V [km−1])

)
= 1; and

sends 〈x〉 (as a delayed output) to Q.
• Proof by Q: Similar to Proof by P, with the roles of P and Q reversed.
• Dynamic corruption: Fabb accepts a special corrupt message from P or Q. From

then on, all input and output of the corrupted party is redirected to the adversary
A, and A may recover all of the corrupted party’s input (by asking Fabb for it).

Treatment of invalid input. In case Fabb receives a message it does not expect, a
message that it cannot parse, or a message with a label it has seen previously from
the same party, it simply ignores the message (we assume then environment is then
activated with an empty message instead).

Comments. The value of n is not an input to Fabb, nor is it modeled as a CRS. Rather,
it is modeled in the GNUC framework as a system parameter. Roughly speaking, this
is a special type of ideal functionality to which all parties, including the environment,
have common access. The value of n is generated by a trusted party, and no other party
learns its factorization. Furthermore, the modulus n can be re-used across different
protocol instances. In the setting of credential-authenticated identification [CCGS10]
this is completely natural, as one can use a modulus generated by the credential issuer.
In a different context, we can also imagine using the modulus n of a well-known and
respected certificate authority (e.g., the modulus in Verisign’s root certificate).

Our ideal functionality Fabb shares some similarity with Nielsen’s arithmetic black
box (ABB) [Nie03], and Damg̊ard and Orlandi’s Fampc [DO10a]. The major difference is
that our Fabb includes the Proof instruction, allowing values from higher-level protocols
to be input and output securely. This instruction is crucial as it allows meaningful
composition with other protocols. Unlike Fampc, we do not support random number
generation in the vanilla Fabb for simplicity; see Section 3.4.1 for an algorithm generating
these that uses only our core set of instructions.

3.2.2 Formal Definition of Fabb

We now formally define the Fabb functionality using the formalism of GNUC [HS11].

42 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

By 〈label, value1, value2, . . .〉 we denote an ideal message with label label and
payload value1, value2, By convention, if a party sends a message with the same
label as a message it has sent previously, Fabb ignores the message.

System parameters. The safe RSA modulus n, which defines the ring Zn in which
all the arithmetic operations will be performed, and whose factorization is unknown to
P, Q, and the adversary A, is assumed to be part of the system parameters.

State. The ideal functionality Fabb is stateful, and maintains an associative array V , as
well as the sets KPP, KQP, KPQ, KQQ, AP, AQ, RP, and RQ. The associative array
V maps an identifier (in Λ?) to the corresponding value (in Zn) in the circuit. The set
KPP contains the list of identifiers corresponding to values that were either input by P
or output to P, in P’s view; these identifiers can be used in the Proof by P instruction.
The sets KQP, KPQ, KQQ are similar, but for Q’s values in P’s view, P’s values in
Q’s view, Q’s values in Q’s view, respectively. The set AP contains the list of identifiers
which, in P’s view, have already been used in the circuit; this set prevents parties from
using the same identifier multiple times. The set AQ is similar, but for Q’s view. The
set RP contains the list of identifiers which, in P’s view, are ready to be used in other
instructions; this set prevents parties from using an identifier where the corresponding
value has not been properly initialized yet. The set RQ is similar, but for Q’s view.

Instructions. In what follows, we let ϕ ∈ Λ? denote the command ID, a string which
will be part of the label. The command ID ϕ will contain all the common input to an
instruction.

The ideal functionality Fabb is composed of several instructions. By convention each
step may be triggered only once (re-use of an instruction requires a different command
ID ϕ). A logical expression in [...] : is a guard that must be satisfied in order to trigger
the step. Our ideal instructions are modelled closely after GNUC’s zero-knowledge and
secure function evaluation functionalities [HS11].

We take the convention that variables with an overbar, such as v̄, are global variables
associated with the command ID ϕ, whose scope is the instruction they are defined in.
All other variables are local.

We also assume that the communication between the parties and Fabb cannot be
delayed by A, this makes sure that in the case one party re-uses an output label k in
several instructions, it is clear which operation is to be ignored by Fabb. The ideal
functionality Fabb models message delays internally.

• Input from P: In this instruction, parse the command ID ϕ as 〈k〉 where k = 〈%〉
with % ∈ Λ?.

– ip:send:ϕ : Accept 〈ip:send:ϕ, v〉 from P where v ∈ Zn ∧ k 6∈ AP: AP ← k;
v̄ ← v; send 〈ip:send:ϕ〉 to A.

– ip:ready:ϕ : Accept 〈ip:ready:ϕ〉 from Q, where k 6∈ AQ: AQ ← k; send
〈ip:ready:ϕ〉 to A.

– ip:lock:ϕ [ip:send:ϕ ∧ ip:ready:ϕ] : Accept 〈ip:lock:ϕ〉 from A: V [k]← v̄;
send 〈〉 to A.

– ip:done:ϕ [ip:lock:ϕ] : Accept 〈ip:done:ϕ〉 from A: RP ← k; KPP ← k; send
〈ip:done:ϕ〉 to P.

3.2. Our Ideal Functionality Fabb 43

– ip:deliver:ϕ [ip:lock:ϕ] : Accept 〈ip:deliver:ϕ〉 from A: RQ ← k; KPQ ←
k; send 〈ip:deliver:ϕ〉 to Q.

– ip:reset:ϕ [¬ip:lock:ϕ∧ corrupt:P] : Accept 〈ip:reset:ϕ, v〉 from A: v̄ ←
v; send 〈〉 to A.

– ip:expose:ϕ [ip:send:ϕ ∧ corrupt:P] : Accept 〈ip:expose:ϕ〉 from A: send
〈ip:expose:ϕ, v̄〉 to A.

• Input from Q: This is similar to the previous instruction, with the roles of P
and Q reversed, and the label prefix is changed to iq. We do not formalize this
instruction here.

• Output to P: In this instruction, parse ϕ as 〈k〉 where k ∈ Λ?.
– op:p:ϕ : Accept 〈op:p:ϕ〉 from P, where k ∈ RP: send 〈op:p:ϕ〉 to A.
– op:q:ϕ : Accept 〈op:q:ϕ〉 from Q, where k ∈ RQ: send 〈op:q:ϕ〉 to A.
– op:lock:ϕ [op:p:ϕ ∧ op:q:ϕ] : Accept 〈op:lock:ϕ〉 from A: send 〈〉 to A.
– op:deliver:ϕ [op:lock:ϕ] : Accept 〈op:deliver:ϕ〉 from A: KPP ← k; send
〈op:deliver:ϕ,V [k]〉 to P.

– op:done:ϕ [op:lock:ϕ] : Accept 〈op:done:ϕ〉 from A: KPQ ← k; send
〈op:done:ϕ〉 to Q.

• Output to Q: This is similar to the previous instruction, with the roles of P and Q
reversed, and the label prefix is changed to oq. We do not formalize this instruction
here.

• Linear combination: Parse ϕ as 〈m, k0, v0, 〈k1, v1〉, . . ., 〈km−1, vm−1〉〉 in this in-
struction, where m ∈ N∗, ∀i ∈ Nm : ki ∈ Λ?, vi ∈ Zn , and where k0 = 〈joint, %〉
with % ∈ Λ?.

– l:p:ϕ : Accept 〈l:p:ϕ〉 from P where k0 6∈ AP∧ (∀i ∈ N∗m : ki ∈ RP): AP ← k0;
send 〈l:p:ϕ〉 to A.

– l:q:ϕ : Accept 〈l:q:ϕ〉 from Q where k0 6∈ AQ∧(∀i ∈ N∗m : ki ∈ RQ): AQ ← k0;
send 〈l:q:ϕ〉 to A.

– l:lock:ϕ [l:p:ϕ ∧ l:q:ϕ] : Accept 〈l:lock:ϕ〉 from A:

V [k0]← v0 +
∑m−1
i=1 V [ki] · vi; send 〈〉 to A.

– l:done:p:ϕ [l:lock:ϕ] : Accept 〈l:done:p:ϕ〉 from A: RP ← k0; send
〈l:done:p:ϕ〉 to P.

– l:done:q:ϕ [l:lock:ϕ] : Accept 〈l:done:q:ϕ〉 from A: RQ ← k0; send
〈l:done:q:ϕ〉 to Q.

• Multiplication: In this instruction, parse ϕ as 〈k0, k1, k2〉 where k1, k2 ∈ Λ? and
k0 = 〈joint, %〉 with % ∈ Λ?.

– m:p:ϕ : Accept 〈m:p:ϕ〉 from P where k0 6∈ AP ∧ (∀i ∈ N∗3 : ki ∈ RP): AP ← k0;
send 〈m:p:ϕ〉 to A.

– m:q:ϕ : Accept 〈m:q:ϕ〉 from Q where k0 6∈ AQ∧ (∀i ∈ N∗3 : ki ∈ RQ): AQ ← k0;
send 〈m:q:ϕ〉 to A.

– m:lock:ϕ [m:p:ϕ ∧ m:q:ϕ] : Accept 〈m:lock:ϕ〉 from A: V [k0] ← V [k1] · V [k2];
send 〈〉 to A.

– m:done:p:ϕ [m:lock:ϕ] : Accept 〈m:done:p:ϕ〉 from A: RP ← k0; send
〈m:done:p:ϕ〉 to P.

– m:done:q:ϕ [m:lock:ϕ] : Accept 〈m:done:q:ϕ〉 from A: RQ ← k0; send
〈m:done:q:ϕ〉 to Q.

44 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

• Proof by P: In this instruction, parse ϕ as 〈m, 〈k0, ..., km−1〉, R〉, where m ∈ N,
∀i ∈ Nm : ki ∈ Λ?, and where is R is a binary predicate that is compatible with
Fgzk.

– pp:send:ϕ : Accept 〈pp:send:ϕ, x, m̃, wk, 0, 〈〉〉 from P where x is an instance
for R, m̃ ∈ N, wk = 〈wk,0, . . ., wk,m̃−1〉 is a list of external witnesses whose
knowledge is proven, R

(
x, (wk,0, . . . , wk,m̃−1) ∪ (V [k0], . . . ,V [km−1])

)
= 1, and

(∀i ∈ Nm : ki ∈ KPP): x̄← x; w̄k ← wk; send 〈pp:send:ϕ, `(x,wk)〉 to A.
– pp:ready:ϕ : Accept 〈pp:ready:ϕ〉 from Q where (∀i ∈ Nm : ki ∈ KPQ); send
〈pp:ready:ϕ〉 to A.

– pp:lock:ϕ [pp:send:ϕ ∧ pp:ready:ϕ] : Accept 〈pp:lock:ϕ〉 from A: send 〈〉 to
A.

– pp:done:ϕ [pp:lock:ϕ] : Accept 〈pp:done:ϕ〉 from A: send 〈pp:done:ϕ〉 to P.
– pp:deliver:ϕ [pp:lock:ϕ] : Accept 〈pp:deliver:ϕ,L〉 from A where L =
`(x̄, w̄k) ∨ [corrupt:Q]: send 〈pp:deliver:ϕ, x̄〉 to Q.

– pp:reset:ϕ [¬pp:lock:ϕ ∧ corrupt:P] : Accept 〈pp:reset:ϕ, x, m̃, wk, 0, 〈〉〉
from A where x is an instance for R, m̃ ∈ N, wk = 〈wk,0, . . ., wk,m̃−1〉 is a list
of witnesses, and R

(
x, (wk,0, . . . , wk,m̃−1) ∪ (V [k0], . . . ,V [km−1])

)
= 1: x̄← x;

w̄k ← wk; send 〈〉 to A.
– pp:expose:ϕ [pp:send:ϕ∧¬pp:lock:ϕ∧ corrupt:P] : Accept 〈pp:expose:ϕ〉

from A: send 〈pp:expose:ϕ, x̄, w̄k〉 to A.

• Proof by Q: This is similar to the previous instruction, with the roles of P and Q
reversed, and the label prefix is changed to pq. We do not formalize this instruction
here.
• Dynamic corruption:

– corrupt:P : Accept a special 〈corrupt〉 message from P: send 〈corrupt:P〉 to
A together with an invitation for the messages 〈ip:expose:ϕ〉 (for all ϕ where
the ip:send:ϕ step has been processed already) and 〈pp:expose:ϕ〉 (for all ϕ
where the pp:send:ϕ step has been processed already).

– corrupt:Q : Analogously, but for Q.

Invalid input. In case Fabb receives a message it does not expect, a message that it
cannot parse, or a message with a label it has seen previously from the same party, it
simply ignores the message (thereafter the environment is activated with empty input).

3.3 Construction

We now show how to construct a protocol Πabb for circuit evaluation modulo n. Our
protocol uses two ideal functionalities: Fac (authenticated channels) and Fgzk (zero-
knowledge proofs). Additionally, we make use of a system parameter, the modulus
n of unknown factorization; and a CRS, consisting of the output of cgen1 (for the
statistically-binding mode of the mixed trapdoor commitment).

High-level idea. The high-level idea of our construction is that P and Q generate
additive shares of all the values (inputs and intermediate results) in the circuit. Identifiers
are used to keep track of the values and the cryptographic objects associated with them.

3.3. Construction 45

Like for Fabb, parties agree on the instruction to be performed by sending a message
containing an identical instruction name and identical common input to the protocol
Πabb. The instructions of Πabb are implemented as follows: Input is achieved by one
party setting her share to the input, and generating a commitment to that share; the
other party sets his share to zero. Output is achieved by one party sending her share
to the other party. For the Linear combination instruction, each party does a linear
combination of their shares locally. For the Multiplication instruction, we make use
of two instances of a 2-party subroutine Πmul: on P’s input a, and Q’s input b, Πmul

outputs u to P and v to Q such that u + v = a · b. The Proof instruction can be
done with the help of a zero-knowledge proof functionality Fgzk. To ensure security
against malicious adversaries, both parties update the commitments to the shares in
each instruction, and prove in zero-knowledge that all their computations were done
honestly.

The Πmul subroutine makes use of a CRH encryption scheme (rgen, rkgen, enc, dec,
add,mul)—here rgen outputs the ring Zn used throughout the scheme—along with
the statistically-biding commitment scheme (cgen, com, cvfy, cadd, cmul) of the HMT
commitment scheme for messages in Zn defined in Section 3.1.1. To achieve security
against adaptive corruptions, new encryption/decryption keys need to be generated
for every multiplication. To do this in a practical way, we use the semantically secure
version of Camenisch-Shoup encryption [CS03,DJ03,JS07] with a short private key and
short randomness, as described in Section 2.4.1.2. One key feature of this scheme is
that key generation is fast: just a single exponentiation modulo n2. Another key feature
is that many encryption/decryption keys can be used in conjunction with the same n,
which is crucial. Our commitment scheme is also used extensively in the overall protocol.
We use the construction presented in Section 3.1 and work in the group of integers
modulo a prime of the form k · n + 1. The homomorphic properties of the commitment
scheme makes this choice of prime particularly useful and practical. Another tool we
make heavy use of is UC zero-knowledge. Because of the proposed implementations
of encryption and commitment schemes, these proof systems can all be implemented
using the approach proposed by Camenisch et al. [CKS11]. Because the encryption
and commitment schemes are both homomorphic modulo n, all of our cryptographic
tools work very well together, and yield quite practical protocols. We also stress that
our protocols are designed in a modular way: they only make use of these abstract
primitives, and not of ad hoc algebraic constructions.

3.3.1 Realizing Πabb

P and Q each maintain the following global state: several associative arrays mapping
the identifier of a value in the circuit (in Λ?) to a variety of cryptographic objects: SP
and SQ map to the shares of P and Q of the values in the circuit (in Zn), respectively;
CP and CQ map to the commitment of the corresponding shares; XP (maintained by
P only) and XQ (Q only) map to the opening of the commitments. For the Proof
functionality, both parties maintain lists of identifiers corresponding to values that are
known to P and Q: KP and KQ, respectively. Additionally, to ensure “thread-safety”,
they also maintain: lists of assigned identifiers AP (P only) and AQ (Q only) to avoid
assigning the same identifier to several variables; and lists of identifiers RP (P only) and

46 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

P.InputP(〈ϕ, v〉) where v ∈ Zn : Q.InputP(〈ϕ〉):
Here ϕ = 〈k〉 and k ∈ Λ?.

Abort if k ∈ AP.
AP ← k; SP[k]← v; SQ[k]← 0;

(CP[k],XP[k])
$← com(v).

Abort if k ∈ AQ.
AQ ← k; SQ[k]← 0;
CQ[k]← com(0, 0); XQ[k]← 0.

CP[k], πip

CQ[k]← com(0, 0).
RP ← k; KP ← k. RQ ← k; KP ← k.

Instantiation of zero-knowledge proofs:

πip := Fgzk[〈ip:ϕ〉]
{(

v ∃XP[k]
)

: cvfy(CP[k],XP[k], v)
}
.

Fig. 3.1: Input from P.

P.OutputQ(〈ϕ〉) where ϕ = 〈k〉 ∧ k ∈ Λ?: Q.OutputQ(〈ϕ〉) where ϕ = 〈k〉 ∧ k ∈ Λ?:
Abort unless k ∈ RP. Abort unless k ∈ RQ.

SP[k], πoq

KQ ← k. KQ ← k; output (SP[k] + SQ[k]).

Instantiation of zero-knowledge proofs:

πoq := Fgzk[〈oq:ϕ〉]
{(
∃XP[k]

)
: cvfy(CP[k],XP[k],SP[k])

}
.

Fig. 3.2: Output to Q.

RQ (Q only) corresponding to values that are ready to be used in other instructions.
The array that one would obtain by summing the entries of SP and SQ corresponding
to values that are ready (i.e., {(k, v)|k ∈ RP ∩ RQ ∧ v = SP[k] + SQ[k]}), corresponds
to the array V of the ideal functionality, that maps identifiers to values in the circuit.

All other variables that we will introduce are local to one instance of a instruction
or an instance of the Πmul subroutine. Several instructions may be active at the same
time, however we assume (following the GNUC model) that all operations performed
during an activation (the time interval between starting to process a new input message
and sending a message to another functionality) happen atomically.

Input from P. In this instruction, P inputs a value v into the circuit and associates
it with the identifier k: P sets her own share to v, and Q sets his share to 0. Then P
generates a commitment to her share, which she sends (along with proof) to Q. See
Figure 3.1 for the construction.

Input from Q. Similar to the previous instruction, with the roles of P and Q reversed.

Output to Q. In this instruction, Q retrieves the value identified by k from the circuit:
P sends her share to Q together with a proof of correctness. See Figure 3.2.

Output to P. Similar to the previous instruction, with the roles of P and Q reversed.

Linear combination. In this instruction, a linear combination of values in the circuit
(plus an optional constant) is computed: V [k0] ← v0 +

∑m−1
i=1 V [ki] · vi. Concretely,

both parties perform local operations on their shares. Additionally, P sends ϕ to Q to
ensure that both parties agree on the shared input ϕ. See Figure 3.3.

3.3. Construction 47

P.LinearCombination(〈ϕ〉): Q.LinearCombination(〈ϕ〉):
Here ϕ = 〈m, k0, v0, 〈k1, v1〉, . . ., 〈km−1, vm−1〉〉 with
m ∈ N∗, (∀i ∈ Nm : ki ∈ Λ?) and (∀i ∈ Nm : vi ∈ Zn).

Abort if k0 ∈ AP.
Abort unless ∀i ∈ Nm : ki ∈ RP.
AP ← k0;
SP[k0]← v0 +

∑m−1
i=1 SP[ki] · vi;

CP[k0]← cadd(com(v0, 0),
cmul(CP[k1], v1), cmul(CP[k2], v2), . . .);

XP[k0]←
∑m−1
i=1 XP[ki] · vi;

CQ[k0]← cadd(
cmul(CQ[k1], v1), cmul(CQ[k2], v2), . . .).

Abort if k0 ∈ AQ.
Abort unless ∀i ∈ Nm : ki ∈ RQ.
AQ ← k0;
SQ[k0]←

∑m−1
i=1 SQ[ki] · vi;

CQ[k0]← cadd(
cmul(CQ[k1], v1), cmul(CQ[k2], v2), . . .);

XQ[k0]←
∑m−1
i=1 XQ[ki] · vi;

CP[k0]← cadd(com(v0, 0),
cmul(CP[k1], v1), cmul(CP[k2], v2), . . .).

ϕ (to ensure that they agree on ϕ)

RP ← k0. RQ ← k0.

Fig. 3.3: Linear combination.

Multiplication. In this instruction, the product of two values in the circuit is computed:
V [k0]← V [k1] ·V [k2]. We can rewrite this as:

SP[k0] + SQ[k0]← SP[k1] · SP[k2]︸ ︷︷ ︸
p̂

+SP[k1] · SQ[k2]︸ ︷︷ ︸
(ũ+ṽ)

+SQ[k1] · SP[k2]︸ ︷︷ ︸
(u+v)

+SQ[k1] · SQ[k2]︸ ︷︷ ︸
q̂

where we introduce p̂, q̂, ũ, ṽ, u, v to simplify the discussion. The idea of this protocol is
for P and Q to compute p̂ and q̂, respectively, using their private shares. They then
jointly compute ũ and ṽ using the Πmul subroutine, which we introduce for clarity and
which we describe in Section 3.3.2. Afterwards, u and v are computed using a second
instantiation of Πmul. Finally, P sets SP[k0]← p̂+ ũ+u and Q sets SQ[k0]← q̂+ ṽ+ v.
See Figure 3.4 for the construction.

One can optimize the protocol in Figure 3.4 by using the same homomorphic
encryption key for both instances of Πmul and merging the proofs inside and outside of
Πmul whenever possible.4 We can thus save one proof of correctess for the encryption
key, and save on some overhead in Fgzk.

Proof by P. In this instruction, P proves to Q in zero-knowledge some statement
involving 1) witnesses outside of the circuit, 2) values that P input into the circuit, and
3) values that P got as an output from the circuit. See Figure 3.5 for the construction.

Proof by Q. Similar to the previous instruction, with the roles of P and Q reversed.

3.3.2 The Πmul Subroutine for Multiplication of Committed Inputs

We now give the construction of the 2-party Fgzk-hybrid protocol Πmul for multiplication
of committed inputs, which we use as a subroutine in Πabb in the multiplication

4 Concretely, one would merge the proofs with the following labels: 1) 〈m5:ϕ〉, 〈cm1:〈m7:ϕ〉〉
and 〈cm1:〈m8:ϕ〉〉; 2) 〈m6:ϕ〉, 〈cm2:〈m7:ϕ〉〉, and 〈cm2:〈m8:ϕ〉〉; 3) 〈cm3:〈m7:ϕ〉〉 and
〈cm3:〈m8:ϕ〉〉; 4) 〈cm4:〈m7:ϕ〉〉 and 〈cm4:〈m8:ϕ〉〉.

48 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

P.Multiply(〈ϕ〉): Q.Multiply(〈ϕ〉):
Here ϕ = 〈k0, k1, k2〉 with k0, k1, k2 ∈ Λ?.

Abort if k0 ∈ AP.
Abort unless k1, k2 ∈ RP.
AP ← k0;

p̂← SP[k1] · SP[k2]; (cp̂, op̂)
$← com(p̂).

Abort if k0 ∈ AQ.
Abort unless k1, k2 ∈ RQ.
AQ ← k0.

q̂ ← SQ[k1] · SQ[k2]; (ĉq , oq̂)
$← com(q̂).

cp̂, πm5

ĉq , πm6

(ũ, cũ, oũ, c̃v)
$← P.Πmul(

SP[k1],CP[k1],XP[k1],CQ[k2], 〈m7:ϕ〉);
(ṽ, c̃v , õv , cũ)

$← Q.Πmul(
SQ[k2],CQ[k2],XQ[k2],CP[k1], 〈m7:ϕ〉);

(u, cu, ou, cv)
$← P.Πmul(

SP[k2],CP[k2],XP[k2],CQ[k1], 〈m8:ϕ〉);
(v, cv , ov , cu)

$← Q.Πmul(
SQ[k1],CQ[k1],XQ[k1],CP[k2], 〈m8:ϕ〉);

SP[k0]← p̂+ ũ+ u; XP[k0]← op̂ + oũ + ou;
CP[k0]← cadd(cp̂, cũ, cu);
CQ[k0]← cadd(ĉq , c̃v , cv); RP ← k0.

SQ[k0]← q̂ + ṽ + v; XQ[k0]← oq̂ + õv + ov ;
CQ[k0]← cadd(ĉq , c̃v , cv);
CP[k0]← cadd(cp̂, cũ, cu); RQ ← k0.

Instantiation of zero-knowledge proofs:

πm5 := Fgzk[〈m5:ϕ〉]
{(
∃op̂, SP[k1], SP[k2],XP[k1],XP[k2]

)
:

cvfy(cp̂, op̂,SP[k1] · SP[k2]) ∧ cvfy(CP[k1],XP[k1], SP[k1]) ∧ cvfy(CP[k2],XP[k2],SP[k2])
}
.

πm6 := Fgzk[〈m6:ϕ〉]
{(
∃oq̂ , SQ[k1], SQ[k2],XQ[k1],XQ[k2]

)
:

cvfy(ĉq , oq̂ , SQ[k1] · SQ[k2]) ∧ cvfy(CQ[k1],XQ[k1], SQ[k1]) ∧ cvfy(CQ[k2],XQ[k2], SQ[k2])
}
.

Fig. 3.4: Multiplication. The subroutine Πmul is defined in Section 3.3.2 and Figure 3.6.

P.ProofP(〈ϕ, x, w〉): Q.ProofP(〈ϕ〉):
Here ϕ = 〈m, 〈k0, . . ., km−1〉, R〉; R is a relation that is compatible with Fgzk;

m ∈ N; (∀i ∈ Nm : ki ∈ Λ?); x ∈ R[0]; and w = 〈w0, . . ., wm−1〉 .

Abort unless ∀i ∈ Nm : ki ∈ KP. Abort unless ∀i ∈ Nm : ki ∈ KP.
x, πpp

Output x.

Instantiation of zero-knowledge proofs:

πpp := Fgzk[〈pp:ϕ〉]
{(

w0, . . . , wm−1 ∃V [k0], . . . ,V [km−1],XP[k0], . . . ,XP[km−1]
)

:∧m−1

i=0
cvfy(CP[ki],XP[ki],V [ki]−SQ[ki])∧R

(
x, (w0, . . . , wm−1)∪(V [ki], . . . ,V [km−1])

)
= 1
}
.

Fig. 3.5: Proof by P.

instruction. In a nutshell: on P ’s private input a and Q’s private input b, Πmul outputs
shares to the product: u to P and v to Q, such that u+ v = a · b.

The protocol draws on ideas from Ishai et al’s π̃OT protocol—defined in Appendix
A.2 of the full version of their paper [IPS08]—and uses a similar approach as many
two-party computation protocols (e.g., Damg̊ard and Orlandi’s πmul protocol [DO10b]).
We fleshed out the details of Ishai et al.’s protocol to make it secure against active
adversaries, improve its efficiency, and integrate it into our overall protocol.

3.3. Construction 49

P.Πmul(a, ca, oa, cb, λ): Q.Πmul(b, cb, ob, ca, λ):

(pk , sk)
$← rkgen(n); w

$← Zn ;

(ew , rw)
$← enc(pk , w).

s
$← Zn ; t

$← Zn ;

(cs, os)
$← com(s); (ct , ot)

$← com(t).

ew , pk , πcm1(: rw)

σ ← a− w. (et , rt)
$← enc(pk , t);

ey ← add(mul(ew , s), et).

cs, ct , ey , πcm2 (: rt)

y ← dec(ey , sk); (cy , oy)
$← com(y). δ ← b− s; oδ ← ob − os.

cy , σ, πcm3(: sk)

δ, πcm4

u← δ · a+ y; ou ← oa · δ + oy ;
cu ← cadd(cmul(ca, δ), cy);
cv ← cadd(cmul(cs, σ), cmul(ct ,−1)).

v ← σ · s− t; ov ← os · σ − ot ;
cv ← cadd(cmul(cs, σ), cmul(ct ,−1)).
cu ← cadd(cmul(ca, δ), cy).

Return (u, cu, ou, cv). Return (v, cv , ov , cu).

Instantiation of zero-knowledge proofs:

πcm1 := Fgzk[〈cm1:ϕ〉]
{(

w ∃sk
)

: (pk , sk) ∈ rkgen(n) ∧ w = dec(ew , sk)
}
.

πcm2 := Fgzk[〈cm2:ϕ〉]
{(

s ∃t, os, ot , rt
)

:

cvfy(cs, os, s) ∧ cvfy(ct , ot , t) ∧ ey = add(mul(ew , s), enc(pk , t, rt))
}
.

πcm3 := Fgzk[〈cm3:ϕ〉]
{(
∃y, w, oy , oa, sk

)
: (pk , sk) ∈ rkgen(n)∧

y = dec(ey , sk) ∧ w = dec(ew , sk) ∧ cvfy(cy , oy , y) ∧ cvfy(ca, oa, w + σ)
}
.

πcm4 := Fgzk[〈cm4:ϕ〉]
{(
∃oδ
)

: cvfy(cadd(cb, cmul(cs,−1)), oδ, δ)
}
.

Fig. 3.6: The Πmul sub-protocol.

The basic idea of the protocol is for P and Q to first obtain shares y and (−t) on the
product of two random values w and s, respectively: y − t = w · s; second to erase all
intermediate state used in the previous step; third to exchange the values σ = (a− w)
and δ = (b− s); and finally to obtain shares on the product of the actual input values
a and b by outputting u = δ · a+ y and v = σ · s− t, respectively. Commitments and
relevant proofs are used during all steps. We refer to Figure 3.6 for the construction.

The erasure in Step 2 is needed to ensure security against adaptive adversaries: since
the encryption scheme used in our protocol is not receiver–non-committing [CHK05a],
the simulator cannot produce a convincing view of the first step for any other value of
w. In fact, there are no known practical receiver–non-committing schemes that satisfy
our requirements. By erasing state in Step 2, the simulator is dispensed with producing
that view in Step 3.

3.3.3 Efficiency Considerations for the Zero-Knowledge Proofs in Πabb

Careful design enables us to achieve a very efficient and practical construction. In
particular, we minimize the amount of computation required inside the realization π

50 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

of the zero-knowledge proof functionality Fgzk, which accounts for the majority of the
runtime of our protocol, as follows.

1) Instead of using the Paillier encryption scheme as in Camenisch et al. [CKS11] to
verifiably encrypt the witnesses whose knowledge is proven in π, we use the Camenisch-
Shoup encryption scheme with short keys, short randomness, and with modulus n2.
Paillier encryption implies the use of a different modulus, since the simulator needs to
know its factorization to extract the witnesses.

2) We use homomorphic commitment and encryption schemes that work with groups
of the same order n. Most of the witnesses used in Fgzk therefore live in a group of
known order n, and most operations inside π stay inside groups of order n. We therefore
do not need to encrypt values larger than n in π, and can avoid expensive integer
commitments in π [CKS11].

3) We use the cheaper proofs of existence [CKS11] instead of proofs of knowledge
wherever possible. This reduces the number of verifiable encryptions needed inside π.

4) Finally, we use an encryption scheme in Πmul where the proof of correctness of
key generation is cheap. (For Camenisch-Shoup encryption with full key length and
Paillier encryption, this proof is very expensive.)

3.4 Additional Instructions for Fabb

We will start this section by showing how one can create a Fabb-hybrid protocol that
includes additional instructions for generating random numbers, random bits, inverting,
and doing several other useful operations. Certain useful instructions however require
that the Fabb functionality itself is modified and not just used as a building block:
we show here a new output instruction for Fabb that returns a value exponentiated
by a certain group element g instead of revealing the value directly; we will use that
instruction in Section 3.7 for constructing an oblivious pseudorandom function that is
secure against dynamic corruptions in the UC model.

3.4.1 Instructions as Part of a Higher-Level Protocol

Random integers. A random value can be shared as follows: P and Q each choose a

random number a
$← Zn and b

$← Zn , respectively, input it into Fabb, and finally sum
their inputs c← a+ b using the Linear Combination instruction. Provided that at least
one of the two is honest, the value c is uniformly distributed in Zn .

Random bits. P and Q can share a random bit as follows: P and Q each choose a
random number a

$← {−1, 1} and b
$← {−1, 1}, respectively, and input it to Fabb. They

then compute a2 and b2 using the Multiplication instruction, and reveal the result to
each other. The protocol aborts if a2 6= 1 or b2 6= 1. They then compute c← a · b. The
value c is now uniformly distributed in {−1, 1}, provided that at least one of the two
parties is honest and the factorization of n is unknown to both of them. To adjust the
random value to Z2, they can compute d← c · (2−1 (mod n)) + (2−1 (mod n)).

3.4. Additional Instructions for Fabb 51

Inversion. This algorithm is based on a technique by Bar-Ilan and Beaver [BIB89]:

1. Let V [k1] denote the value to invert.
2. P and Q choose a random integer V [k2] as shown earlier in this section.
3. They multiply both values: V [k3]← V [k1] ·V [k2].
4. The product is output first to P, and then to Q: v3 ← V [k3].
5. They invert the value: v4 ← v−1

3 (mod n) (abort if v3 is not invertible.);
6. and compute the result: V [k5]← V [k2] · v4 = V [k2] · (V [k1] ·V [k2])−1 = (V [k1])−1.

As long as V [k1] is invertible mod n, this protocol aborts with negligible probability,
is correct, and perfectly preserves the privacy of V [k1]. If V [k1] = 0, this fact will be
revealed. As we assumed the factorization of n to be unknown, we can safely ignore the
case where V [k1] is a multiple of a non-trivial factor of n.

Other useful operations. Our protocol is almost compatible with the algorithms by
Damg̊ard, Fitzi et al. [DFK+06] for performing comparisons (including inequalities),
bit decompositions, modular reduction, modular exponentiation, etc. of the values in
the circuit. Their setting assumed that the values in the circuit are in a prime order
group, but in our scheme n is composite. Fortunately the only operation that they use
in their paper that cannot be performed in a composite order group—finding a square
root modulo n—is needed only for generating random bits; by replacing that algorithm
by the version presented earlier, no more problems remain.

3.4.2 Modifying Fabb to Add New Instructions

Unfortunately there are some useful instructions that cannot be added “on top of” Fabb

as described in the previous subsection, but have to be included “inside” Fabb: the UC
composition theorem can therefore not be applied, and the security proof has to be
redone. We give here an example of such an instruction: it is a variant of the output
instruction that outputs not V [k] but gV [k], where 〈g〉 = G is some abelian group
(written multiplicatively) of order n.

Informal definition of the ideal functionality. The high-level description of the
additional instructions is the following:

• Exponentiated output to P: Fabb parses the common input ϕ as 〈k,G, g〉 where G
is the description of some group (written multiplicatively) of order n, and g ∈ G
is a generator of G. Fabb delivers gV [k] to P.

• Exponentiated output to Q: Idem, with the roles of P and Q reversed.

Formal definition of the ideal functionality. The formal definition of the additional
instructions is the following:

• Exponentiated output to P: In this instruction, parse ϕ as 〈k,G, g〉 where
k ∈ Λ?, G is the description of some group (written multiplicatively) of order n, and
g ∈ G is a generator of G.

– ep:p:ϕ : Accept 〈ep:p:ϕ〉 from P where k ∈ RP: send 〈ep:p:ϕ〉 to A.
– ep:q:ϕ : Accept 〈ep:q:ϕ〉 from Q where k ∈ RQ: send 〈ep:q:ϕ〉 to A.
– ep:lock:ϕ [ep:p:ϕ ∧ ep:q:ϕ] : Accept 〈ep:lock:ϕ〉 from A: send 〈〉 to A.

52 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

P.ExpOutputQ(ϕ) where ϕ = 〈k,G, g〉: Q.ExpOutputQ(ϕ) where ϕ = 〈k,G, g〉:
Here k ∈ Λ?, G the description of a group of order n, and g a generator of G.

Abort unless k ∈ RP.
v ← gSP[k].

Abort unless k ∈ RQ.

v, πeq

Output gSQ[k] · v.

Instantiation of zero-knowledge proofs:

πeq := Fgzk[〈eq:ϕ〉]
{(
∃XP[k], SP[k]

)
: cvfy(CP[k],XP[k], SP[k]) ∧ v = gSP[k]}.

Fig. 3.7: Exponentiated output to Q.

– ep:deliver:ϕ [ep:lock:ϕ] : Accept 〈ep:deliver:ϕ〉 from A:
send 〈ep:deliver:ϕ, gV [k]〉 to P.

– ep:done:ϕ [ep:lock:ϕ] : Accept 〈ep:done:ϕ〉 from A: send 〈ep:done:ϕ〉 to Q.

• Exponentiated output to Q: This is similar to the previous instruction, with
the roles of P and Q reversed, and the label prefix is changed to eq. We do not
formalize this instruction here.

Construction of exponentiated output to Q. Q retrieves an exponentiated value
gV [k], where G and g ∈ G can be chosen freely. Concretely, P exponentiates her share
and sends it to Q together with a proof of correctness. See Figure 3.7 for the construction.

3.5 Security Proof

We now show that the protocol of Section 3.3 with the extensions of Section 3.4.2
realizes Fabb. We start with a description of the main ideas of the security proof before
presenting the full proof. The full proof proceeds in two steps: we first prove that
our protocol is secure when run with nice environments. We then apply the special
composition theorem of Camenisch et al. [CKS11] to prove that our protocol is secure
against all environments.

3.5.1 Main Ideas

We use the standard approach for proving the security of protocols in the UC or
GNUC models: we construct a straight-line simulator S such that for all polynomial-
time–bounded environments E and all polynomial-time–bounded adversaries A, the
environment E cannot distinguish a protocol execution with A and Πabb in the (Fac,
Fgzk)-hybrid “real” world from a protocol execution with S and Fabb in the “ideal”
world. We prove that E cannot distinguish these two worlds by defining a sequence of
intermediate “hybrid” worlds (the first one being the real world and the last one the
ideal world) and showing that E cannot distinguish between any two consecutive hybrid
worlds in that sequence. We follow the formalism of the GNUC framework to deal with
CRS’s and system parameters (see Section 10 of the GNUC paper [HS11]).

3.5. Security Proof 53

The main difficulties in constructing the simulator S are as follows: 1) S has to
extract the inputs of all corrupted parties; 2) S has to compute and send commitments
and ciphertexts on behalf of the honest parties without knowing their inputs, i.e., S
cannot commit and encrypt the right values; 3) when an honest party gets corrupted
mid-protocol, S has to provide to A the full non-erased intermediate state of the party,
in particular the opening of the commitments and the randomness of the encryptions.

To address the first difficulty, recall that the parties are required to perform a proof
of knowledge of all new inputs to the circuit. The simulator S can therefore recover the
input of all corrupted parties with the help of Fgzk. In the first few hybrid worlds, the
statistically binding commitments ensure that the values in the circuit stay consistent
with the inputs. In the subsequent hybrid worlds, the computational indistinguishability
of the two types of CRS ensure that the adversary cannot equivocate commitments even
when S uses the perfectly-hiding CRS with trapdoor.

We now address the second and third difficulty. Upon corruption of a party, S is
allowed to recover the original input of that party from Fabb. By using the perfectly-
hiding CRS with trapdoor, S can equivocate all commitments it made so far to ensure
that the committed values are consistent with the view of the adversary. By construction,
S never needs to reveal the randomness used for an encryption for which it does not
know the plaintext. Recall that in Πmul, the parties first encrypt a random offset, then
erase the decryption key and the randomness used to encrypt, and only then deliver the
encryption of the offset plus party’s input to the adversary (recall that Fgzk allows the
erasure of witnesses before delivering the statement to be proven to the other party).
The simulator S can adjust the offset so that the view delivered to the adversary is
consistent. See also Appendix A.2 of Ishai et al.’s paper [IPS08].

The rest of the security proof is now straightforward.

3.5.2 Security Proof

Let Π
Fgzk→π
abb be the (Fsch,Fac)-hybrid protocol in which every instance of Fgzk in Πabb

has been replaced by the zero-knowledge protocol π described in Camenisch et al.’s
paper [CKS11]. To prove our scheme secure, we need to prove the following theorem:

Theorem 3.2. Assuming the CRH encryption scheme is semantically secure and the

DDH assumption holds for safe-semiprime order groups, the protocol Π
Fgzk→π
abb realizes

Fabb.

To prove the theorem, we first need the following two definitions and prove the following
lemma.

Definition 3.3 (Nice envionrments [CKS11]). A nice environment is an environ-
ment that never asks A to submit a false statement to Fgzk and F2v

gzk.

Definition 3.4 (Fgzk-friendly protocols [Kre12]). A Fgzk-friendly protocol is a pro-
tocol in which honest parties acting as provers only prove true statements with Fgzk and
F2v

gzk.

Lemma 3.5. Assuming the CRH encryption scheme is semantically secure and the
DDH assumption holds for safe-semiprime order groups: there exists a simulator S that

54 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

does not extract the witnesses quantified by ∃ in any Fgzk, such that for all PPT nice
environments E and the dummy adversary A: Exec(Πabb,A, E) and Exec(Fabb,S, E)
are computationally indistinguishable.

In the above, the system parameter n is chosen by rgen(1η) before E starts executing.

Proof of Lemma 3.5. In Section 3.5.3, we construct a simulator S and prove that is
satisfies the requirements of the Lemma 3.5.

Proof of Theorem 3.2. Since the simulator we constructed in Section 3.5.3 satisfies
the requirements of Lemma 3.5, and since, by construction, Πabb is a Fgzk-friendly
protocol, it follows from the special composition theorem of Camenisch et al. [CKS11]
that Theorem 3.2 holds.

3.5.3 Proof of Lemma 3.5

Notation. We adopt the convention that the ideal functionalities in the (Fgzk,Fac)-
hybrid “real” world (and which are controlled by S) are surrounded by quotes: “Fgzk”
and “Fac”. Note that S does not have to run these ideal functionalities honestly, it just
needs to ensure that the messages S sends on their behalf are indistinguishable from an
honest execution. Furthermore, we denote the parties in the real world as “P” and “Q”.
When such a party is honest, it is controlled by S; when that party is corrupted, it is
controlled by the adversary A.

The simulator S is a six-interface system. The simulator S communicates with Fabb

through 3 interfaces: the S-interface (where Fabb sends data to and receives data from
the ideal adversary), the P-interface (which is active only after P becomes corrupted, and
where Fabb sends data to and receives data from the corrupted P) and the Q-interface
(idem but for Q). The simulator S runs one instance of the real-world adversary A. It
relays all messages between E and A. The simulator S communicates with A through 3
interfaces: the “A”-interface (connected to the adversary interfaces of all “Fgzk” and
“Fac” used in the protocol execution), the “P”-interface (which is active only after P
becomes corrupted, and which is connected to the P-interface of all “Fgzk” and “Fac”
used in the protocol execution), and the “Q” interface (idem for Q). See Figures 3.8, 3.9,
3.10, and 3.11 for a schematic representation of the construction of S in the cases where
no parties are corrupted, P is corrupted, Q is corrupted, and all parties are corrupted,
respectively.

3.5.3.1 Initialization

Before runningA for the first time, S programs the CRS using cgen′0 so that commitments
are perfectly hiding, and so that S knows the trapdoor tc which will enable it to equivocate
all commitments it makes on behalf of “P” and “Q”.

Recall that since n is part of the system parameters, S does not know its factorization.

3.5.3.2 P and Q Honest

When P and Q are both honest, A sees only status messages without any content. The
construction of S is therefore straightforward. See Figure 3.8. For completeness, we
will show the behaviour of S for the Input from P and Multiplication instructions. The
behaviour of S for all other instructions is similar to its behaviour for Input from P.

3.5. Security Proof 55

Fabb

PS

E“Fgzk”

Q

A S-interface
“A”-interface

Fig. 3.8: Construction of S in case all parties are honest. For simplicity, we chose to
represent only one ideal functionality in the construction of S.

Input from P. Upon receiving 〈ip:send:ϕ〉 from Fabb (through the S-interface),
send 〈send, `(. . .)〉 to A (through the “A”-interface). The length of the statement and
witnesses is fixed, so S knows what value `(. . .) to send.

Upon receiving 〈ip:ready:ϕ〉 from Fabb, send 〈ready〉 to A.
Upon receiving 〈lock〉 from A, send 〈ip:lock:ϕ〉 to Fabb. Wait for 〈〉 from Fabb,

and send 〈〉 to A.
Upon receiving 〈deliver〉 from A, send 〈ip:deliver:ϕ〉 to Fabb.
Upon receiving 〈done〉 from A, send 〈ip:done:ϕ〉 to Fabb.

Multiplication. This instruction is more complex than all others, since it contains
several independant instances of “Fgzk”. We divide the “A”-interface into m sub-
interfaces (numbered from 1 to m), one for each instance of “Fgzk”.

Upon receiving 〈m:p:ϕ〉 from Fabb, send 〈send, `(. . .)〉 to A via the first sub-interface
(of the “A”-interface). The length of the statement and witness is fixed, so S knows
what value `(. . .) to send.

Upon receiving 〈m:q:ϕ〉 from Fabb, send 〈ready〉 to A via the first sub-interface.
Upon receiving 〈lock〉 from A via the ith sub-interface, where i 6= m, send 〈〉 to A

via the ith sub-interface.
Upon receiving 〈lock〉 from A via the mth sub-interface, send 〈m:lock:ϕ〉 to Fabb.

Wait for 〈〉 from Fabb, and send 〈〉 to A via the mth sub-interface.
Upon receiving 〈done〉 from A via the ith sub-interface, where i 6= m, send 〈ready〉

to A via the (i+ 1)st sub-interface.
Upon receiving 〈deliver〉 from A via the ith sub-interface, where i 6= m, send 〈send,

`(. . .)〉 to A via the (i+ 1)st sub-interface. The length `(. . .) is easy for S to determine.
Upon receiving 〈done〉 from A via the mth sub-interface, send 〈m:done:p:ϕ〉 to Fabb.
Upon receiving 〈deliver〉 from A via the mth sub-interface, send 〈m:done:q:ϕ〉 to

Fabb.

56 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

Fabb

S

E“Fgzk”

Q

A

“P” P-interface

S-interface
“A”-interface

“P”-interface

Fig. 3.9: Construction of S in case P is corrupted.

3.5.3.3 P Corrupted First

Without loss of generality, we may assume that whenever P gets corrupted, all of her
subroutines are immediately corrupted as well. We only need to show how S operates in
the case that P starts out corrupted: if P gets corrupted later, S starts by recovering P ’s
input by sending one 〈ip:expose:ϕ〉 message to Fabb for each Input by P instruction
that has already processed the 〈ip:send:ϕ〉 message. The simulator S also recovers P ’s
external witnesses from each Proof by P instruction that has processed the 〈pp:send:ϕ〉
message but not the 〈pp:lock:ϕ〉 message by sending 〈pp:expose:ϕ〉 to Fabb. Now, S
internally restarts the simulation of “P” from the beginning until the point where she
was corrupted. For all instructions except the Proof by P that have already processed
the 〈pp:lock:ϕ〉 message, S can perfectly re-create “P”’s input. For the Proof by P
instructions that have processed the 〈pp:lock:ϕ〉 message, S can use arbitrary input
(of the correct length!) for “P”, since that input will be erased by “P” and since it does
not affect the remainder of the protocol. Finally, S hands over the internal state of “P”
to A. This state is perfectly consistent with A’s view so far. Of course, we will have
to deal with the possibility that Q is corrupted later on, which we tackle later in this
section.

Overview. Recall that when P is corrupted, S must play P for Fabb based on the
actions of “P” (assumed by A), and must play “Q” for A without knowing the correct
input of Q. See Figure 3.9.

In constructing the simulator, we maintain the invariant that S knows the value of
“P”’s shares SP[k] when these are ready to be used, i.e., k ∈ RP.

Input from P. For this instruction, S simply needs to extract the input of “P” from
the messages flowing on the “P”-interface or the “A”-interface. We show here the exact
behaviour of S for completeness.

Upon receiving 〈send, 〈CP[k]〉, 〈v〉, ...〉 through the “P”-interface, save v as SP[k].
Send 〈send〉 through the “A”-interface.

Upon receiving 〈reset, 〈CP[k]〉, 〈v〉, ...〉 through the “A”-interface, update SP[k]
with the new value of v. Send 〈〉 through the “A”-interface.

3.5. Security Proof 57

Upon receiving 〈expose〉 through the “A”-interface, send 〈expose, 〈CP[k]〉, 〈SP[k]〉〉
through the “A”-interface.

Upon receiving 〈ip:ready:ϕ〉 through the S-interface, send 〈ready〉 through the
“Q”-interface.

Upon receiving 〈lock〉 through the “A”-interface, send 〈ip:send:ϕ,SP[k]〉 through
the P-interface. Wait for 〈ip:send:ϕ〉 through the S-interface, send 〈ip:lock:ϕ〉 through
the S-interface. Wait for 〈〉 through the S-interface, send 〈〉 through the “A”-interface.

Upon receiving 〈deliver, `〉 through the “A”-interface, send 〈ip:deliver:ϕ〉 through
the S-interface.

Upon receiving 〈done〉 through the “A”-interface, send 〈ip:done:ϕ〉 through the
S-interface. Wait for 〈ip:done:ϕ〉 through the P-interface, send 〈done〉 through the
“P”-interface.

Input from Q. For this instruction, S needs to generate an equivocable commitment
to Q’s input, which S doesn’t know.

The construction of S in response to the send, ready, lock and done messages is
straightforward.

Upon receiving 〈deliver, `〉 through the “A”-interface, commit to 0 using an equivo-

cable commitment: (SQ[k],XQ[k])
$← com(0), and send 〈deliver, 〈SQ[k]〉〉 through the

“P”-interface.

Output to P. In this instruction, S recovers the value that is output from the circuit
from Fabb just in time to be able to play “Q” in a consistent manner.

The construction of S in response to the q, ready, and done messages is straightfor-
ward.

Upon receiving 〈lock〉 through the “A”-interface, S sends 〈op:lock:ϕ〉 through the
S-interface and expects 〈〉 through the S-interface. Then, S sends 〈op:deliver:ϕ〉
through the S-interface, and expects 〈op:deliver:ϕ,V [k]〉 through the P-interface,
thereby recovering V [k].

Upon receiving 〈deliver, `〉 through the “A”-interface, S sends the message
〈deliver,V [k]− SP[k]〉 through the “P” interface.

Exponentiated output to P. For this instruction, S behaves similarily than for the
Output to P instruction. The difference is that it receives 〈ep:deliver:ϕ, gV [k]〉 through
the P-interface, and sends 〈deliver, gV [k]/gSP[k]〉 through the “P”-interface.

Output to Q. The simulation of this instruction is straightforward.

Exponentiated output to Q. The simulation of this instruction is straightforward.

Linear combination. The simulation of this instruction is straightforward. Addition-
ally, S computes “P”’s share SP[k0] based on the values of SP[ki] (which S knows).

Proof by P. The simulation of this instruction is also relatively straightforward.
Futhermore, we explain why S also works properly in the security proof of Πabb, the
realization of Fgabb which allows one to prove the existence of external witnesses.
S’s reaction to the ready, done, and deliver messages is straightforward.
Upon receiving 〈send, x, w, ...〉 through the “P”-interface, save x and w. Send

〈send, `(x,w)〉 through the “A” interface.

58 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

Fabb

PS

E“Fgzk”A

“Q” Q-interface

S-interface
“A”-interface

“Q”-interface

Fig. 3.10: Construction of S in case Q is corrupted.

Upon receiving 〈reset, x, w, ...〉 through the “A”-interface, save the updated x and
w. Send 〈〉 through the “A” interface.

Upon receiving 〈expose〉 through the “A”-interface, send 〈expose, x, w〉 through the
“A”-interface.

Upon receiving 〈lock〉 through the “A” interface, send 〈pp:send:ϕ, x, |w|, w, 0,
〈〉〉 through the P-interface. Expect 〈pp:send:ϕ, `〉 through the S-interface. Send
〈pp:lock:ϕ〉 through the S-interface, expect 〈〉 through the S-interface. Send 〈〉 through
the “A”-interface.

Proof by Q. The simulation of this instruction is straightforward.

Multiplication. See the next paragraph for the behaviour of S inside Πmul: S recovers
“P”’s private outputs ũ and u. The simulation of the remainder of this instruction is
straightforward. Additionally, S computes “P”’s share SP[k0] based on the values of
SP[k1], SP[k2], ũ and u (which S knows).

Sub-protocol Πmul. Recall that S knows “P”’s input a from the Multiplication in-
struction. The construction of the simulator is straightforward, expect for three changes
where S deviates from the honest execution.

First, when receiving 〈send, 〈ew , pk〉, w, . . .〉 through the 〈cm1:λ〉 sub-interface of
the “P”-interface, S saves the value w instead of discarding it.

Second, instead of sending the correct 〈deliver, 〈cs, ct , ey〉〉 message through the

〈cm2:λ〉 sub-interface of the “P”-interface, S chooses a random y, encrypts it (ey , ry)
$←

enc(y), and delivers the inconsistent ey . Note that S will never have to show ry , since
“Q” would have erased that value already.

Third, instead of sending the correct 〈deliver, δ〉 message through the 〈cm4:λ〉
sub-interface of the “P”-interface, S chooses a random δ, and delivers it.

Finally, S recovers “P”’s output as follows: u← δ · a+ y (with the values of y and δ
that S chose). Notice that S did not use “Q”’s input b.

3.5. Security Proof 59

3.5.3.4 Q Corrupted First

This case is similar to the case where P was corrupted first. For all instructions except
Πmul, S’s behaviour can be inferred from its behaviour in the case where P was corrupted
first. See Figure 3.10.

Sub-protocol Πmul. Recall that S knows “Q”’s input b from the Multiplication in-
struction. The construction of the simulator is straightforward, expect for two changes
where S deviates from the honest execution.

First, when receiving 〈send, 〈cs, ct , ey〉, s, . . .〉 through the 〈cm2:λ〉 sub-interface of
the “Q”-interface, S saves the value s instead of discarding it.

Second, instead of sending the correct 〈deliver, 〈cy , σ〉〉message through the 〈cm3:λ〉
sub-interface of the “Q”-interface, S chooses a random σ, and delivers that. S will never
have to show sk , since “P” would have erased that value already.

Finally S recovers “Q”’s output v as follows: s← b− δ; t← y − w · s; v ← σ · s− t
(using the value of σ that S chose). Notice that S did not use “P”’s input a.

3.5.3.5 Adjusting “Q”’s State When Q is Corrupted Second

When Q gets corrupted second, S needs to come up with a believable internal state for
“Q”. In order to do so, S sets “Q”’s internal state (SQ, XQ and local variables) in each
instruction, in the order in which they were processed, as follows:

Input from P. The adjustements to make are straightforward.

Input from Q. If S accepted the 〈iq:send:ϕ〉 message, S recovers the orignal input of
Q: S sends 〈iq:expose:ϕ〉 through the S-interface, and expects 〈iq:expose:ϕ,SQ[k]〉
through the S-interface. S now adjusts the opening XQ[k] of the commitment CQ[k],
i.e., S uses the Trap to find a new value of the opening XQ[k] of the commitment CQ[k]
so that cvfy(CQ[k],XQ[k],SQ[k]) = true.

Output to P. The adjustements to make are straightforward. Notice that the value
(V [k]−SP[k]) that S delivered is equal to SQ[k] as expected, unless A somehow managed
to equivocate one of her commitments.

Output to Q. The adjustements to make are straightforward.

Exponentiated output to P. The adjustements to make are straightforward. Notice
that the value (gV [k]/gSP[k]) that S delivered is equal to gSQ[k] as expected, unless A
somehow managed to equivocate one of her commitments.

Exponentiated output to Q. The adjustements to make are straightforward.

Proof by P. The adjustements to make are straightforward.

Proof by Q. If S accepted the 〈pq:send:ϕ〉 message, but did not yet deliver the
〈pq:lock:ϕ〉 message, A still has a chance to send 〈expose〉 to S through the “A”-
interface, and therefore S needs to recover Q’s input, i.e., x and w. S sends
〈pq:expose:ϕ〉 through the S-interface, and expects 〈pq:expose:ϕ, x,w〉. S saves x.

The remainder of the adjustements to make are straightforward.

60 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

Linear combination. S computes “Q”’s share SQ[k0] based on the other shares SQ[ki],
and adjusts the opening XQ[k0].

Multiplication. S performs the necessary adjustements inside the Πmul subroutine. S
will recover “Q”’s output ṽ and v from Πmul.
S computes “Q”’s share SQ[k0] based on SQ[k1], SQ[k2], ṽ, and v. S adjusts the

opening XQ[k0].
The remainder of the adjustements to make are straightforward.

Sub-protocol Πmul. IfQ gets corrupted before the delivery of the 〈deliver, 〈cs, ct , ey〉〉
message through the 〈cm2:λ〉 sub-interface of the “P”-interface, the adjustements to
make are trivial.

If Q gets corrupted after the delivery of the 〈deliver, 〈cs, ct , ey〉〉 message through
the 〈cm2:λ〉 sub-interface of the “P”-interface, but before the delivery of the 〈deliver,
δ〉 message through the 〈cm4:λ〉 sub-interface of the “P”-interface, S is committed to its
“incorrect” ey . Since A can decrypt that value, S is therefore also committed to y. S
needs to find s and t consistent with y: S sets s at random, and computes t← y −w · s.
S then adjusts the opening os and ot using the trapdoor. S does not need to compute
rt , as it can claim that “Q” securely erased that value already. et can be re-computed
from ey , ew and s.

IfQ gets corrupted after the delivery of the 〈deliver, δ〉message through the 〈cm4:λ〉
sub-interface of the “P”-interface, S is committed to ey (i.e., to y) and to δ. S sets
s← b− δ, t← y−w · s, v ← σ · s− t, and adjusts the openings ot , os , and ov using the
trapdoor. S now knows the correct output of “Q”.

The remainder of the adjustements to make are straightforward.

3.5.3.6 Adjusting “P”’s State when P is Corrupted Second

This case is similar to the case where Q was corrupted second. For all instructions
except Πmul, S’s behaviour can be inferred from S’s behaviour in the case where Q was
corrupted second.

Sub-protocol Πmul. If P gets corrupted before the delivery of the 〈deliver, 〈cy , σ〉〉
message through the 〈cm3:λ〉 sub-interface of the “Q”-interface, the adjustements to
make are trivial.

If P gets corrupted after the delivery of that message, S is bound to w (via ew and
pk) and to σ (which was delivered to A). However at this point, S can claim that “P”
already securely erased rw and sk , and so it can get away with revealing a value of w
that is inconsistent with ew and pk (the semantic security of CRH cryptosystem hides
that inconsistency, as proven more formally later). S now needs to adjust the values y
and w in “P”’s internal state: S computes w′ ← a− σ and y′ ← (w′ − w) · s+ y, and
replaces y by y′ and w by w′ in “P”’s internal state. Furthermore S adjusts oy using
the trapdoor. Finally, S recomputes “P”’s output u: u ← δ · a + y′ and adjusts the
opening ou using the trapdoor.

3.5. Security Proof 61

Fabb

S

E“Fgzk”A

“P”

“Q”

P-interface

Q-interface

S-interface
“A”-interface

“P”-interface

“Q”-interface

Fig. 3.11: Construction of S in case all parties are corrupted.

3.5.3.7 Both Parties Corrupted

Once S has handed over the complete non-erased internal state of the second corrupted
party to A, the simulation is trivial: S runs “Fgzk” and “Fac” honestly, and does not
send any messages to Fabb. See Figure 3.11.

3.5.3.8 Proof of Indistinguishability

We are going to define a sequence of games Game1 to GameNgames
, as described by

Shoup [Sho04]. In the first game, everything is distributed as in the protocol Πabb,
whereas in the last game everything is distributed as in the ideal world Fabb. By
the piling-up lemma, the advantage of E is less than the sum of the advantages in
distinguishing between Gamei and Gamei+1. We are going to prove that E only has
negligible advantage in distinguishing between two consecutive games, based either on
a reduction to a hard cryptographic problem, or by “failure events” happening with
negligible probability. As long as the number of games is polynomial w.r.t. the security
parameter, the total advantage of E is negligible.

We stress that in all intermediate games, E and A interact with a machine that
runs both Fabb and Si. Without loss of generality, we assume that Si thus obtains the
inputs and outputs of all honest parties from Fabb. It is only in the last game, which is
identical to the “ideal world” and where S is equal to Si, that Si does not make use of
these inputs and outputs.

Game1. As observed in the previous paragraph, S1 receives the input of all honest
parties. S1 simply runs the parties it controls honestly, and exposes their internal state
to A when corrupted. S1 generates the CRS honestly using cgen1. By construction,
this setting is perfectly indistinguishable from the (Fgzk,Fac)-hybrid “real” world Πabb.

Game2. S2 runs like S1, except that it aborts if A’s output is inconsistent with its
inputs at any time during the protocol. The probability that S2 aborts is at most the
probability that the commitment was not binding after all, which is negligible.

62 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

Game3. S3 runs like S2, except that now it chooses the CRS with cgen′0 instead of
cgen1. The commitment scheme is now perfectly hiding, and S3 can now efficiently
equivocate commitments using the trapdoor information. The advantage that E has in
distinguishing between Game3 and Game2 is equal to its advantage in breaking DDH in
the group modulo p generated by g , which is negligible.

Game4. S4 runs as S3, except that during the Πmul subroutines, it behaves as described
earlier in this section, i.e., it ignores the input of the parties it controls during the Πmul

protocol and reconstructs a plausible history upon corruption. It is easy to see that the
only way E can get an advantage in distinguishing between Game4 and Game3 is, if upon
corruption of “P”, it notices that the values w, ew and pk are inconsistent. We now
argue that the advantage of E is at most the advantage E has in breaking the semantic
security of the Camenisch-Shoup cryptosystem times the number of Πmul sub-protocols
that “P” started, which is still negligible.

Let NΠmul
be the number of times “P” calls Πmul in Πabb.

We now define a polynomial number of hybrid games Game3:0 to Game3:NΠmul
, where

in Game3:i S behaves like S4 for the first i calls to Πmul, and like S3 for the subsequent
calls. Clearly Game3:0 is exactly Game3 and Game3:NΠmul

is exactly Game4.
If there exists E which has non-negligible advantage γ in distinguishing between

Game4 and Game3, then there must exist another environment E ′ and a value i ∈ N∗NΠmul

such that E ′ has advantage γ/NΠmul
in distinguishing between Game3:i and Game3:i−1,

which is still a non-negligible advantage.
We now show how S can use such an E ′ to break the semantic security of the CRH

cryptosystem function with advantage γ/NΠmul
.

In the ith run of the Πmul protocol on behalf of “P”, instead of computing ew
honestly, S submits two plaintexts w and w′ to the challenger of the semantic security
game, yielding a challenge plaintext ew̄ which is either equal to the consistent ew or the
inconsistent ew ′, and a public key pk . Recall that S does not need to know the value of
w in order to properly run the simulation; w is only needed upon corruption of P. S
now uses ew̄ instead of ew .

If P becomes corrupted before the delivery of σ in the ith Πmul protocol, then S
aborts the simulation (it cannot produce a convincing value of sk) and returns a random
guess to the challenger. Since in this run the view of E ′ would have been perfectly
indistinguishable, S does not lose any advantage by aborting.

If however P become corrupted after the delivery of σ (or not at all), then S will
produce an internal state for “P” that contains, among others: w, ew̄ , and pk . S returns
the same guess as E ′ to the challenger: if ew̄ = ew then the view of E ′ is exactly that of
Game3:i−1, and if ew̄ = ew ′ then the view is exactly that of Game3:i.

The distinguishing advantage of E between Game4 and Game3 is therefore negligible.

Game5. S5 runs as described earlier in this section for all instructions, and not just
Πmul. By construction, S5 does not need to know the input of the honest parties
(S5 extracts it from Fabb) and S5 ’s behaviour is perfectly indistinguishable from S’s
behaviour in the ideal world. The difference between Game5 and Game4 is zero, thanks
to the perfectly hiding commitments.

Conclusion. This concludes the proof of Lemma 3.5, i.e., Πabb securely implements
Fabb for all nice environments.

3.6. Related Work and Comparison 63

3.6 Related Work and Comparison

There is an extensive literature on the subject of multi-party computation (MPC);
however, most of these settings consider only the case of an honest majority, which is
not helpful for the two-party case.

Canetti et al. [CLOS02] present the first MPC protocols for general functionalities
that are secure with dishonest majority in the UC framework; however, these protocols
are rather a proof of concept, i.e., they are not at all practical, as they rely on generic
zero-knowledge proofs.

More efficient MPC protocols for evaluating boolean circuits, secure with dishonest
majority, have been designed [LP07,LPS08,NO09,PSSW09]. Impressive results have
been obtained in particular for the evaluation of the AES block cipher [PSSW09,DK10,
DKL+12,KshS12,NNOB12]. While such protocols could be used to evaluate arithmetic
circuits modulo n, a heavy price would have to be paid: each gate in the arithmetic
circuit would “blow up” into many boolean gates, resulting in an impractical protocol.

The first practical protocols for evaluating arithmetic circuits modulo n were presented
by Cramer et al. [CDN01] (CDN-protocol) and Damg̊ard and Nielsen [DN03] (DN-
protocol). While both protocols assume an honest majority, they can be shown to be
secure in the two-party case (as noted by Ishai et al. [IPS09, IPS08]) if one relaxes the
requirement for fair delivery of messages (fair delivery is impossible in the two-party
case). Both protocols have stronger set-up assumptions than ours: they assume the
existence of a trusted third party that distributes shares of the secret key to all parties.
The CDN-protocol is only statically secure and is not UC-secure, and we therefore
exclude it from our comparison. The DN-protocol is adaptively secure (with erasures) in
the UC model (secure without erasures only in the honest majority case), and is slightly
(about 30%) slower than ours.

Ishai et al. [IPS08,IPS09] present protocols for evaluating arithmetic circuits in several
algebraic rings, including one for the ring Zn for a composite n. These protocols achieve
security with a dishonest majority, and are secure with respect to adaptive corruptions
(assuming erasures), but only against honest-but-curious adversaries. They note that
standard techniques can be used to make their protocols secure also for malicious
adversaries, however it is not clear if the resulting construction will be practical. Our
protocol draws on ideas from their construction, however we are able to achieve a
significant speed-up compared to a naive implementation using “standard techniques”
by ensuring that all commitments live in Zn and by using the short-key variant of the
homomorphic encryption scheme.

Damg̊ard and Orlandi [DO10a] (DO-protocol), as well as Bendlin et al. [BDOZ11]
(BDOZ-protocol), give protocols for evaluating arithmetic circuits modulo a prime p.
Damg̊ard et al. [DPSZ12] (SPDZ-protocol) later improved upon the BDOZ-protocol.
These protocols divide the workload into a computationally intensive pre-processing
phase and a much lighter on-line phase. The pre-processing phase is statically secure,
however the on-line phase can be made adaptively secure (in the UC-model) [DO10a,
BDOZ11,DPSZ12]. These papers optimize the runtime of the on-line phase (the BDOZ-
and SPDZ-protocols make use of local additions and multiplications only). In the pre-
processing phase of these protocols, it is necessary to prepare for many multiplications
gates (about 80 in the BDOZ-, several hundred in the DO-, and tens of thousands

64 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

in the SPDZ-protocol) making these protocols impractical for small circuits. This
pre-processing phase takes several minutes even for reasonable security parameters. Our
protocol is better suited for small circuits.

Even for large circuits, the computational complexity of our protocol is about 3.3
times lower than that of the BDOZ- and DO-protocols. It must be noted that the
BDOZ- and DO-protocols have slightly weaker setup assumptions than ours: they only
require a random string as the CRS, while we also need an RSA modulus with unknown
factorization as a system parameter. (This is not a huge drawback of our protocol,
see Section 3.2.1.)

The SPDZ-protocol is about an order of magnitude faster than our protocol, however,
unlike the BDOZ-, DO-, and our protocols, it cannot evaluate reactive circuits, severely
limiting its applicability in the real world. It also requires a trusted key setup, which
is a stronger setup assumption than ours. (Concurrently to our work, Damg̊ard et
al. [DKL+13] lifted the restriction on reactive circuits, but only in the random oracle
model. They also lifted the restriction on the trusted key setup but only for covert
security.)

None of the UC-secure protocols discussed have an equivalent to the Proof instruction
in their ideal functionality. This makes it hard to compose them with other protocols
because of the issue with non-committed inputs in a 2-party setting, as dicussed in the
introduction, thus negating some of the advantages of working in the UC model.

3.6.1 Efficiency Comparison

Table 3.1 summarizes the amortized runtimes per multiplication gate of our protocol,
the DN- (when run as a 2-party protocol), the DO-, and the BDOZ-protocols. We
assume that the runtime of an exponentiation with a fixed modulus length scales linearly
with the size of the exponent. Let exp.n denote the runtime per bit in the exponent of
an exponentiation modulo n or modulo p,5 and similarily exp.n2 for exponentiations
modulo n2. Let lb n be equal to log2(n). Recall that η denotes security parameter. For
each protocol, we counted the number of exponentiations with an exponent of at least η
bits. Faster operations, in particular multiplications and divisions, are ignored. We also
ignored the time needed for secure channel setup, did not consider multi-exponentiations,
and ignored network delay. We provide an estimate of the runtime when run with the
“smallest general purpose” security level of the Ecrypt-II recommendations [BCC+11]
(η = 80, lb n = 1248) on a standard laptop with a 64-bit operating system.6

For a fair comparison, we replace all Paillier encryptions [Pai99] in the protocols we
compare with by Paillier encryptions with short randomness. The encryption function

is thus changed as follows: r
$← Zb√nc, c ← (1 + n)mgr (mod n2); output c. (Where

g = (g ′)n is pre-computed and part of the public key.)

5 In practice, exponentiations modulo p are only a few percent slower than modulo n.
6 The computer used for the benchmarks had an Intel i7 Q820 processor clocked at 1.73 GHz.

We used version 5.0.2 of the GNU Multiple Precision Arithmetic Library.

3.6. Related Work and Comparison 65

Amortized runtime per multiplication gate with η=80

This work (90 · η + 200 · lb n) exp.n + (66 · η + 40.5 · lb n) exp.n2 602 ms
2-party DN-protocol [DN03] (216 · η + 130 · lb n) exp.n2 862 ms
DO-protocol [DO10a] (2004 · η + 151 · η2) exp.n + (84 · η + 88 · lb n) exp.n2 2025 ms
BDOZ-protocol [BDOZ11] (256 · η + 368 · lb n) exp.n2 2303 ms

Table 3.1: Estimated amortized runtime per multiplication in various protocols. The
numbers in the last column are for η = 80, lb n = 1248, exp.n = 1.3 µs, and exp.n2 =
4.8 µs. Results for our work use the optimized variant of our Multiplication instruction.
Results for the DO-protocol and the BDOZ-protocol are for circuits having a multiple
of 4.8 · η and η multiplication gates, respectively; the performance of these protocols
degrades dramatically for smaller circuits. For the DO-protocol we used parameters
λ = 0.25 and B = 3.6 · η.

3.6.2 Comments about the Efficiency of Related Work

Here we comment on the performance of the DO-protocol and the BDOZ-protocol, both
of which use a very different approach than our protocol and the DN-protocol.

DO-protocol. In the DO-protocol, the computational load is split between a pre-
processing and an on-line phase [DO10a]. Their protocol optimizes the cost of the
on-line phase, at the expense of the pre-processing phase. The crux of the pre-processing
phase is to generate so-called triplets of commitments to random values (a, b, c), where
c = a · b. One triplet is required per multiplication gate. Instead of using traditional
zero-knowledge proofs, they uses a technique called “cut-and-choose”, where P generates
a number of triplets without proof, and then selectively reveals a fraction of these to Q.
Afterwards, P and Q “distill” the remaining triplets—which involves interpolation with
Lagrange polynomials—to obtain UC-secure triplets.

Their approach however suffers from two drawbacks: 1) a large number of triplets
have to be generated no matter what, and then used up during “distillation” to ensure
security, and 2) due to the Lagrange interpolation, the runtime of the pre-processing
phase is quadratic in the number of triplets generated in each batch.

In our analysis in Table 3.1, we used the parameters λ = 0.25 and B = 3.6 · η as
recommended. We computed the amortized runtime (offline + on-line) per muliplication
gate when doing exactly 4.8 · η multiplications (the value 4.8 · η was chosen because
it comes to within 1% of the minimum runtime per gate for security levels η = 80,
η = 96, and η = 112). When more multiplications gates are required, the pre-processing
phase should be done in batches of 4.8 · η. Note that no matter how many triplets are
generated, the pre-processing phase is very slow—at least four minutes for η = 80.

BDOZ-protocol. Similarily to the DO-protocol, in the BDOZ-protocol the computa-
tional load is split between a heavy pre-processing phase and a very fast on-line phase
(with essentially no cryptographic operations) [BDOZ11]. Like in the DO-protocol, a
number of triplets are generated during the pre-processing phase. The technique used to
generate them is somewhat different, and as observed by the authors is slightly slower:
triplets are generated in batches of η, and a Σ-protocol (with binary challenge run on η
instances simultaneously) ensures correctness.

66 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

In our analysis in Table 3.1, we determined the amortized runtime per multiplication
gate in the pre-processing phase. The online phase was not considered, since it only
consists of modular additions and multiplications.

3.7 Example of a Useful Protocol Constructed with Fabb

In this section we give an example of how to use our framework to construct a UC-secure
variant of the Dodis-Yampolskiy oblivious pseudorandom function [DY05] in a group
of order n as originally proposed by Jarecki and Liu [JL09]. Jarecki and Liu proposed
a two-party protocol for computing the following oblivious pseudorandom function
(OPRF) [JL09], inspired by a similar construct by Dodis and Yampolskiy [DY05]:

fy(x) =

{
g1/(y+x) if gcd(y + x,n) = 1

1 otherwise

where P ’s private input is x, Q’s private input is y, P ’s output is fy(x) and Q’s receives
a bit b where b = 0 iff gcd(y + x,n) = 1.

Their protocol is only secure against static corruptions and has not been proven to
be UC secure, which is unfortunate since many of the applications they proposed in
their paper would benefit from being able to treat the OPRF generation protocol as
a black box. We remedy to this situation here by leveraging Fabb and the extensions
presented in Section 3.4. The price to pay is that our construction is about 3.2 times
slower (see Table 3.2).

3.7.1 Ideal Functionality

For completeness we explicitly show here the ideal functionality Foprf which is parame-
trized by an abelian group G of order n (written multiplicatively), and a genrator g of
G.

• Preparing fy (needs to be done once only):
– input:y : Accept 〈input:y, y〉 from Q where y ∈ Zn : ȳ ← y; send 〈input:y〉

to A.
– ready:y : Accept 〈ready:y〉 from P: send 〈ready:y〉 to A.
– commit:y [input:y ∧ ready:y] : Accept 〈commit:y〉 from A: send 〈commit:y〉

to A.
– done:y [commit:y] : Accept 〈done:y〉 from A: send 〈done:y〉 to Q.
– deliver:y [commit:y] : Accept 〈deliver:y〉 from A: send 〈deliver:y, g ȳ〉 to
P.

• Computing fy(xi) (can be repeated many times by using a different ϕ ∈ Λ?):
– input:x:ϕ [deliver:y] : Accept 〈input:x:ϕ, xϕ〉 from Q where xϕ ∈ Zn :
x̄ϕ ← xϕ; send 〈input:x:ϕ〉 to A.

– ready:x:ϕ [done:y] : Accept 〈ready:x:ϕ〉 from P: send 〈ready:x:ϕ〉 to A.
– lock:x:ϕ [input:x:ϕ∧ ready:x:ϕ] : Accept 〈lock:x:ϕ〉 from A: if gcd(n, ȳ+
x̄ϕ) = 1 then b̄ϕ ← 0, else b̄ϕ ← 1; send 〈lock:x:ϕ〉 to A.

3.7. Example of a Useful Protocol Constructed with Fabb 67

– done:x:ϕ [lock:x:ϕ] : Accept 〈done:x:ϕ〉 from A; send 〈done:x:ϕ, b̄ϕ〉 to Q.
– deliver:x:ϕ [lock:x:ϕ] : Accept 〈deliver:x:ϕ〉 fromA: send 〈deliver:x:ϕ,
fȳ(x̄ϕ)〉 to P.

• Dealing with corruptions:
– corrupt:P : Accept special 〈corrupt〉 message from P: send 〈corrupt:P〉 to
A.

– corrupt:Q : Accept special 〈corrupt〉 message from Q: send 〈corrupt:Q〉 to
A.

– expose:y [input:y∧corrupt:Q] : Accept 〈expose:y〉 from A: send 〈expose:y,
ȳ〉 to A.

– reset:y [¬commit:y ∧ corrupt:Q] : Accept 〈reset:y, y〉 from A: ȳ ← y; send
〈reset:y〉 to A.

– expose:x:ϕ [input:x:ϕ ∧ corrupt:P] : Accept 〈expose:x〉 from A: send
〈expose:x, x̄ϕ〉 to A.

– reset:x:ϕ [¬lock:x:ϕ∧ corrupt:Q] : Accept 〈reset:x:ϕ, xϕ〉 from A: x̄ϕ ←
xϕ; send 〈reset:x:ϕ〉 to A.

3.7.2 Construction

Preparing fy (needs to be done once only):

1. Q inputs value y to Fabb with identifier k0 using the Input instruction.
2. Q outputs the “public key” gy using the Exponentiated Output instruction. (This

step can be omitted if the value gy is not needed. Indeed Q is committed to y through
Fabb anyway.)

Computing fy(xi) (can be repeated many times):

1. P inputs value xi to Fabb with identifier k3i+1 using the Input instruction.
2. They compute y + xi: V [k3i+2]← V [k0] + V [k3i+1].
3. They invert the previous result using the protocol shown in Section 3.4.1:

V [k3i+3]← (V [k3i+2])−1. (If the inversion fails, then P and Q output 1 and skip the
next step—this is similar to how Jarecki et al. proceed [JL09]).

4. P retrieves gV [k3i+3] = g1/(y+xi) = fy(xi) using Exponentiated Output.
5. Q returns 0.

3.7.3 Security

Correctness and privacy of the input follow directly from the construction of the extended
Fabb.

68 Chapter 3. Practical Two-Party Computation of Arithmetic Circuits

Runtime for OPRF setup and one OPRF compute with η = 80

This work (219 · η + 290 · lb n) · exp.n + (74 · η + 52.5 · lb n) · exp.n2 836 ms
Jarecki-Liu [JL09] (45 · η + 8 · lb n) · exp.n + (14 · η + 40 · lb n) · exp.n2 263 ms

Table 3.2: Estimated runtime per OPRF computation including preparation, using the
same notation as Table 3.1. Note that Jarecki and Liu’s protocol [JL09] is not UC-secure,
and only secure against static corruptions.

4

Practical 2-Server Password-Authenticated Secret
Sharing

Properly protecting our digital assets still is a major challenge today. Because of their
convenience, we protect access to our data almost exclusively by passwords, despite
their inherent weaknesses. Indeed, not a month goes by without the announcement of
another major password breach in the press. In 2013, hundreds of millions of passwords
were stolen through server compromises, including massive breaches at Adobe, Evernote,
LivingSocial, and Cupid Media. In August 2014, more than one billion passwords
from more than 400,000 websites were reported stolen by a single crime ring. Barring
some technical blunders on the part of Adobe, most of these passwords were properly
salted and hashed. But even the theft of password hashes is detrimental to the security
of a system. Indeed, the combination of weak human-memorizable passwords (NIST
estimates sixteen-character passwords to contain only 30 bits of entropy [BDN+11]) and
the blazing efficiency of brute-force dictionary attacks (currently testing up to 350 billion
guesses per second on a rig of 25 GPUs [Gos12]) mean that any password of which a
hash was leaked should be considered cracked.

Stronger password hash functions [PM99] only give a linear security improvement,
in the sense that the required effort from the attacker increases at most with the same
factor as the honest server is willing to spend on password verification. Since computing
password hashes is the attacker’s core business, but only a marginal activity to a
respectable web server, the former probably has the better hardware and software for
the job.

A much better approach to password-based authentication, first suggested by Ford
and Kaliski [FK00], is to distribute the capability to test passwords over multiple servers.
The idea is that no single server by itself stores enough information to allow it to test
whether a password is correct and therefore to allow an attacker to mount an offline
dictionary attack after having stolen the information. Rather, each server stores an
information-theoretic share of the password and engages in a cryptographic protocol
with the user and the other servers to test password correctness. As long as less than a
certain threshold of servers are compromised, the password and the stored data remain
secure.

Building on this approach, several threshold password-authenticated key exchange
(TPAKE) protocols have since appeared in the literature [FK00,Jab01,MSJ02,BJKS03,
DG03, SK05, KMTG05, JKK14], where, if the password is correct, the user shares a

70 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

different secret key with each of the servers after the protocol. Finally addressing
the problem of protecting user data, threshold password-authenticated secret sharing
(TPASS) protocols [BJSL11, CLN12, CLLN14, JKK14] combine data protection and
user authentication into a single protocol. They enable the password-authenticated
user to reconstruct a strong secret, which can then be used for further cryptographic
purposes, e.g., decrypting encrypted data stored in the cloud. An implementation of
the protocol by Brainard et al. [BJKS03] is commercially available as EMC’s RSA
Distributed Credential Protection (DCP) [EMC].

Unfortunately, none of the protocols proposed to date provide a satisfying level
of security. Indeed, for protocols that are meant to resist server compromise, the
research papers are surprisingly silent about what needs to be done when a server
actually gets corrupted and how to recover from such an event. The work by Di
Raimondo and Gennaro [DG03] is the only one to mention the possibility to extend their
protocol to provide proactive security by refreshing the shares between time periods;
unfortunately, no details are provided. The RSA DCP product description [EMC]
mentions a re-randomization feature that “can happen proactively on an automatic
schedule or reactively, making information taken from one server useless in the event
of a detected breach.” This feature is however not described in any of the underlying
research papers [BJKS03, SK05], and neither is a security proof known. Taking only
protocols with provable security guarantees into account, the existing ones can protect
against servers that are malicious from the beginning, but do not offer any guarantees
against adaptive corruptions. The latter is a much more realistic setting, modelling for
instance servers getting compromised by malicious hackers. This state of affairs is rather
troubling, given that the main threats to password security today, and arguably, the
whole raison d’être of TPAKE/TPASS schemes, come from the latter type of attacks.

One would hope to be able to strengthen existing protocols with ideas from proactive
secret sharing [HJKY95] to obtain security against adaptive corruptions, but this task
is not straightforward and so far neither the resulting protocol details nor the envisaged
security properties have ever been spelled out. Indeed, designing cryptographic protocols
secure against adaptive corruptions is much more difficult than against static corruptions.
One difficulty thereby is that in the security proof the simulator must generate network
traffic for honest parties without knowing their inputs, but, once the party is corrupted,
must be able to produce realistic state information that is consistent with the now
revealed actual inputs as well as the previously simulated network traffic. Generic
multiparty computation protocols secure against adaptive corruption can be applied,
but these are too inefficient. In fact, evaluating a single multiplication gate in the most
efficient two-party computation protocol secure against adaptive corruptions [CES13]
(see also Chapter 3) is more than three times slower than a full execution of the dedicated
protocol we present here. We note that our protocol is well within reach of a practical
implementation: users and servers have to perform a few hundred exponentiations each,
which translates to an overall computation time of less than 0.1 seconds per party.

We prove our protocol secure in the universal composability (UC) framework [Can00,
Can01]. The very relevant advantages of composable security notions for the particular
case of password-based protocols have been argued before [CHK+05b,CLN12]; we briefly
summarize them here. In composable notions, the passwords for honest users, as well as
their password attempts, are provided by the environment. Passwords and password

4.1. Corruption in the UC Model 71

attempts can therefore be distributed arbitrarily and even dependently, reflecting real
users who may choose the same or similar passwords for different accounts. It also
correctly models typos made by honest users when entering their passwords: all property-
based notions in the literature limit the adversary to seeing transcripts of honest users
authenticating with their correct password, so in principle security breaks down as soon
as a user mistypes the password. Finally, composable definitions absorb the inherent
polynomial success probability of the adversary into the functionality. Thus, security is
retained when the protocol is composed with other protocols, in particular, protocols that
use the stored secret as a key. In contrast, composition of property-based notions with
non-negligible success probabilities is problematic because the adversary’s advantage
may be inflated. Also, strictly speaking, the security provided by property-based notions
is guaranteed only if a protocol is used in isolation.

Roadmap. In Section 4.1 we recall some additional concepts related to adaptive
and transient corruptions in the UC framework. In Section 4.2 we describe our ideal
functionality F2pass for 2-server password authenticated secret sharing. In Section 4.3
we construct a concrete protocol Π2pass realizing F2pass, and compare it with related
work. Finally, in Section 4.4 we prove that our protocol is secure.

4.1 Corruption in the UC Model

In the following we discuss the modelling of transient corruptions [Can00] in the UC
framework, how one can use ideal functionalities designed for adaptive corruptions in a
protocol designed for transient corruptions, and finally we discuss a particular problem
that appears in protocols secure against adaptive or transient corruptions: the selective
decommitment problem.

Modelling transient corruptions in real/hybrid protocols. We now recall how
corruption and recovery is modelled in real/hybrid protocols.

Corruption of a party. See Section 2.5.1.2.

Recovery from corruption. A may cede control from a corrupted party. When doing
that, A may specify a new internal state for the party. We then say that the party
formally recovered. In real life, a party might know it recovered if it detected a breach
and has restored from backup.

In most protocols however, formal recovery is not enough: the adversary still knows
parts of the internal state of the formally recovered party. To allow the party to effectively
recover its security, it must take additional steps, e.g., notify its subroutines (and stop
using the subroutines that cannot handle recovery) and run a protocol-specific Refresh
instruction. The party might thereby drop all currently running queries.

A party initiates a Refresh query to modify its internal state so that firstly it is
synchronized with the other protocol participants, and so that secondly A’s knowledge
of the old state does not interfere with security of the new state. Parties should initiate
a Refresh query when they formally recover from corruption. (If parties cannot detect
formal recovery, they should run Refresh periodically.) The Refresh query might fail if
the state of the party is inconsistent with that of the others. The party might also not

72 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

necessarily recover its security even after succesful completion of the query, e.g., because
all other participants are corrupted. Note that the security of a party is fully restored
(if at all) only after Refresh completes: in the grey zone bewteen formal recovery and
completion of Refresh, the party must not run any queries other than Refresh.

Using ideal functionalities designed for the adaptive type in a transient-
secure hybrid protocol. Protocols secure against transient corruptions may use ideal
functionalities as subroutines that were designed to handle adaptive corruptions, e.g., Fac,
Fosac, Fgzk, and F2v

gzk: upon formal recovery, the party must stop using all instances
of these ideal functionalities. Thereby, it has to abort all currently running queries.
Thereafter, it has to use fresh instances of these ideal functionalities for running the
Refresh query, and all subsequent queries.

The selective decommitment problem. Hofheinz demonstrated that it is impossible
to prove any protocol secure against adaptive corruptions (and thus, against transient
corruptions) that uses perfectly binding commitments or (binding) encryptions to
commit to or to encrypt the parties’ input, respectively [Hof11]. Let us expand on
this. For example, assume that in a protocol a user U with an input i must send out
a binding commitment c or an encryption e depending on i, e.g., (c, o) = com(i) or
(e, er) = enc(pk , i, l). The simulator S in the security proof must be able to simulate
the honest U without knowing her input i, i.e., S must send c or e to the adversary
A, containing some value that is most likely different from i. If U then gets corrupted,
S must produce an internal state for U , namely the opening o or the randomness er
used to encrypt and—if applicable—the secret key sk , that is consistent with both her
real input i and the values c or e already sent out to the adversary. However, due to
the binding nature of the commitment and encryption, and unless it could predict i,
S cannot find an internal state for U consistent with these values and therefore the
security proof will not go through.

4.2 Our Ideal Functionality F2pass

We now describe our ideal functionality F2pass for two-server password-authenticated
secret sharing, secure against transient corruptions. We start with a high level description,
and then provide the formal definition of F2pass in the UC framework [Can00]. It is not
necessary to read Section 4.2.2 to understand the construction of our scheme. F2pass is
reminiscent of similar functionalities by Camenisch et al. [CLN12,CLLN14], the main
differences being our modifications to handle transient corruptions. We compare the
ideal functionalities in Section 4.3.5.1.

4.2.1 Informal Definition of F2pass

The functionality F2pass involves two servers, P and Q, and a plurality of users. We
chose to define F2pass for a single user account, specified by the session ID sid . Multiple
accounts can be realized by multiple instances of F2pass or with a multi-session realization
of F2pass. The session identifier sid consists of (pidP , pidQ, (G, q, g), uacc, ssid), i.e., the
identity of the two servers, the description of a group of prime order q with generator

4.2. Our Ideal Functionality F2pass 73

F2pass processes the instructions as follows. F2pass accepts inputs and messages only for a
specific sid . It further checks that the sid has the correct format. Whenever F2pass receives an
input from a party it will eventually send a message to A containing the identity of the party,
the type of input, sid , qid , and—if applicable—sends out delayed messages. a

Setup: The user inputs 〈Setup, sid , qid = “Setup”, p, k〉 to F2pass and the two servers each
input 〈ReadySetup, sid , qid = “Setup”〉 to F2pass. F2pass then sends a public delayed
message 〈Done, sid , qid〉 to the user and each of the two servers.

Retrieve: To start, the user inputs 〈Retrieve, sid , qid , a〉 to F2pass, and the two servers each
input 〈ReadyRetrieve, sid , qid〉 to F2pass. F2pass waits for a message 〈Lock, sid , qid〉 from
A, and then replies whether the user’s password attempt was correct by sending 〈Lock,
sid , qid , b〉 to A—where b = 1 if a = p and b = 0 otherwise. F2pass then sends a public
delayed message 〈Delivered, sid , qid , b〉 to the two servers, and a private delayed message
〈Deliver, sid , qid , k′〉 to the user, where k′ = k if a = p, and k′ = ε otherwise.

Corrupt : A can corrupt a party R by sending 〈Corrupt, sid ,R〉 to F2pass. Recall that A
thereafter obtains control of the corrupted party’s input to and output from F2pass. A
may prevent a subsequent Refresh query from succeeding in case the server later recovers
from corruption—in a real protocol, A may tamper with the server’s internal state. If both
servers are corrupted at the same time (or corrupted in sequence with no Refresh query in
between), F2pass will send (k, p) to A and allow A to provide arbitrary replacement values.
That is, A can force F2pass to return arbitrary values to the user if the latter interacts with
two corrupted servers in a Retrieve query.

Recover : A party R recovers from corruption if A sends 〈Recover, sid ,R〉 to F2pass. F2pass

then stops accepting input and messages for all currently running Setup and Retrieve
queries, and will not accept any further Setup and Retrieve queries until a Refresh query
suceeds.

Refresh: To start a Refresh query, each server inputs 〈Refresh, sid , qid〉 to F2pass. While this
query is in progress, no further Setup, Retrieve, and Refresh queries are accepted, and
currently running queries are dropped. Once it has received a message from both servers,
F2pass sends 〈RefreshDone, sid , qid〉 as public delayed messages to the two servers. F2pass

then resumes accepting new queries. Note that while a server was corrupted, A might have
prevented it from completing this Refresh query.

Hijack : Just after a user provided its first input to F2pass in a Setup or Retrieve query and
before A sends anything to F2pass for the same query, A has the option of stealing the ID of
the query by sending a 〈HijackSetup, sid , qid , p, k〉 or 〈HijackRetrieve, sid , qid , a〉 message,
respectively, to F2pass. In that case, F2pass ignores the user’s first message and runs the
query with A instead of the user, with the qid chosen by the user but input—(p, k) or
a—provided by A.

a Messages from an ideal functionality to a party are direct outputs, unless they are specified
to be delayed outputs. In the latter case, F2pass notifies A it wishes to send the message and
waits for a confirmation by A before actually sending out the message. A public delayed
output means that A learns the message; a private message means that A will learn only
the type of the message and the recipient.

Fig. 4.1: High-level definition of F2pass. See the text for explanations, and see Sec-
tion 4.2.2 for the full formalization.

74 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

g, the name of the user account uacc (any string), and an arbitrary suffix ssid . Only
the parties with identities pidP and pidQ can provide input in the role of P and Q,
respectively, to F2pass. When starting a fresh query, any party can provide input in the
role of a user to F2pass; for subsequent inputs in that query, F2pass ensures it comes
from the same party; additionally, F2pass does not disclose the identity of the user to
the servers.
F2pass[sid] reacts to a set of instructions, each requiring the parties to send multiple

inputs to F2pass in a specific order. The main instructions are Setup, Retrieve, and
Refresh. Additionally F2pass reacts to instructions modelling dishonest behavior, namely
Corrupt, Recover, and Hijack. F2pass may process multiple queries concurrently. A query
identifier qid is used to distinguish between separate executions of the main instructions.
We now provide a summary of the instructions. We refer to Figure 4.1 for a high-level
definition of F2pass and to Section 4.2.2 for the full formalization.

With the Setup instruction, a user sets up the user account by submitting a key k
and a password p to F2pass for storage, protected under the password. This instruction
can be run only once, which we enforce by fixing qid to “Setup”. With the Retrieve
instruction, any user can then retrieve that k provided her submitted password attempt
a is correct, i.e., a = p, and the servers are willing to participate in this query. Giving
the server the choice to refuse to participate in a query is important to counter online
password guessing attacks. F2pass allows for the adaptive corruption of users and servers
with the Corrupt instruction, and for recovery from corruption of servers at any time
with the Recover instruction. Servers should run the Refresh instruction whenever they
recover from corruption or at regular intervals; in the real protocol, the two servers
re-randomize their state in this instruction and thereby clear the residual knowledge
A might have. If both servers are corrupted at the same time or sequentially with no
Refresh in between, the adversary A will learn the current key and password (k, p) and
is allowed to set them to different values. Finally, recall that in our realization of F2pass,
the first message from the user to the servers is not authenticated. A can therefore learn
the qid from that message, drop the message, and send his own message to the servers
with that qid . We model this attack in F2pass with the Hijack instruction. Servers will
not notice this attack, but the user will conclude his query failed.

Our F2pass functionality gives the following security guarantees: k and p are protected
from A as long as at least one server is honest and no corrupt user is able to correctly
guess the password. Furthermore, if at least one server is honest, no offline password
guessing attacks are possible. Honest servers can limit online guessing attacks by limiting
Retrieve queries after too many failed attempts. Finally, an honest user’s password
attempt a remains hidden even if a Retrieve query is directed at two corrupt servers.

4.2.2 Formal Definition of F2pass

We now provide a full definition of our F2pass ideal functionality. As we model the
single-session variant of F2pass, the session ID sid is fixed. Recall that sid comprises the
identity of the two servers pidP and pidQ, the description of a group (G, q, g) of prime
order q, the name of the user account uacc, and a suffix ssid . Each instance of F2pass

checks that sid is of the correct format when first invoked. Also, only messages with the
correct sid = sid are accepted.

4.2. Our Ideal Functionality F2pass 75

Interfaces. F2pass is a four-interface system:

• The network interface, connected to the ideal adversary/simulator.
• The U-interface, connected to the ideal peers of the users. This interface is

multiplexed; we assume that headers are added to all messages to enable proper
routing.

• The P-interface, connected to the ideal peer of the first server P.
• The Q-interface, connected to the ideal peer of the second server Q.

State. The ideal functionality is stateful and maintains the following data structures.
We underline these datastructures to distinguish them from local variables.

• Seen: associative array between {0, 1}∗ and a subset of {0, 1}∗. Keeps track of
which messages were accepted per qid .
• Corrupted : a set of party ids (servers and users). Keeps track of who is currently

corrupted.
• SetupDone: subset of {pidP , pidQ}. Keeps track of which server successfully

completed the Setup query.
• JustRecovered : a subset of {pidP , pidQ}. Keeps track of which servers have formally

recovered from corruption, but not yet completed the subsequent Refresh query.
• Refreshing : a subset of {pidP , pidQ}. Keeps track of which servers have started

doing a Refresh query.
• RefreshPeriodP and RefreshPeriodQ: integers. Keep track of the refresh period

(the time between two Refresh queries) of each server.
• QidPeriodP and QidPeriodQ: associative arrays between {0, 1}∗ and an integer.

Keep track of which qids belong to which refresh period.
• CorruptedIn: associative array between an integer and a subset of {pidP , pidQ}.

Keeps track of which servers where corrupted in a given refresh period.
• pP and pQ: elements of Zq ∪ {⊥,4}. The password stored by the user, in the

view of the given server. (Normally both values are equal. The values are unequal
in case a server recovered from corruption in an altered state. All queries including
the Refresh query will be blocked if the values are unequal. The symbol 4 is
represents the fact that the simulator does not yet know the value of the stored
password, however it must provide a concrete value before the end of the Refresh
query.)

• kP and kQ: elements of Zq ∪ {⊥,4}. The key stored by the user, in the view of
the given server. (Same comments as for pP and pQ.)

• a: associative array between {0, 1}∗ and an element of Zq ∪ {⊥}. The password
attempts per qid .

• k ′: associative array between {0, 1}∗ and an element of Zq ∪ {⊥, ε}. The key to be
returned to the user per qid , where ε means the user input an incorrect password
attempt.

• U : associative array between {0, 1}∗ and a user in the system. Keeps track of
which user initiated a query. If U [qid] = A, Fosac sends/receives messages on the
network interface instead of the U-interface as written for the query qid .

76 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

The default value of these are as follows: associative arrays are initially empty. If no
value is associated to a given key in an array, then ⊥ is returned. Sets are initially
empty. Integers are initially 0. All other values are initially ⊥.

Aborting all queries during a refresh. In F2pass, we enforce that once an honest
server R ∈ {P,Q} starts a Refresh query, all other queries are aborted. To simplify the
exposition, we define the following predicates: let AcceptNewQid(qid ,R) denote the
predicate

pidR ∈ Corrupted∨

(pidR /∈ Refreshing ∧ pidR /∈ JustRecovered ∧QidPeriodR[qid] = ⊥)

and let AcceptQid(qid ,R) denote the predicate

pidR ∈ Corrupted∨

(pidR /∈ Refreshing ∧ pidR /∈ JustRecovered ∧QidPeriodR[qid] = RefreshPeriodR).

The first predicate checks that qid has not yet been seen by a server R. The second
predicate checks that qid has already been seen, and that there was no Refresh query
between now and the moment qid was first seen. Both predicates also check that R is
not currently blocking new queries due to recently formally recovering from corruption
or due to currently running a Refresh query. Both predicates can be overriden by a
corrupt R.

Reacting to Messages. Our F2pass reacts to messages as follows.

Setup instruction. Recall that the Setup instruction allows a user to store her password
and key in the ideal functionality. The user starts by privately inputing her key and
password to F2pass (Message 1). The servers have to state that they are ready to execute
a Setup query by notifying F2pass (Message 2). (Messages 1 and 2 can happen in any
order.) After these two steps, F2pass sends a public delayed acknowledgement to the
servers (Message 3), and finally sends a public delayed acknowledgement to the user
(Message 4).

1. Receive 〈Setup, sid , qid , p, k〉 on U (from a user pidU),
where qid = “Setup”, p ∈ Zq, and k ∈ Zq,
such that {“Setup”, “Retrieve”} ∩ Seen[qid] = ∅:

Insert “Setup” into Seen[qid].
Record the user: U [qid] ← pidU . Save the user’s input: pP ← p, pQ ← p,

kP ← k, and kQ ← k.
Send 〈Setup, sid , qid , U〉 on network.

2. Receive 〈ReadySetup:R, sid , qid〉 on R ,
where R ∈ {P,Q}, qid = “Setup”, and AcceptNewQid(qid ,R) ,
such that {“ReadySetup:R”, “ReadyRetrieve:R”, “Refresh:R”} ∩ Seen[qid] = ∅:

4.2. Our Ideal Functionality F2pass 77

Insert “ReadySetup:R” into Seen[qid].
Set QidPeriodR[qid]← RefreshPeriodR.
Send 〈ReadySetup:R, sid , qid〉 on network.

3. Receive 〈Done:R, sid , qid〉 on network,
where R ∈ {P,Q} and AcceptQid(qid ,R) ,
such that {“Done:R”} ∩ Seen[qid] = ∅,
and {“Setup”, “ReadySetup:P”, “ReadySetup:Q”} ⊂ Seen[qid]:

Insert “Done:R” into Seen[qid].
Insert pidRinto SetupDone.
Send 〈Done:R, sid , qid〉 on R.

4. Receive 〈Done, sid , qid〉 on network,
such that {“Done”} ∩ Seen[qid] = ∅
and {“Done:P”, “Done:Q”} ⊂ Seen[qid]:

Insert “Done” into Seen[qid].
Send 〈Done, sid , qid〉 on U (to user U [qid]).

Retrieve instruction. Recall that the Retrieve instruction allows a user to recover the key
stored in F2pass provided she knows the correct password. The user starts by privately
inputing her password attempt to F2pass (Message 5). The servers have to state that they
are ready to execute a Retrieve query and willing to service the user’s query by notifying
F2pass (Message 6). (Messages 5 and 6 can happen in any order.) The adversary is
the first to learn of the result of the password check: by sending a lock message to
F2pass, the latter tells the former the result of that check (Message 7). After these two
steps, F2pass sends a public delayed message to the servers with the result of the check
(Message 8), and finally sends a public delayed message to the user containing the key
or an empty message in case the password was wrong (Message 9).

5. Receive 〈Retrieve, sid , qid , a〉 on U (from user pidU),
where a ∈ Zq,
such that {“Retrieve”, “Setup”} ∩ Seen[qid] = ∅:

Insert “Retrieve” into Seen[qid].
Record the user: U [qid]← U . Save the user’s input: a[qid]← a.
Send 〈Retrieve, sid , qid , U〉 on network.

6. Receive 〈ReadyRetrieve:R, sid , qid〉 on R ,
where R ∈ {P,Q}, AcceptNewQid(qid ,R), and pidR ∈ (SetupDone ∪ Corrupted) ,
such that {“ReadyRetrieve:R”, “ReadySetup:R”, “Refresh:R”} ∩ Seen[qid] = ∅:

Insert “ReadyRetrieve:R” into Seen[qid].
Set QidPeriodR[qid]← RefreshPeriodR.
Send 〈ReadyRetrieve:R, sid , qid〉 on network.

78 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

7. Receive 〈Lock, sid , qid〉 on network,
where pP = pQ, kP = kQ, pP 6= 4, and kP 6= 4,
such that {“Lock”} ∩ Seen[qid] = ∅,
and {“Retrieve”, “ReadyRetrieve:P”, “ReadyRetrieve:Q”} ⊂ Seen[qid]:

Insert “Lock” into Seen[qid].
If a[qid] = pP , then set b← 1 and k ′[qid]← kP ; else set b← 0 and k ′[qid]← ε.
Send 〈Lock, sid , qid , b〉 on network.

8. Receive 〈Delivered:R, sid , qid〉 on network,
where R ∈ {P,Q} and AcceptQid(qid ,R) ,
such that {“Delivered:R”} ∩ Seen[qid] = ∅,
and {“Lock”} ⊂ Seen[qid]:

Insert “Delivered:R” into Seen[qid].
If k ′[qid] 6= ε, then set b← 1; else set b← 0.
Send 〈Delivered:R, sid , qid , b〉 on R.

9. Receive 〈Deliver, sid , qid〉 on network,
such that {“Deliver”} ∩ Seen[qid] = ∅
and {“Delivered:P”, “Delivered:Q”} ⊂ Seen[qid]:

Insert “Deliver” into Seen[qid].
Send 〈Deliver, sid , qid , k ′[qid]〉 on U (to user U [qid]).

Refresh instruction. Recall that the Refresh instruction allows the servers to jointly
re-randomize their internal states and thereby clear the residual knowledge that A
might have. The servers have to state that they are ready to execute a Refresh query
by publicly notifying F2pass (Message 10). Afterwards, F2pass sends a public delayed
acknowledgement to the servers (Message 11). We note that while Refresh is active,
F2pass accepts no other queries and drops all incomplete queries.

10. Receive 〈Refresh:R, sid , qid〉 on R ,
where R ∈ {P,Q}, pidR ∈ (SetupDone ∪ Corrupted), and pidR /∈ Refreshing ,
such that {“Refresh:R”, “ReadySetup:R”, “ReadyRetrieve:R”} ∩ Seen[qid] = ∅:

Insert “Refresh:R” into Seen[qid].
Insert pidRinto Refreshing .
If Corrupted 6= ∅, then

CorruptedIn[RefreshPeriodR + 1]← CorruptedIn[RefreshPeriodR].
Send 〈Refresh:R, sid , qid〉 on network.

11. Receive 〈RefreshDone:R, sid , qid〉 on network,
where R ∈ {P,Q}, pP = pQ, kP = kQ, pP 6= 4, and kQ 6= 4,
such that {“RefreshDone:R”} ∩ Seen[qid] = ∅,
and {“Refresh:P”, “Refresh:Q”} ⊂ Seen[qid]:

4.2. Our Ideal Functionality F2pass 79

Insert “RefreshDone:R” into Seen[qid].
Increment RefreshPeriodR by 1.
Remove pidR from Refreshing and JustRecovered .
Send 〈RefreshDone:R, sid , qid〉 on R.

Corruption. We now present all instructions that have to do with corruption, hijacking,
and recovery from corruption. Servers (Message 12) and users (Message 13) can be
corrupted if F2pass receives a special corrupt message from the adversary. In our protocol,
the first message of the user can be hijacked by A; in F2pass this is modelled by allowing
A to take over the query and the user doesn’t continue with the query (Messages 14
and 15). F2pass allows A the following behaviour. If the user is corrupt, A can recover
her input (Messages 16 and 17). If both servers were corrupt in the same refresh period
(between Refresh queries), then the user’s password and key are exposed (Message 18).
If both servers are corrupt at the same time, then A may make F2pass return whatever
it wants during Retrieve (Message 19). If a server is corrupt, A can modify its internal
state (Message 20)—note that unless that state is consistent across both servers, none
of the queries will work—, here we note that A may set the state to a special symbol 4
instead of providing a value directly. If a server’s state is 4, A may set the real state at
a later point in time (Message 21). This models the fact that S may not know the value
of the saved password or key if A sets the servers to an inconsistent state. Note that
F2pass will not complete any queries while in that state. Finally, the environment may
uncorrupt servers by sending a special Recover message (Message 22). We note that A
has had the chance to specify the internal state of the recovered server before Recover is
called with the previous messages.

12. Receive 〈Corrupt, sid ,R〉 on network,
where R ∈ {P,Q} and pidR /∈ Corrupted :

Insert pidRinto Corrupted and into CorruptedIn[RefreshPeriodR].
If pidR ∈ Refreshing , then

CorruptedIn[RefreshPeriodR + 1]← CorruptedIn[RefreshPeriodR].
Send 〈Corrupt, sid〉 on R.

13. Receive 〈CorruptUser, sid , pidU〉 on network,
where U /∈ Corrupted :

Insert pidU into Corrupted .
Send 〈CorruptUser, sid〉 on U (to user pidU).

To simplify the presentation, we do not allow users to recover from corruption.

14. Receive 〈HijackSetup, sid , qid , p, k〉 on network,
such that {“HijackSetup”, “Done:P”, “Done:Q”} ∩ Seen[qid] = ∅
and {“Setup”} ⊂ Seen[qid]:

Insert “HijackSetup” into Seen[qid].
Change U [qid]← A. Change the input: pP ← p, pQ ← p, kP ← k, and kQ ← k.
Send 〈HijackSetup, sid , qid〉 on network.

80 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

15. Receive 〈HijackRetrieve, sid , qid , a〉 on network,
such that {“HijackRetrieve”, “Lock”} ∩ Seen[qid] = ∅
and {“Retrieve”} ⊂ Seen[qid]:

Insert “HijackRetrieve” into Seen[qid].
Change U [qid]← A. Change the input: a[qid]← a.
Send 〈HijackRetrieve, sid , qid〉 on network.

16. Receive 〈ExposeUserSetup, sid , qid〉 on network,
where U [qid] ∈ Corrupted ,
such that {“ExposeUserSetup”, “Done:P”, “Done:Q”} ∩ Seen[qid] = ∅,
and {“Setup”} ⊂ Seen[qid]:

Insert “ExposeUserSetup” into Seen[qid].
Send 〈ExposeUserSetup, sid , qid , pP , kP〉 on network.

17. Receive 〈ExposeUserRetrieve, sid , qid〉 on network,
where U [qid] ∈ Corrupted ,
such that {“ExposeUserRetrieve”, “Lock”} ∩ Seen[qid] = ∅,
and {“Retrieve”} ⊂ Seen[qid]:

Insert “ExposeUserRetrieve” into Seen[qid].
Send 〈ExposeUserRetrieve, sid , qid , a[qid]〉 on network.

18. Receive 〈ExposeSetup, sid , qid〉 on network,
where RefreshPeriodP = RefreshPeriodQ,

CorruptedIn[RefreshPeriodP] = {pidP , pidQ}, pP = pQ, and kP = kQ,
such that {“ExposeSetup”} ∩ Seen[qid] = ∅,
and {“Setup”} ⊂ Seen[qid]:

Insert “ExposeSetup” into Seen[qid].
Send 〈ExposeSetup, sid , qid , pP , kP〉 on network.

19. Receive 〈ModifyRetrieveResponse, sid , qid , k〉 on network,
where Corrupted = {pidP , pidQ} and k ∈ Zq ∪ {ε}:

Replace: k ′[qid]← k.
Send 〈ModifyRetrieveResponse, sid , qid〉 on network.

20. Receive 〈ModifySetup:R, sid , p, k, b〉 on network,
where R ∈ {P,Q}, pidR ∈ Corrupted , p ∈ Zq ∪{⊥,4}, k ∈ Zq ∪{⊥,4}, and b ∈ Z2:

Replace: pR ← p, kR ← k. If b = 1 then add pidRto SetupDone; else remove
pidRfrom SetupDone.
Send 〈ModifySetup:R, sid〉 on network.

4.3. Our Construction of TPASS Secure Against Transient Corruptions 81

21. Receive 〈FalseMemory:R, sid , qid , p, k〉 on network,
where R ∈ {P,Q}, pR = 4, kR = 4, p ∈ Zq, and k ∈ Zq:

Replace: pR ← p, kR ← k.
Send 〈FalseMemory:R, sid〉 on network.

22. Receive 〈Recover, sid ,R〉 on network,
where R ∈ {P,Q} and pidR ∈ Corrupted :

If Corrupted = {pidP , pidQ}, then let

b← max(RefreshPeriodP ,RefreshPeriodQ) + 1,

RefreshPeriodP ← b, RefreshPeriodQ ← b, and CorruptedIn[b]← {pidP , pidQ}.
Remove pidR from Corrupted and from Refreshing .
If pidR ∈ SetupDone, then insert pidR into JustRecovered ;
else remove pidR from JustRecovered .
Send 〈Recover, sid〉 on R.

To simplify the presentation, we chose not to model the fact that the recovered
server might accept qids he has seen already or reject qids that he has not yet
seen. Fixing this issue is tedious but not difficult. In practice where qids are
chosen at random by a protocol preceeding ours, this issue is moot.

4.3 Our Construction of TPASS Secure Against Transient
Corruptions

In this section we present our realization Π2pass of the F2pass ideal functionality in

the (FG3

crs , Fosac, Fac, Fgzk, F2v
gzk)-hybrid setting. Our Π2pass protocol further uses a

CCA2-secure cryptosystem and an HMT commitment scheme. As for F2pass, we describe
Π2pass for a single user account only, i.e., each instance of Π2pass uses a fixed sid .

We start this section by discussing the high-level ideas of our construction. We then
elaborate on the novel core ideas in our construction, before providing the detailed con-
struction. We provide an estimate of the computational and communication complexity
of Π2pass. Finally, we compare our protocol with related work.

4.3.1 High Level Approach of our TPASS Protocol

Our protocol Π2pass implements the Setup, Retrieve, and Refresh instructions of F2pass.
An adversary can hijack a Setup or Retrieve query through the Fosac subroutine. The
other instructions of F2pass are purely conceptual for the security proof. At a high level,
the realizations of the Setup and Retrieve instructions of Π2pass are reminiscent of the
schemes by Camenisch et al. [CLN12,CLLN14] and Brainard et al. [BJKS03]: during
Setup, the user generates shares of his key and password and sends them to the servers
(together with some commitments that will later be used in Retrieve). During Retrieve,
the servers run a subprotocol with the user to verify the latter’s password attempt
using the commitments and shares obtained in Setup. If the verification succeeds, the

82 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

servers send the shares of the key back to the user, who can then reconstruct the key.
Furthermore, the correctness of all values exchanged is enforced by zero-knowledge
proofs. To deal with transient corruptions, our Π2pass needs to implement the Refresh
instruction, which allows the servers to re-randomize their shares of the key and password
and thereby to re-secure their states when one of them is recovering from corruption.
Naturally, prior schemes do not have a Refresh instruction as they do not provide security
against transient corruptions.

The novelties of our construction arise from how we turn this basic approach into a
scheme that is secure against adaptive and transient corruptions and at the same time
efficient enough to be considered for practical deployment.

4.3.2 Key Ideas of our TPASS Protocol

We now present the key ideas that make it possible for our TPASS protocol to be secure
against transient corruptions. These ideas are novel and of independent interest.

4.3.2.1 Three-party computation for determining equality to zero

The core subprotocol ChkPwd is depicted in Figures 4.2–4.3. To check if the password
attempt a input by the user during a Retrieve query matches the stored password
p = pP +pQ, the user and the two servers engage in a three-party computation to check if
δ := pP +pQ −a ?= 0, where pP and pQ are the shares stored by the respective servers. For
efficiency reasons, it does not make sense to base that protocol on a generic multiparty
computation protocol. Indeed, running one Retrieve query in our protocol is more
than 3.7 times faster than evaluating a single multiplication gate in the best generic
two-party computation protocol that is secure against adaptive corruptions [CES13]
(see Section 4.3.5.3).

The first observation is that a commitment in the HMT scheme we use essentially
consists of a pair of Pedersen commitments. Thus, while all components need to be
considered to prove that a commitment is formed correctly, it is often sufficient to consider
just one component later when doing computations with them. Now, based on this, a
first idea for the desired subprotocol would be as follows. The servers’ commitments
cpP and cpQ to the shares of the password are distributed to all the parties, who then
generate a commitment on the sum of the two shares using the homomorphic property
of HMT commitments, and extract the first component thereof to obtain a value

C := PedC(cadd(cpP , cpQ)) = ypP+pQhopP+opQ ,
where y and h are part of the CRS. That value is an equivocable Pedersen commitment
to p := pP + pQ with equivocation trapdoor logy h. Given C, the user subtracts his
password attempt a from that commitment:

B := Cy−a = yδhopP+opQ .
We now consider the Elgamal “ciphertext”

(
A := h−1, B

)
, which is an encryption of yδ

under the shared secret key (−opP − opQ) with fixed randomness −1. This ciphertext is
then passed from U to P , from P to Q, and then from Q back to P , where at each step,
the sender exponentiates that ciphertext by a non-zero random number rU , rP , and rQ,
respectively, thereby multiplying the plaintext by that random number. Also, if possible,
the sender will partially decrypt the ciphertext by removing opP or opQ: U computes

4.3. Our Construction of TPASS Secure Against Transient Corruptions 83
U
.C

h
k
P
w
d
(sid

,qid
,a

):
P
.C

h
k
P
w
d
(sid

,qid
,cp

P
,cp

Q
,p
P
,o

p
P
):

Q
.C

h
k
P
w
d
(sid

,qid
,cp

P
,cp

Q
,p
Q
,o

p
Q
):

cp
P
,cp

Q
,π

3

cp
P
,cp

Q
,π

4

C
h

eck
th

a
t

sh
e

receiv
ed

th
e

sa
m

e
(cp

P
,cp

Q
)

fro
m

b
o
th

serv
ers.

C
←

P
ed

C
(ca

d
d
(cp

P
,cp

Q
))

:=
y
p
P
+
p
Q
h
o
p
P
+
o
p
Q

.

s
U
P

$
←

Z
q
;

(cs
U
P
,o

s
U
P
)

$
←

co
m

(s
U
P
).

s
U
Q

$
←

Z
q
;

(cs
U
Q
,o

s
U
Q
)

$
←

co
m

(s
U
Q
).

r
U

$
←

Z
∗q
;
A
U
←
h
−
rU

.

B
U
←

(C
y
−
a
)
rU
A
sU
P
+
sU
Q

U
.

C
←

P
ed

C
(ca

d
d
(cp

P
,cp

Q
)).

C
←

P
ed

C
(ca

d
d
(cp

P
,cp

Q
)).

(
:
r
U
,s
U
P
,s
U
Q
,o

s
U
P
,o

s
U
Q
)

R

u
n

sim
u

lta
n

eo
u

sly
(see

S
ec.

2
.6

.3
).

A
U
,B
U
,cs

U
P
,cs

U
Q
, [s

U
P
,o

s
U
P]
,π

5

A
U
,B
U
,cs

U
P
,cs

U
Q
, [s

U
Q
,o

s
U
Q]
,π

5

C
h

eck
:

cvfy
(cs

U
P
,o

s
U
P
,s
U
P
).

s
P
Q

$
←

Z
q
;(cs

P
Q
,o

s
P
Q
)

$
←

co
m

(s
P
Q
).

r
P

$
←

Z
∗q
;
A
P
←
A
r
P
U

.

B
P
←
B
r
P
U
A

o
p
P
−
sU
P
+
s
P
Q

P
.

C
h

eck
:

cvfy
(cs

U
Q
,o

s
U
Q
,s
U
Q
).

A
P
,B
P
,cs

P
Q
, [s

P
Q
,o

s
P
Q]
,π

6
(

:
r
P
,s
P
Q
,o

s
P
Q
)

C
h

eck
:

cvfy
(cs

P
Q
,o

s
P
Q
,s
P
Q
).

r
Q

$
←

Z
∗q
;
A
Q
←
A
r
Q
P

.

B
Q
←
B
r
Q
P
A

o
p
Q
−
sU
Q
−
s
P
Q

Q
.

A
Q
,B

Q
,π

7
(

:
r
Q
)

If
B
Q

=
g
0
:

O
u

tp
u

t
1
.

E
lse:

O
u

tp
u
t

0
.

If
B
Q

=
g
0
:

O
u

tp
u

t
1
.

E
lse:

O
u

tp
u

t
0
.

F
ig.

4.2:
S
u
b
rou

tin
e

C
h

kP
w

d
:

th
e

servers
ch

eck
if
U

’s
p
assw

ord
attem

p
t
a

is
eq

u
al

to
th

e
p
assw

ord
p
P

+
p
Q .

S
ee

F
igu

re
4.3

for
th

e
in

stan
tiatio

n
o
f

th
e

zero-k
n

ow
led

ge
p

ro
ofs.

84 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

π3 := Fgzk[sid , qid , 3]
{(

pP , opP
)

: cvfy(cpP , opP , pP)
}
.

π4 := Fgzk[sid , qid , 4]
{(

pQ, opQ
)

: cvfy(cpQ, opQ, pQ)
}
.

π5 := F2v
gzk[sid , qid , cpP , cpQ, 5]

{(
a, σ ; ∃ρ, β

)
:

h = AρU ∧ C = (B−1
U)ρyahσ ∧ cvfy(cadd(csUP , csUQ), β, σ)}

, where σ := sUP + sUQ, ρ := −1/rU , and β := osUP + osUQ.

U runs two proofs, one with P and one with Q, in parallel: she performs the erasures
and sends out the last message of both proofs only after she received the second
message of the proof from both servers (see Proofs with two verifiers in Section 2.6.3).

π6 := Fgzk[sid , qid , cpP , cpQ, csUP , csUQ, AU , BU , 6]
{(
∃pP , opP , rP , σ, β

)
:

AP = ArPU ∧AP 6= g0 ∧BP = BrPU A
opP+σ
P ∧

cvfy(cpP , opP , pP) ∧ cvfy(cadd(csPQ, cs−1
UP), β, σ)}

,where σ := sPQ − sUP and β := osPQ − osUP .

π7 := Fgzk[sid , qid , csPQ, AP , BP , 7]
{(
∃pQ, opQ, rQ, σ, β

)
:

AQ = A
rQ
P ∧AQ 6= g0 ∧BQ = B

rQ
P A

opQ−σ
Q ∧

cvfy(cpQ, opQ, pQ) ∧ cvfy(cadd(csUQ, csPQ), β, σ)}
,where σ := sUQ + sPQ and β := osUQ + osPQ.

Fig. 4.3: Instantiation of zero-knowledge proofs for ChkPwd.

(
AU , DU

)
:=
(
ArU , BrU

)
=
(
h−rU , yδ·rUh(opP+opQ)·rU

)
and sends it to P, P computes(

AP , DP

)
:=
(
ArPU , D

rP
U A

opP
P

)
=
(
h−rU ·rP , yδ·rU ·rPhopQ·rU ·rP

)
and sends it to Q, and Q computes(

AQ, BQ
)

:=
(
ArQP , D

rQ
P A

opQ
Q

)
=
(
h−rU ·rP ·rQ , yδ·rU ·rP ·rQ

)
and sends it to P. If in the end the result BQ is the neutral element, then δ = 0, and
the password was correct.

Unfortunately, this first idea doesn’t quite work: if δ = 0, DU fixes a value for
(opP + opQ) and DP fixes a value for opQ. Thus cpP and cpQ, together with DU and
DP form unequivocable statistically binding commitments to pP and pQ. This causes
a selective decommitment problem. Our solution is to blind the values DU and DP

with non-committing random shifts sUP , sUQ, and sPQ as follows, thereby circumventing
the problem. U chooses sUP and sUQ, and sends them to P and Q, respectively, in a
non-committing manner. U then generates BU by multiplying DU with the blinding
factor A

sUP+sUQ
U , i.e.,(
AU , BU

)
:=
(
ArU , BrUA

sUP+sUQ
U

)
=
(
h−rU , yδ·rUh(opP+opQ−sUP−sUQ)·rU

)
and sends BU instead of DU to P. The ciphertext (AU , BU) is now encrypted under the
shared key (sUP + sUQ − opP − opQ). Similarily, P chooses sPQ and sends it to Q. P
generates BP like DP but uses BU instead of DU in the formula and multiplies the result
by A

−sUP+sPQ
P , i.e.,(
AP , BP

)
:=
(
ArPU , B

rP
U A

opP−sUP+sPQ
P

)
=
(
h−rU ·rP , yδ·rU ·rPh(opQ−sUQ−sPQ)·rU ·rP

)
and sends BP to Q instead of DP , i.e., the ciphertext (AP , BP) is now encrypted under
the shared key (sUQ + sPQ − opQ). Finally Q computes BQ differently by replacing DP by

4.3. Our Construction of TPASS Secure Against Transient Corruptions 85

BP in the formula and multiplying the result by A
−sUQ−sPQ
Q , i.e.,(

AQ, BQ
)

:=
(
ArQP , B

rQ
P A

opQ−sUQ−sPQ
Q

)
=
(
h−rUrP ·rQ , yδ·rU ·rP ·rQ

)
.

At the end of each step, the parties prove to each other in zero-knowledge that they
computed their values correctly; whereby the parties use the trick explained in the
next paragraph to refer to sUP , sUQ, and sPQ in the proofs. These proofs also allow the
simulator to extract a, pP , pQ, opP , opQ, and (sUP + sPQ) in the security proof.

4.3.2.2 Transmission of secrets for later use in proofs

In the protocol just described, U must send the value sUP to P in a non-committing
manner and all parties must be able to prove knowledge of that same value in subsequent
zero-knowledge proofs. Simply having U encrypt sUP is not sufficient, because P can
later not prove knowledge of the encrypted sUP in proofs. A similar situation also arises
in other parts of our protocol, for example in the Setup instruction when U must send a
share pP to the password to P in a non-committing manner.

In a setting that considers only static corruptions, such problems are often solved by
requiring U to send a Pedersen commitment csUP to sUP to all parties, and to send sUP
and the opening osUP to the commitment to P, encrypted under P’s public key. Thus,
with csUP , P can later prove that it correctly used sUP in its computations.

When dealing with adaptive or transient corruptions, this does not work: the
encryption of sUP causes a selective decommitment problem. Instead, we have U
generate an equivocable commitment csUP to sUP with opening osUP , then establish a
one-time pad (OTP) with P, and then encrypt both sUP and osUP with the OTP. U
then sends the resulting ciphertext to P in any convenient manner (in this specific
example, U sends it as part of proof protocol π5 in Figures 4.2–4.3 that actually uses
the values sUP , osUP , and csUP in some indirect form; in the Setup instruction where
she needs to send pP to P in a non-committing manner, U sends the ciphertext to P
directly). Afterwards, P can refer to sUP in zero-knowledge proofs by means of csUP , e.g.,
Fgzk[sid]{(∃sUP , osUP) : csUP = com(sUP , osUP)}. This approach will allow S to equivocate
sUP , provided that no extra dependencies on the opening osUP are introduced in other
protocol steps (the first idea of the three-party protocol above describes the problems
when such an extra dependency is introduced on opP).

4.3.3 Detailed Construction of Π2pass

We now give the full details of the instructions of our protocol and their respective
subprotocols. Let us start with a few remarks. First, our protocol is parametrized by an
encryption scheme (kgen, enc, dec) with labels (looking ahead, we require this scheme to
be CCA-2 secure). Second, our protocol is further parametrized by a statistically binding
commitment scheme (cgen, com, cvfy, cadd, cmul) that also implements cpc of the HMT
commitment scheme over a prime-order group defined in Section 3.1.2. Using Pedersen
commitments instead would require expensive zero-knowledge proofs of knowledge in
the protocol, thereby massively increasing the computational complexity. We assume

that all protocol participants agree on the group (G, q, g) $← ggen(1η) the scheme
operates in ahead of time (i.e., it is a system parameter), and that the parameters

86 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

T .secureSend(sid , qid , secretData): R.secureSend(sid , qid , |secretData|):

(pk T , sk T , kgr)
$← kgen(1η). otpT R

$← {0, 1}|secretData|.

pk T(: kgr)

(eT , er T)←enc(pk T , otpT R, (sid , qid , pidT , pidR)).

eT (: er T)

otpT R ← dec(sk T , eT , (sid , qid , pidT , pidR)).
eR ← secretData ⊕ otpT R.

eR(: sk T , secretData, otpT R)

secretData ← eR ⊕ otpT R.
Output secretData.

Fig. 4.4: Subroutine secureSend, the realization of

[
secretData

]
: a party T (user or

server) sends secretData to R (user or server) in a non-committing encrypted form.

(·, ·, ·, h, y, u)
$← cgen(G, q, g) of the scheme are distributed through the CRS FG3

crs . Third,
we assume that for each query the user establishes a single instance of a one-side-
authenticated channel Fosac[(sid , qid),P] and Fosac[(sid , qid),Q] with each respective
server; all communication denoted by arrows: , and all communication inside the
zero-knowledge functionalities Fgzk and F2v

gzk happen through that instance.1 The two
servers communicate with each other through regular authenticated channels Fac[(sid ,
qid),P,Q, ssid]. Fourth, parties can send data in a non-committing and confidential
manner, i.e., secure against adaptive corruptions, by using the secureSend subroutine
depicted in Figure 4.4. We denote such communication by:

[
secretData

]
(cf. Section 2.1).

The parties establish a one-time pad (OTP) with each other, encrypt the data with that
OTP, and erase the OTP before sending the ciphertext [BH93]. Fifth, we implicitly
assume that a party aborts a query without output if any check fails.

4.3.3.1 The Setup instruction

Recall that the goal of the Setup instruction is for a user to set up an account uacc with
the two servers P and Q and store a key k ∈ Zq protected under a password p ∈ Zq
therein. The servers will silenty abort a Setup query if the user account has already
been established.

When a user U receives an input 〈Setup, sid = (pidP , pidQ, (G, q, g), uacc, ssid),
qid = “Setup”, p, k〉 from the environment E , she starts a Setup query. Each of the
servers starts a Setup query when he receives an input 〈ReadySetup, sid , qid〉 from E .
As the first step of the Setup query, U distributes shares of k and p to both servers
using the Share subprotocol. In that subprotocol, the user establishes an OTP with each
server and encrypts the shares with the respective OTPs in order to circumvent the
selective decommitment problem [Hof11]. Finally, the servers store their shares as their
internal state and send an acknowledgement back to the user. See Figure 4.5. At the
end of the Setup query, each of the three parties outputs 〈Done, sid , qid〉 to E .

1 Refer to Barak et al. [BCL+05] for details about modelling communication with partial
authentication in the UC model.

4.3. Our Construction of TPASS Secure Against Transient Corruptions 87

U .Setup(sid , qid , p, k) P.Setup(sid , qid)

p, k

shr, cmt shares, commitments

shr, cmt shr, cmt

Share

ok

Q.Setup(sid , qid)

ok

1.

2. 2.

3. 3.

1. 1.

1. U generates shares and commitments to her password and key and sends them to the servers:(
ε; (cpP , ckP , cpQ, ckQ, pP , kP , opP , okP); (cpP , ckP , cpQ, ckQ, pQ, kQ, opQ, okQ)

) $←〈
U .Share

(
p, k
)
,P.Share

()
,Q.Share

()〉(
sid , qid

)
.

2. Each server R ∈ {P,Q} stores
(
cpP , ckP , cpQ, ckQ, pR, kR, opR, okR

)
into his long-term storage.

3. The servers send an acknowledgement to U .

Fig. 4.5: Setup instruction: U distributedly stores a key k protected under a password
p on two servers P and Q.

The Share subprotocol Setup uses is depicted in Figure 4.6. In that subprotocol U
splits her inputs p and k into random additive shares pP + pQ := p and kP + kQ := k,
and sends (pP , kP) to P and sends (pQ, kQ) to Q. She commits to all shares and sends all
commitments to both servers; additionally she sends the openings for a server’s shares to
the respective server; thus enabling the servers to later perform zero-knowledge proofs
about their shares and the commitments to them. The servers then ensure they got the
same commitments and prove to each other that they know their shares. In π2, Q also
proves to P that he knows the opening opQ corresponding to his share of the password:
this is needed so that S can properly simulate BP = (AP)

sUQ+sPQ−opQ in ChkPwd (we
note that S does not need to know the value opP from π1 at this point).

4.3.3.2 The Retrieve instruction

Recall that the goal of the Retrieve instruction is for a user (not necessarily the same
as during Setup) to retrieve the key k, contingent upon her holding a correct password
attempt a ∈ Zq.

When a user U receives an input 〈Retrieve, sid , qid , a〉 with the same sid as during
Setup from E , she starts a Retrieve query. Each of the servers starts a Retrieve query
when he receives an input 〈ReadyRetrieve, sid , qid〉 from E . The servers may refuse to
service the query if they for instance suspect that an online password guessing attack is
in progress, e.g., if they have processed too many failed Retrieve queries for that user
account already. As many policies for throttling down can be envisaged, we decided not
to include the policy in our model but rather to let E decide: if the server should refuse
service, E does not provide the initial input 〈ReadyRetrieve, sid , qid〉. The Retrieve
instruction runs as follows and is depicted in Figure 4.7. The servers start a Retrieve
query by retrieving their internal state. The user and the servers then engage in a
three-party computation to determine whether δ := pP + pQ − a ?= 0, i.e., whether the
password attempt is correct, using the ChkPwd subprotocol. If the password is correct,
the servers send their shares of the key back to the user using the Reconstr subprotocol;

88 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

U .Share(sid , qid , p, k): P.Share(sid , qid): Q.Share(sid , qid):

pP
$← Zq ; (cpP , opP)

$← com(pP).

kP
$← Zq ; (ckP , okP)

$← com(kP).

pQ ← p− pP ; (cpQ, opQ)
$← com(pQ).

kQ ← k − kP ; (ckQ, okQ)
$← com(kQ).

cpP , ckP , cpQ, ckQ,
[
pP , opP , kP , okP

]
cpP , ckP , cpQ, ckQ,

[
pQ, opQ, kQ, okQ

]
Check: cvfy(cpP , opP , pP)
and cvfy(ckP , okP , kP).

Check: cvfy(cpQ, opQ, pQ)
and cvfy(ckQ, okQ, kQ).

π1

π2

Output (cpP , ckP , cpQ, ckQ,
pP , kP , opP , okP).

Output (cpP , ckP , cpQ, ckQ,
pQ, kQ, opQ, okQ).

Instantiation of zero-knowledge proofs:

π1 := Fgzk[sid , qid , cpP , ckP , cpQ, ckQ, 1]
{(

pP , kP ; ∃opP , okP
)

:

cvfy(cpP , opP , pP) ∧ cvfy(ckP , okP , kP)
}
.

π2 := Fgzk[sid , qid , cpP , ckP , cpQ, ckQ, 2]
{(

pQ, kQ, opQ ; ∃okQ
)

:

cvfy(cpQ, opQ, pQ) ∧ cvfy(ckQ, okQ, kQ)
}
.

Fig. 4.6: Subroutine Share: U generates shares to her password p and key k, and sends
them to the servers.

if wrong, they send back ε. At the end of the Retrieve query, U outputs 〈Deliver, sid ,
qid , k′〉 to E , and each server outputs 〈Delivered, sid , qid , b〉 to E—where k′ = k and
b = 1 if the password attempt was correct, else k′ = ε and b = 0.

We now describe the two subprotocols that the Retrieve instruction uses. ChkPwd
was already explained in Section 4.3.2.1 and was depicted in Figures 4.2–4.3. Reconstr is
depicted in Figure 4.8. In this subprotocol, each server sends his share of the key (kP or
kQ) and the corresponding opening to U . Both servers also send her the two commitments
to the shares of the key. The user checks that she received the same commitments
from both servers, that the shares and openings are correct, and reconstructs the key
k := kP + kQ. The servers may send ε instead to denote a failed password attempt; in
that case U outputs ε.

In both the ChkPwd and the Reconstr subprotocols, U needs to send data in a
non-committing and confidential manner to P . Instead of generating the OTPs for each
subprotocol separately, the two parties could generate a single OTP of double the length
in one operation and use the first half of the OTP during ChkPwd and the second half
during Reconstr. This optimization would save one key generation (for the CCA2-secure
cryptosystem), one encryption, and one decryption. The same optimization can be
applied between U and Q.

4.3. Our Construction of TPASS Secure Against Transient Corruptions 89

U .Retrieve(sid , qid , a)

a

b := (a ?= p) b := (a ?= p)ChkPwd

Reconstr

4. Output k or ε 4. Output b

k or ε

shr, cmt or ε

shr, cmt

P.Retrieve(sid , qid) Q.Retrieve(sid , qid)

shr, cmtshr, cmt

shr, cmt

shr, cmt or ε

4. Output b

2.

3.

1. 1.

3. 3.

2.2.

1. Each server R ∈ {P,Q} retrieves
(
cpP ,ckP ,cpQ,ckQ,pR,kR,opR,okR

)
from his long-term storage.

2. U , P, and Q run a three-party protocol to determine if the password attempt is correct:(
ε, b, b

) $←
〈
U .ChkPwd

(
a
)
,P.ChkPwd

(
cpP , cpQ, pP , opP

)
,Q.ChkPwd

(
cpP , cpQ, pQ, opQ

)〉(
sid , qid

)
.

3. • If b = 1 (i.e., a = p: the password attempt was correct), the servers send the key k′ = k to U :(
k′, ε, ε

) $←
〈
U .Reconstr

()
,P.Reconstr

(
ckP , ckQ, kP , okP

)
,Q.Reconstr

(
ckP , ckQ, kQ, okQ

)〉(
sid , qid

)
.

• Else if b = 0, the servers send a empty value k′ = ε instead:(
k′; ε; ε

) $←
〈
U .Reconstr

()
,P.Reconstr

(
ε, ε, ε, ε

)
,Q.Reconstr

(
ε, ε, ε, ε

)〉(
sid , qid

)
.

Fig. 4.7: Retrieve instruction: U retrieves the key k if she provides the correct password.

U .Reconstr(sid , qid): P.Reconstr(sid , qid ,
ckP , ckQ, kP , okP):

Q.Reconstr(sid , qid ,
ckP , ckQ, kQ, okQ):

ckP , ckQ,
[
kP , okP

]
ckP , ckQ,

[
kQ, okQ

]
Check that she received the same
(ckP , ckQ) from both servers.

If ckP 6= ε: Check cvfy(ckP , okP , kP)
and cvfy(ckQ, okQ, kQ).
Output k ← kP + kQ.

Else: Output ε.

Fig. 4.8: Subroutine Reconstr: the servers send their commitments and shares of the key
to U so that she may reconstruct her key k.

4.3.3.3 The Refresh instruction

In the Refresh instruction, the servers re-randomize their shares and generate new
commitments to them. This ensures that A no longer has any knowledge about the
internal state of a party who recovered from corruption. Servers execute a Refresh
query immediately after they formally recover from corruption (see Section 4.1). Upon
starting a Refresh query, the servers abort all running Setup and Retrieve queries and
stop accepting new ones. Upon completion of the Refresh query, they resume acceptance
of new Setup and Retrieve queries.

When a server receives an input 〈Refresh, sid , qid〉 with the same sid as during Setup
from E , he starts the Refresh instruction. The Refresh protocol runs as follows and is
depicted in Figure 4.9. The servers start by recovering their internal state. The servers

90 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

P.Refresh(sid, qid) Q.Refresh(sid, qid)

ComRefr

old-shares, old-cmt

new-shr, new-cmt

old-shr, old-cmt

new-shr, new-cmt

old-shr, old-cmt

new-shr, new-cmt

old-shr, old-cmt

new-shr, new-cmt

1.

3.

2.

1.

3.

2.

1. Each server R ∈ {P,Q} retrieves
(
cpP ,ckP ,cpQ,ckQ,pR,kR,opR,okR

)
from his long-term storage.

2. The servers re-randomize their shares:(
(ĉpP , ĉkP , ĉpQ, ĉkQ, p̂P , k̂P , ôpP , ôkP); (ĉpP , ĉkP , ĉpQ, ĉkQ, p̂Q, k̂Q, ôpQ, ôkQ)

) $←〈
P.ComRefr

(
pP , kP , opP , okP

)
,Q.ComRefr

(
pQ, kQ, opQ, okQ

)〉(
sid , qid , cpP , ckP , cpQ, ckQ

)
.

3. Each server R ∈ {P,Q} stores
(
ĉpP , ĉkP , ĉpQ, ĉkQ, p̂R, k̂R, ôpR, ôkR

)
into his long-term storage.

Fig. 4.9: Refresh instruction: the servers re-randomize their internal state.

P.ComRefr(sid , qid , cpP , ckP , cpQ, ckQ,
pP , kP , opP , okP):

Q.ComRefr(sid , qid , cpP , ckP , cpQ, ckQ,
pQ, kQ, opQ, okQ):

p̊
$← Zq ; (c̊p, o̊p)

$← com(p̊).

k̊
$← Zq ; (c̊k , o̊k)

$← com(̊k).

p̂P ← pP − p̊; (ĉpP , ôpP)
$← com(p̂P).

k̂P ← kP − k̊; (ĉkP , ôkP)
$← com(k̂P).

c̊p, c̊k , ĉpP , ĉkP ,
[
p̊, o̊p, k̊, o̊k

]
, π8(: pP , kP , p̊, k̊, opP , okP , o̊p, o̊k)

Check: cvfy(c̊p, o̊p, p̊) and cvfy(c̊k , o̊k , k̊).

p̂Q ← pQ + p̊; (ĉpQ, ôpQ)
$← com(p̂Q).

k̂Q ← kQ + k̊; (ĉkQ, ôkQ)
$← com(k̂Q).

ĉpQ, ĉkQ, π9 (: pQ, kQ, p̊, k̊, opQ, okQ, o̊p, o̊k)

Output (ĉpP , ĉkP , ĉpQ, ĉkQ, p̂P , k̂P , ôpP , ôkP). Output (ĉpP , ĉkP , ĉpQ, ĉkQ, p̂Q, k̂Q, ôpQ, ôkQ).

Instantiation of zero-knowledge proofs:

π8 := Fgzk[sid , qid , cpP , ckP , cpQ, ckQ, 8]
{(

pP , kP ; ∃opP , okP , α, β
)

:

cvfy(cpP , opP , pP) ∧ cvfy(cadd(ĉpP , c̊p), α, pP) ∧ cvfy(ckP , okP , kP) ∧ cvfy(cadd(ĉkP , c̊k), β, kP)}
,where α := ôpP + o̊p and β := ôkP + o̊k .

π9 := Fgzk[sid , qid , c̊p, c̊k , ĉpP , ĉpQ, 9]
{(

p̂Q, k̂Q, ôpQ ; ∃ôkQ, α, β,
)

:

cvfy(ĉpQ, ôpQ, p̂Q) ∧ cvfy(ĉkQ, ôkQ, k̂Q) ∧ cvfy(cadd(cpQ, c̊p), α, p̂Q) ∧ cvfy(cadd(ckQ, c̊k), β, k̂Q)}
,where α := opQ + o̊p and β := okQ + o̊k .

Fig. 4.10: Subroutine ComRefr: the servers generate new commitments and shares of
the password and key based on the old ones.

then re-randomize their shares of the password and key using the ComRefr subprotocol.
Finally both servers store their new internal state. At the end of the protocol, each
server outputs 〈RefreshDone, sid , qid〉 to E .

The Refresh instruction uses the ComRefr subprotocol, depicted in Figure 4.10, the
goal of which is for both servers P and Q to re-randomize their respective shares (pP , kP)

4.3. Our Construction of TPASS Secure Against Transient Corruptions 91

and (pQ, kQ). P randomly selects two offsets p̊ and k̊ and subtracts them from his shares.
P then commits to the offsets and his new shares. P proves to Q that all operations
were done correctly. As part of the proof, P sends all the commitments and a ciphertext
that contains the offsets and the corresponding openings encrypted under an OTP to Q.
Q likewise updates his shares and generates new commitments to them. Q proves to P
that all operations were done honestly and that he knows the opening ôpQ corresponding
to his new share of the password (for the same reason as in Share: S needs ôpQ when
simulating BP in ChkPwd). As part of the proof, Q sends the new commitments to P.

4.3.4 Computational and Communication Complexity

The sum of the computation time of all parties for Setup, Retrieve, and Refresh queries
is less than 0.08, 0.16, and 0.09 seconds for 80/1248-bit security2 on modern computers,3

and the communication complexity is 5, 7, and 3 round trips (when combining messages
wherever possible), respectively. For the Setup instruction, 43 elements of Zq, 56 elements
of G, 12 elements of Zn, and 4 elements of Zn2 are transmitted over plain channels in our
preferred embodiment, corresponding to roughly 5.2 kilobytes for 80/1248-bit security
when G is an elliptic curve. For the Retrieve instruction, 73.5, 99, 16, and 6 elements of
Zq,G,Zn, and Zn2 are transmitted respectively (8 kB). For the Refresh instruction, 34,
46, 10, and 4 elements of Zq,G,Zn, and Zn2 are transmitted respectively (4.5 kB). Due
to the fact that our protocol is secure against adaptive corruptions, it is computationally
more expensive than a standard-model instantiation of the CLN protocol [CLN12] (i.e.,
with interactive zero-knowledge proofs): our Retrieve queries are about 10 and 2.6 times
slower for users and servers, respectively; and more data is transferred; however the
number of round trips is identical. See Section 4.3.5.3 for a detailed analysis.

4.3.5 Comparison with Related Work

In this section, we compare the ideal functionalities and the protocol constructions of
our protocol against those by Camenisch, Lysyanskaya, and Neven (CLN) [CLN12] and
by Camenisch, Lehmann, Lysyanskaya, and Neven (CLLN) [CLLN14]. We also provide
a more detailed runtime comparison between our protocol and the CLN-protocol.

4.3.5.1 Comparison of Ideal Functionalities

In the following, we compare our ideal functionality F2pass with those of the CLN and
CLLN protocols. On a high level, our F2pass is similar to both functionalities, in that
we also model Setup and Retrieve instructions and let A hijack queries. We note the
following differences: 1) Our F2pass allows for adaptive corruptions and recovery from
corruption, not just static corruptions. 2) Our F2pass on one hand and the CLN- and
CLLN-F2pass on the other all give the servers the option to refuse to service a Retrieve
request, but model this option differently. In CLN- and CLLN-F2pass, the servers are

2 The subgroup size |q| is 2 · 80 bits and the RSA modulus size |n| is 1248 bits.
3 When using the GNU MP (GMP) bignum library on 64-bit Linux on a computer with an

Intel Core i7 Q720 1.60GHz CPU.

92 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

activated by the ideal functionality whenever a user wants to perform a retrieval; the
servers then contact the environment and ask for permission to continue. In our F2pass,
the ideal functionality does not activate the servers directly: instead, the servers activate
F2pass. In order to allow the environment to decide whether the servers should service
the request, the servers in our F2pass don’t need to explicity send a message to the
environment to ask for permission to continue: the environment can simply refuse to
provide the input that activates the server. 3) Finally, similarly to the CLLN model but
unlike the CLN one, the user’s password attempt is protected during Retrieve in our
F2pass no matter the corruption status of the servers. Thus, if the user by mistake talks
to the wrong servers for Retrieve, she is still safe, while the CLN functionality in this
case hands the password over the adversary.

4.3.5.2 Comparison of our Construction

Comparison with the CLN-protocol. As we already pointed out in Section 4.2, the Setup
and Retrieve instructions in both follow a similar structure, and we will thus mainly
focus on the differences between the two.

In the CLN-protocol, the user’s password and key are group elements instead of
integers. This allows for an efficient way to enable the simulator S to extract the user’s
input from commitments sent by the user. Unlike the CLN protocol, our protocol must
perform more expensive zero-knowledge proofs that allow the simulator S to extract
that input.

In the CLN-protocol, the user never performs any zero-knowledge proofs. This means
that unlike our protocol (and the CLLN-protocol), the user’s password attempt is not
protected in case he contacts two corrupted servers.

The CLN-protocol [CLN12] is secure against static corruptions only, while our
protocol allows for adaptive corruptions. Due to the selective decommitment problem,
which affects only protocols secure against adaptive corruptions, our protocol and the
CLN-protocol further differ on three counts: 1) in our protocol, parties need to establish
OTPs among themselves, which is not needed in the CLN-protocol. We need this extra
step to be able to encrypt in a non-committing way. 2) In the CLN-protocol, the user
and the servers communicate using perfectly-binding commitments. The servers don’t
need to prove knowledge of their shares to each other like we do at the end of Share, as
S can extract the password and key from the perfectly-binding commitments. 3) Our
ChkPwd subroutine is different than the corresponding protocol in CLN, since we cannot
allow the servers to send committing ciphertexts to each other.

Comparison with the CLLN-protocol. The CLLN-protocol [CLLN14] is also secure against
only static corruptions, and thus the points in the previous paragraph also apply. Their
protocol uses non-interactive zero-knowledge proofs extensively, and it is not clear how
to instantiate their protocol in the standard model without resorting to impractical
generic non-interactive zero-knowledge proofs.

4.3. Our Construction of TPASS Secure Against Transient Corruptions 93

4.3.5.3 Comparison of Computational Complexity for the Standard Model
Constructions

In Table 4.1 we provide an estimate of the computational complexity of our protocol
and compare it with the complexity of the CLN-protocol (adapted to the standard
model) [CLN12]. We re-did the estimation for CLN using a different way of counting
multi-exponentiations, so our numbers are slightly different from those provided in the
original paper.

We also provide an estimate of the computation time when run with the “smallest
general purpose” security level of the Ecrypt-II recommendations [BCC+11] (η = 80,
log2 q = 2η = 160, log2 n = 1248, where n = p′ · p′′ is a safe semi-prime) on a standard
laptop with a 64-bit operating system using the GMP Multiple Precision Library.

We used the following runtime estimates for the basic building blocks, and assume the
runtime of exponentiations scales linearly depending on the bitlength of the exponent:

• Let exp.G be the runtime of exponentiation in G per bit of the exponent. For
η = 80 and for a subgroup of the integers modulo a large prime, we use the estimate
exp.G = 1.42 µs (i.e., a full exponentiation takes 2η · exp.G = 227 µs).

• Let exp.n be the runtime per bit of exponentiation modulo n. For η = 80 we use the
estimate exp.n = 1.42 µs (i.e., a full exponentiation takes log2 n · exp.n = 1820 µs).

• Let exp.p be the runtime per bit of exponentiation modulo p′ or p′′. For η = 80 we
use the estimate exp.p = 0.42 µs (i.e., an RSA decryption with Chinese remainder
theorem takes 2((log2 n)/2 · exp.p) = 538 µs).

• Let exp.n2 be the runtime per bit of exponentiation modulo n2. For η = 80 we
use the estimate exp.n2 = 5.14 µs (i.e., a Paillier encryption (n + 1)xrn (mod n2)
takes time log2 n · exp.n2 = 6580 µs).

• Let tprime.2η be the average runtime to generate a prime of size 2η. For η = 80
we use the estimate tprime.2η = 329 µs.

We did not consider the optimizations that are possible when running multibase
exponentiations, or using precomputations for fixed bases. We chose to ignore the
runtime of “fast” operations: additions, multiplications, inversions, and symmetric
cryptographic operations. We also ignored the network delay: our Setup protocol
requires one additional roundtrip than the CLN’s, and both our and the CLN’s Retrieve
protocol have the same number of roundtrips. We also do not consider the various setup
costs, such as generating a fresh RSA modulus for the signature, which need to be done
once only and can be done ahead of time.

We chose the following standard-model implementations of primitives:

• For CCA-2 secure encryption in both our and the CLN-protocol, we use the
Cramer-Shoup cryptosystem [CS98].

• For the signature scheme in the CLN-protocol, we use the Cramer-Shoup signature
scheme [CS99].

We treated all zero-knowledge proofs in the CLN-protocols as proofs of existence,
since S can extract the key and password from the El-Gamal ciphertexts. For the
zero-knowledge proofs of knowledge we use in our protocol, we fit up to three witnesses
into the plaintext of the verifiable encryption: Given witnesses 0 ≤ a, b, c < q, we encrypt

94 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

(a+ q2b+ q4c); by adding a range proofs that −q2/2 < a, b, c < q2/2 to the statement of
the zero-knowledge proof and by recalling that q6 < n, one is ensured that S can always
recover a, b, and c; this range proof is essentially for free since the verifier simply needs
to check the bit length of the responses in the zero-knowledge proof; this trick allows us
to save on the very expensive operations modulo n2, which are by far the dominant cost
in the proofs.

Finally, we note that for efficiency reasons it does not make sense to use generic multi-
party computations protocols to implement Π2pass: the computational complexity of just
a single multiplication in the best two-party computation protocol UC-secure against
adaptive corruptions is (90η + 200log2 n) · exp.n + (66η + 40.5log2 n) · exp.n2 [CES13],
corresponding to a computation time of 660 ms at η = 80, i.e., more than 3.7 times
slower than our entire Retrieve protocol.

4.4 Security Proof

We now show that the protocol Π2pass of Section 4.3 realizes F2pass. We start with a
description of the main ideas of the security proof before presenting the full proof. The
full proof proceeds in two steps: we first prove that our protocol is secure when run
with nice environments (see Definition 3.3). We then apply the special composition
theorem of Camenisch et al. [CKS11] to prove that our protocol is secure against all
environments.

4.4.1 Main Ideas

We use the standard approach for proving the security of UC protocols: we construct
a straight-line simulator S such that for all polynomial-time bounded environments
and all polynomial-time bounded adversaries A it holds that the environment E cannot
distinguish its interaction with A and Π2pass in the (FG3

crs ,Fosac,Fac,Fgzk,F2v
gzk)-hybrid

real world from its interaction with S and F2pass in the ideal world. We prove this
statement by defining a sequence of intermediate hybrid worlds (the first one being
the real world and the last one the ideal world) and showing that E cannot distinguish
between any two consecutive hybrid worlds.

The main difficulties in constructing S (and accordingly in designing our protocol
to allow us to address those difficulties) are as follows: 1) S has to extract the inputs
of all corrupted parties from the interaction with them; 2) S has to compute and
send commitments and ciphertexts to the corrupted parties on behalf of the honest
parties without knowing the latter’s inputs, i.e., S needs to commit and encrypt dummy
values; 3) but when an honest party gets corrupted mid-protocol, S has to provide A
with the full non-erased intermediate state of that party, in particular the opening of
commitments that were sent out and the randomness used to compute encryptions that
were sent out (if these value need to be retained by a party).

To address the first difficulty, recall that parties are required to perform proofs of
knowledge of their shares upon their first use in the protocol. S can therefore recover
the inputs of all corrupted parties with the help of Fgzk and F2v

gzk. The commitments

4.4. Security Proof 95

C
L

N
-p

ro
to

co
l

[C
L

N
1
2
]

O
u
r

p
ro

to
co

l

A
d
a
p
tiv

e
co

rru
p
tio

n
s

n
o

y
es,

a
n
d

serv
ers

ca
n

recov
er

C
o
m

p
u
ta

tio
n

u
ser

0
lo

g
2
n

exp
.p

+
3
2
η

exp
.n

+
4
0
η

exp
.G

+
0

tp
rim

e.2
η

8
m

s
(1

6
η

+
0

lo
g
2
n)·

exp
.n

+
9
2
η

exp
.G

+
(0
η

+
0
lo

g
2
n)·

exp
.n

2
1
2

m
s

tim
e

o
f

P
2
lo

g
2
n

exp
.p

+
2
0
η

exp
.n

+
1
8
η

exp
.G

+
2

tp
rim

e.2
η

6
m

s
(3

0
η

+
3

lo
g
2
n)·

exp
.n

+
9
0
η

exp
.G

+
(1
η

+
3
lo

g
2
n)·

exp
.n

2
3
9

m
s

S
etu

p
Q

1
lo

g
2
n

exp
.p

+
1
4
η

exp
.n

+
1
8
η

exp
.G

+
1

tp
rim

e.2
η

5
m

s
(3

2
η

+
3

lo
g
2
n)·

exp
.n

+
9
0
η

exp
.G

+
(1
η

+
3
lo

g
2
n)·

exp
.n

2
3
9

m
s

C
o
m

p
u
ta

tio
n

u
ser

0
lo

g
2
n

exp
.p

+
3
2
η

exp
.n

+
3
6
η

exp
.G

+
0

tp
rim

e.2
η

8
m

s
(6

8
η

+
6

lo
g
2
n)·

exp
.n

+
1
8
8
η

exp
.G

+
(2
η

+
6
lo

g
2
n)·

exp
.n

2
7
9

m
s

tim
e

o
f

P
2
lo

g
2
n

exp
.p

+
2
0
η

exp
.n

+
1
2
5
η

exp
.G

+
2

tp
rim

e.2
η

1
8

m
s

(2
6
η

+
3

lo
g
2
n)·

exp
.n

+
1
7
5
η

exp
.G

+
(1
η

+
3
lo

g
2
n)·

exp
.n

2
4
8

m
s

R
etriev

e
Q

2
lo

g
2
n

exp
.p

+
2
0
η

exp
.n

+
1
2
5
η

exp
.G

+
2

tp
rim

e.2
η

1
8

m
s

(2
6
η

+
3

lo
g
2
n)·

exp
.n

+
1
6
6
η

exp
.G

+
(1
η

+
3
lo

g
2
n)·

exp
.n

2
4
7

m
s

C
o
m

p
.

tim
e

P
—

(3
6
η

+
4

lo
g
2
n)·

exp
.n

+
1
3
6
η

exp
.G

+
(0
η

+
4
lo

g
2
n)·

exp
.n

2
5
2

m
s

o
f

R
efresh

Q
—

(2
6
η

+
2

lo
g
2
n)·

exp
.n

+
1
3
8
η

exp
.G

+
(2
η

+
2
lo

g
2
n)·

exp
.n

2
3
6

m
s

T
a
b
le

4
.1

:
E

stim
a
te

o
f

th
e

co
m

p
u
ta

tio
n

tim
e

p
er

p
a
rty

o
f

o
u
r

p
ro

to
co

l
a
n
d

th
e

C
L

N
-p

ro
to

co
l.

T
h
e

co
m

p
u
ta

tio
n

tim
e

in
m

illisecon
d

s
is

an
estim

ate
for

η
=

80
on

a
stan

d
ard

lap
top

.

96 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

and proofs of existence with Fgzk and F2v
gzk ensure that the corrupted parties are unable

to alter their inputs mid-protocol.
The second and third difficulty we address as follows. In general, S runs honest

parties with random input and adjusts their internal state as follows when it learns the
correct values. When S is told by F2pass whether the password attempt was correct in a
Retrieve query, it can generate credible values BU , BP , and BQ in the ChkPwd subroutine
because S can recover the opening values op from dishonest servers through Fgzk and
F2v

gzk. When a user gets corrupted during Setup, or both servers get corrupted, S can
recover the actual password and key associated with the user account from F2pass and
then needs to equivocate all relevant commitments and encryptions sent earlier to the
corrupted parties. This is also the case when a user gets corrupted during Retrieve,
where S is also allowed to recover the actual password attempt. S can equivocate such
commitments, with the help of the trapdoor, and equivocate the ciphertexts containing
the openings of commitments it sent between two honest parties by altering the one-time
pads. By the time a one-time pad is used, the decryption keys and randomness used to
establish it have been erased and so they can be changed to equivocate. Additionally, S
never needs to reveal the randomness used inside the ChkPwd subroutine, in particular
because Fgzk and F2v

gzk allow for the erasure of witnesses before delivering the statement
to be proven to the other party. The rest of the security proof is rather straightforward.

4.4.2 Security Proof

In this section we prove that our protocol Π2pass securely realizes the ideal functionality
F2pass. We proceed as follows: we start by stating the main theorem and a number of
lemmas, and then prove the main theorem. We then proceed to prove the main lemma
in two steps: first, we describe the construction of a simulator S, and then prove that
S meets the requirements of the main lemma. Finally, we comment on multi-session
realizations of F2pass that use a constant-size CRS.

Recall that Π2pass is a (FG3

crs ,Fgzk,F2v
gzk,Fosac,Fac)-hybrid protocol. Let Π

Fgzk→π
2pass

be the (FG3

crs ,Fgzk
crs ,Fosac,Fac)-hybrid protocol in which every instance of Fgzk and F2v

gzk

in Π2pass has been replaced by the zero-knowledge protocol π described in Camenisch,
Krenn, and Shoup’s paper [CKS11]. To prove our scheme secure, we need to prove the
following theorem:

Theorem 4.1. Assuming the encryption scheme is CCA-2 secure and the DDH assump-

tion holds for ggen, the protocol Π
Fgzk→π
2pass realizes F2pass.

To prove the theorem, we need to prove the following lemma:

Lemma 4.2. Assuming the encryption scheme is CCA-2 secure and the DDH assump-
tion holds for ggen: there exists a simulator S that does not extract the witnesses
quantified by ∃ in any Fgzk and in any F2v

gzk, such that for all PPT nice environ-
ments E and the dummy adversary A: Exec(Π2pass,A, E) and Exec(F2pass,S, E) are
computationally indistinguishable.

In the above, we assume that (G, p, g) are chosen by ggen(1η) before E starts executing.

4.4. Security Proof 97

Proof of Lemma 4.2. In Section 4.4.2.1 we construct a simulator S, and in Section 4.4.2.2
we prove that is satisfies the requirements of Lemma 4.2.

Proof of Theorem 4.1. Since we prove in Section 4.4.2.2 that the simulator S we construct
in Section 4.4.2.1 satisfies the requirements of Lemma 4.2 and because Π2pass is a Fgzk-
friendly protocol (see Definition 3.4), it follows from the special composition theorem of
Camenisch et al. [CKS11] that Theorem 4.1 holds. (Note: this composition theorem
was not proven for F2v

gzk, but it is easy to adapt their proof to handle that case.)

4.4.2.1 Construction of the Simulator

We now construct the simulator S needed for Lemma 4.2.

Notation and Modelling. We adopt the convention that the ideal functionalities in
the (FG3

crs ,Fosac,Fac,Fgzk,F2v
gzk)-hybrid “real” world (and which are controlled by S) are

surrounded by quotes: “FG3

crs”, “Fosac”, “Fac”, “Fgzk”, “F2v
gzk”. Note that S does not

have to run these ideal functionalities honestly, it just needs to ensure that the messages
it sends on their behalf are indistinguishable from an honest execution.

Simulator. The simulator S is an ten-interface system, with five external and five internal
interfaces. We also use quotes to designate internal interfaces of S. These interfaces are
the E-, A-, P-, Q-, and U -interfaces on one hand, and the “E”-, “A”-, “P”-, “Q”-, and
“U”-interfaces on the other hand. See Figure 4.11.

The simulator S runs one instance of the adversary A internally. S connects to the
environment through its external E-interface. It communicates with F2pass through four
external interfaces: the A-, the P-, the Q-, and the (multiplexed) U-interfaces. The
A-interface is connected to the network interface of F2pass, it is through this interface
that S sends the messages in the role of the ideal adversary to F2pass and expects to
receive the messages destined to the ideal adversary. The latter three interfaces are
connected to the ideal peer of the respective party; such an interface becomes active only
when the corresponding party is corrupted. The simulator interacts with A through its
five internal interfaces: the “E”-, the “A”-, the “P”-, the “Q”-, and the (multiplexed)
“U”-interfaces. Through the “E” interface, S must simulate the messages from the
environment. Through the “A” interface, the simulator must simulate all traffic between
A and the network interface of “FG3

crs”, “Fosac”, “Fac”, “Fgzk”, and “F2v
gzk”. Through

the latter three interfaces, the simulator must simulate the ideal peers of the respective
parties; similarly to above, such an interface becomes active only when the corresponding
party is corrupted.

Ideal peers. Each ideal peer is a three-interface system. The IO-interface of the ideal
peer is connected to the environment in the ideal world. S also simulates ideal peers
for each of the ideal subroutines of Π2pass for the sake of A, the IO-interface of these
ideal peers is then connected to Π2pass. The subroutine-interface is connected to an
ideal functionality. The network interface is connected to the adversary or the simulator.
When the party corresponding to the ideal peer is honest, the ideal peer fowards all
messages between the IO-interface to the subroutine-interface in both directions, i.e.,
the environment/protocol communicates directly with the ideal functionality. When
the party is corrupted, the ideal peer forwards all messages from the IO-interface and

98 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

S

F2pass

E

“P” interface.

A
Simulated

“FG3

crs”

Simulated
protocol machine
and ideal peers

“P”

Simulated
protocol machine
and ideal peers

“Q”

Simulated
protocol machine
and ideal peers

“U”

Ideal peer

P

Ideal peer

Q

Ideal peer

U

U interface.
P interface.
Q interface.

A interface.

E interface.

“E” interface.

“U” interface.

“Q” interface.

“A” interface.

Simulated
“Fgzk”

Simulated
“F2v

gzk”

Simulated
“Fosac”

Simulated
“Fac”

Fig. 4.11: The interfaces of the simulator S.

the subroutine-interface to the network interface, and forwards all messages from the
network interface to either the IO-interface or the subroutine-interface (we assume that
there is some sort of header that indicates where the message must be routed to); i.e.,
the adversary/simulator has direct access to the ideal functionality, learns the input of
the ideal peer, and provides the output.

When an ideal peer receives a special 〈Corrupt, . . .〉 message from the subroutine-
interface, it forwards this message on the IO-interface and considers itself corrupted.
When a corrupted ideal peer receives a special 〈Recover, . . .〉 message from the subroutine-
interface, it forwards this message on the IO-interface and considers itself formally
recovered.

Protocol machines. A protocol machine is a multi-interface system. The IO-interface
of the protocol machine is connected to the environment or another protocol machine.
Each of zero or more subroutine-interfaces is connected to an ideal peer or a protocol
machine. The network interface is connected to the adversary. Protocol machines
execute the code of honest parties. When they receive a special corrupt message from
the network-interface they send a message to the IO-interface (and permit the adversary
to query their internal state) ; thereafter they act as forwarders between the network
interface and the IO-interface on the one hand, and between the network interface
and the subroutine-interfaces on the other hand as for the ideal peers. For simplicity,
we assume that the adversary corrupts all subroutines of a corrupted machine. The
adversary may request to change the internal state of corrupted protocol machines
through the network interface in case machines recover from corruption. When they
receive a special recovery message from the network interface, they stop forwarding
traffic for the adversary and resume normal operation; however the protocol machines

4.4. Security Proof 99

must use a new set of ideal peers and ideal functionalities in case the latter donot support
recovery from corruption.

We now describe how to construct S.

Environment interface. S forwards all messages between its E-interface and its
“E”-interface in both directions, i.e., it relays all messages between E and A.

Party interfaces. When a party is honest, no messages are sent through the party
interfaces. When a party becomes corrupted, and after S has handed the (simulated)
internal state of that party to E , S relays all messages coming from the external interface
(e.g., the P-interface) to the internal corresponding interface (e.g., the “P”-interface),
and relays all messages from the internal interface destined for the environment to the
external interface; this means that A receives the party’s input and provides the party’s
output directly to E .

Common reference string. Upon the first query to “FG3

crs”, S chooses a common
reference (h, y , u) string with cgen′0, so that S knows the trapdoor tc which will enable
it to equivocate all commitments it makes on behalf of “U”, “P” and “Q”.

General behavior of S. In general, S simulates the ideal functionalities “Fac”, “Fosac”,
“Fgzk”, and “F2v

gzk” honestly, and simulates the ideal peers and protocol machines “U”,
“P”, and “Q” honestly. In fact, when S knows the correct input of the parties (which we
can get either though the ideal peers in the ideal world or by extracting information
from “Fgzk”/“F2v

gzk”), it is easy to see how S proceeds. We emphasize that S never needs

to send any input to “Fgzk”/“F2v
gzk” on behalf of parties it controls, i.e., S can make

proofs of false statements with “Fgzk”/“F2v
gzk” or do proofs of knowledge even though it

doesn’t know the correct witnesses. In the remainder of this subsection, we will describe
what S does when it doesn’t know the correct inputs of the parties and is forced to lie.

Adjustments when S doesn’t know the parties’ input. When S does not know
the input of some parties and must nevertheless produce output that depends on said
input, S performs the following adjustments:

Setup.

• Everybody honest: S proceeds as if the user’s input was random.
• one server R corrupt (R ∈ {P,Q}), others honest: S proceeds as if the user’s

input was random.
• (P and Q corrupt, U honest: S learns the user’s input by sending 〈ExposeSetup,
· · ·〉 to F2pass.)

• (U corrupt, others honest: S runs Setup queries honestly. S recovers U ’s input
during Share.)

• (U and one server R corrupt (R ∈ {P,Q}), other server honest: S runs Setup
queries honestly. In Share, S recovers one of U ’s shares directly, the other through
“Fgzk”.)
• (U , P and Q corrupt: The simulation is internal to the adversary.)

100 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

Retrieve. Upon receiving 〈Lock, · · ·〉 from F2pass, S knows whether δ = 0 or not.

• Everybody honest: In general, S proceeds as if the user’s input was random. S
sends out random values AU , BU , AP , BP , and AQ. If δ = 0, S sends out BQ = g0,
otherwise S sends out a random BQ.
• P corrupt, others honest: In general, S proceeds as if the user’s input was random.
S sends out random values AU , BU , and AQ. If δ = 0, S sends out BQ = g0,
otherwise S sends out a random BQ.
• Q corrupt, others honest: In general, S proceeds as if the user’s input was

random. S sends out random values AU , BU , AP , and AQ. If δ = 0, S sends out
BP = (AP)

sUQ+sPQ−opQ on behalf of P (at this point, S knows the value of opQ
through “Fgzk[· · · , 2]” from Share in the Setup query or through “Fgzk[· · · , 9]”
from ComRefr in the Refresh query), otherwise S sends out a random BP .
• P and Q corrupt, U honest: Upon receiving 〈Lock, · · ·〉 from F2pass, S knows

whether δ = 0 or not. S sends out a random value AU . If δ = 0, S sends out
BU = (AU)

sUP+sUQ−opP−opQ on behalf of U (at this point, S knows the value of
opP and opQ because of the earlier “Fgzk[· · · , 3]” and “Fgzk[· · · , 4]” in ChkPwd),
otherwise S sends out a random BU .
• U corrupt, others honest: S sends out random values AP , BP , and AQ. If δ = 0, S

sends out BQ = g0, otherwise S sends out a random BQ.
• U and P corrupt, Q honest: S sends out a random value AQ. If δ = 0, S sends

out BQ = g0, otherwise S sends out a random BQ.
• U and Q corrupt, P honest: S sends out a random value AP . If δ = 0, S

sends out BP = (AP)
sUQ+sPQ−opQ (at this point, S knows the value of opQ through

“Fgzk[· · · , 2]” from Share in the Setup query or through “Fgzk[· · · , 9]” from ComRefr
in the Refresh query), otherwise S sends out a random BP .
• (U , P and Q corrupt: The simulation is internal to the adversary.)

Refresh. S can run Refresh queries honestly, even if it doesn’t know the correct value of
the shares of the servers.

Adjustements upon corruption of U . When a user U gets corrupted, S needs to
perform the following adjustments, depending at which point in the simulation the
corruption happened.

Share after 1st Send of “Fosac”. No adjustments needed, since most of the state was
erased.

ChkPwd after Lock of “F2v
gzk[· · · , 5]”. No adjustments needed, since most of the state

was erased.

Reconstr after 1st Deliver of “Fosac”. If not done already, immediately send 〈Deliver,
· · ·〉 on the U interface to recover output.

• P and Q honest: adjust kQ to match output of U . S will need to adjust okQ (with
help of trapdoor), and the OTP used to transmit it.
• P corrupt, Q honest: adjust kQ to match output of U . S will need to adjust okQ

(with trapdoor), and the OTP used to transmit it.
• P honest, Q corrupt: adjust kP to match output of U . S will need to adjust okP

(with trapdoor), and the OTP used to transmit it.

4.4. Security Proof 101

• P and Q corrupt: there is nothing to adjust.

We note that the values kP , kQ, okP , and okQ are fixed after the corruption of the first
user in the Retrieve query that succeeded in retrieving the key. When re-adjusting these
values after a subsequent corruption of a user in the Retrieve query, the values will not
change again.

Adjustments upon corruption of P. When P gets corrupted, S needs to perform
the following adjustments, depending at which point in the simulation the corruption
happened.

Share after Deliver of “Fosac”.

• U was honest during setup, U was always honest during retrieve, Q honest: No
adjustments needed.

• U was honest during setup, U was always honest during retrieve, Q corrupt:
Adjust pP and kP to match U ’s input. S also needs to adjust opP and okP (with
help of trapdoor) and the OTPs used to transmit those.

• U was honest during setup, U was corrupted at least once during retrieve, Q
honest: S needs to adjust the OTP used to transmit the shares of the key. The
values kP and okP were already adjusted when U was corrupted during Retrieve.
• U was honest during setup, U was corrupted at least once during retrieve, Q

corrupt: Adjust pP to match U ’s input. The values kP and okP were already
adjusted when U was corrupted during Retrieve. S also needs to adjust opP (with
help of trapdoor) and the OTPs used to transmit messages between U and P.

• U was corrupt during setup: No adjustments needed.

ChkPwd after Deliver of “F2v
gzk[· · · , 5]”.

• U and Q honest: Nothing to adjust.
• U corrupted: Nothing to adjust.
• U honest, Q corrupted: If δ = 0: adjust sUP so that BU = (AU)

sUP+sUQ−opP−opQ . S
also needs to adjust osUP (with trapdoor) and the OTP used to transmit it.

ChkPwd after Deliver of “Fgzk[· · · , 6]”.

• Q honest: Nothing to adjust, since parts of the state were erased.
• Q corrupted: Nothing to adjust.

Reconstr after Send of “Fosac”.

• U and Q honest: Nothing to adjust.
• U corrupted: Nothing to adjust.
• U honest, Q corrupted: Adjust kP to match correct output of U . S will need to

adjust okP (with trapdoor) and the OTP used to transmit it.

Adjustments upon corruption of Q. When Q gets corrupted, S needs to perform
the following adjustments, depending at which point in the simulation the corruption
happened.

Share after Deliver of “Fosac”. Similar as for P.

102 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

ChkPwd after Deliver of “F2v
gzk[· · · , 5]”.

• U honest, P corrupted: If δ = 0: adjust sUQ so that BU = (AU)
sUP+sUQ−opP−opQ . S

also needs to adjust osUQ (with trapdoor) and the OTP used to transmit it.
• Other cases: Nothing to adjust.

ChkPwd after Deliver of “Fgzk[· · · , 6]”.

• P honest: Nothing to adjust.
• P corrupted: If δ = 0: adjust sPQ so that BP = (AP)

sUQ+sPQ−opQ . S also needs to
adjust osPQ (with trapdoor) and the OTP used to transmit it.

Reconstr after Send of “Fosac”. Similar as for P.

4.4.2.2 Proof of Indistinguishability

We are going to define a sequence of games Game1 to GameNgames
, as described by

Shoup [Sho04]. In the first game, everything is distributed as in the protocol Π2pass,
whereas in the last game everything is distributed as in the ideal world F2pass. By
the piling-up lemma, the advantage of E is less than the sum of the advantages in
distinguishing between Gamei and Gamei+1. We are going to prove that E only has
negligible advantage in distinguishing between two consecutive games, based either on
a reduction to a hard cryptographic problem, or by “failure events” happening with
negligible probability. As long as the number of games is polynomial w.r.t. the security
parameter, the total advantage of E is negligible.

We stress that in all intermediate games, E and A interact with a machine that runs
both F2pass and Si. Without loss of generality, we assume that Si thus obtains the
inputs and outputs of all honest parties from F2pass. It is only in the last game, which
is identical to the “ideal world” and where S is equal to Si, that Si does not make use
of these inputs and outputs.

Game1. As observed in the previous paragraph, S1 receives the input of all honest
parties. S1 runs all parties honestly, and runs “FG3

crs”, “Fosac”, “Fac”, “Fgzk”, and
“F2v

gzk” honestly. By construction, this setting is perfectly indistinguishable from the

(FG3

crs , Fosac, Fac, Fgzk, F2v
gzk)-hybrid real world Π2pass.

Game2. S2 runs like S1 , except that it aborts if the adversary manages to open a
commitment to two different values. S2 detects that case when:

• A corrupt P uses a different share pP or kP in any “Fgzk” with a honest party,
than the value it received from honest U .
• A corrupt P uses a different values of shares pP or kP in subsequent runs of “Fgzk”.
• A corrupt Q uses a different share pQ or kQ in any “Fgzk” with a honest party,

than the value it received from honest U .
• A corrupt Q uses a different values of shares pQ or kQ in subsequent runs of “Fgzk”.
• A corrupt U sends a value BU in “F2v

gzk[· · · , 5]” to an honest P or Q that is
incompatible with sUP or sUQ, respectively. (Here S2 doesn’t need to extract those
values, it can simply decrypt BU and see if δ is equal or not equal to zero as
expected.)

4.4. Security Proof 103

• A corrupt P sends a value BP to honest Q in “Fgzk[· · · , 6]” that is incompatible
with sUP or sPQ or pP . (Here S2 doesn’t need to extract those values, it can simply
decrypt BP and see if δ is equal or not equal to zero as expected.)

• A corrupt Q sends a value BQ to an honest P in “Fgzk[· · · , 7]” that is incompatible
with sUQ or sPQ or pQ. (Here S2 doesn’t need to extract those values, it can simply
see if δ is equal or not equal to zero as expected.)

The probability that S2 aborts is at most the probability that the commitment was
not binding after all (recall that the ideal functionalities Fgzk and F2v

gzk provide perfect
soundness), which is negligible.

Game3. S3 runs like S2 , except that when secureSend is run between two honest
parties, the parties use a different one-time-pad than the one that was encrypted in eT .
Recall that both honest parties have deleted the randomness and decryption key for
that ciphertext by the time the one-time-pad is first put into use.

The advantage of E in distinguishing between Game3 and Game2 is at most
the advantage of a polynomial-time environment in the CCA-2 security game of the
cryptosystem, which is negligible.

Game4. S4 runs like S3 , except that when ChkPwd is run by an honest U and whenever
δ 6= 0, S4 chooses AU and BU at random from G. S4 will make proofs of false statements
with F2v

gzk.
We now argue that the advantage that E has in distinguishing between Game4 and

Game3 is negligible under the DDH assumption. We do this by running a hybrid
arguments over all retrieve queries.

In the hybrid j, the simulator S3,j behaves like S4 for the first j queries, and like
S3 for the following queries.

We now construct a distinguisher S that operates with an environment which tries
to distinguish between hybrid j − 1 and j: the simulator S gets a DDH challenge

(G, p, g, g′, g′′, g′′′) and chooses w
$← Zp and sets h ← gw, y ← (g′)w, Y ← (g′′)w, Z ←

(g′′′)w. I.e., either

• (h, y, Y, Z) are independent random elements of G (left setting); or
• (h, y, Y, Z) form a DDH tuple (right setting), i.e. Y = hrU and Z = yrU for some
rU .

S chooses u at random, and sets the CRS to (h, y, u). In the first j−1 Retrieve queries, S
behaves like S4 . In queries j+1 and following, S behaves like S3 . In jth query, whenever
δ 6= 0 and whenever U is honest, S recovers opP from “Fgzk[· · · , 3]” if needed, recovers
opQ from “Fgzk[· · · , 4]” if needed, sets AU ← Y −1, sets BU ← Zδ(AU)

sUP+sUQ−opP−opQ ,
and makes a proof of a false statement in the subsequent Fgzk. S then outputs whatever
the environment outputs. Notice how in the left setting, the distribution of all values
is like in hybrid j, and in the right setting, the distribution of all values is like in the
hybrid j − 1. Also note that since rU is erased before the last message of “F2v

gzk[· · · , 5]”,
S4 will not get into trouble if U is corrupted.

The advantage of S in the DDH-game is therefore equal or better than the advantage
of the environment in distinguishing between the two hybrids. The former being
negligible by assumption, the latter must also be negligible. Since the number of queries

104 Chapter 4. Practical 2-Server Password-Authenticated Secret Sharing

is polynomial, the overall advantage of the environment in distinguishing between Game4

and Game3 is negligible.

Game5. S5 runs like S4 , except that when ChkPwd is run by an honest P and whenever
δ 6= 0, S5 chooses AP and BP at random from G. S5 will make proofs of false statements
with Fgzk.

We now argue that the advantage that E has in distinguishing between Game5 and
Game4 is negligible under the DDH assumption. We do this by running a hybrid
arguments over all retrieve queries.

In the hybrid j, the simulator S4,j behaves like S5 for the first j queries, and like
S4 for the following queries.

We now construct a distinguisher S that operates with an environment which tries
to distinguish between hybrid j − 1 and j: the simulator S gets a DDH challenge

(G, p, g, g′, g′′, g′′′) and chooses w
$← Zp and sets h ← gw, y ← (g′)w, Y ← (g′′)w, Z ←

(g′′′)w. I.e., either

• (h, y, Y, Z) are independent random elements of G (left setting); or
• (h, y, Y, Z) form a DDH tuple (right setting), i.e. Y = hrU ·rP and Z = yrU ·rP for

some (rU · rP).

S chooses u at random, and sets the CRS to (h, y, u). In the first j − 1 Retrieve queries,
S behaves like S5 . In queries j + 1 and following, S behaves like S4 . In jth query,
whenever δ 6= 0 and whenever P is honest, S recovers sUQ from “F2v

gzk[· · · , 5]” if needed,
(opQ was recovered in “Fgzk[· · · , 2]” in Share during Setup or in “Fgzk[· · · , 9]” in ComRefr
during Refresh) sets AP ← Y −1, sets BP ← Zδ(AP)

sPQ+sUQ−opQ , and makes a proof of
a false statement in the subsequent Fgzk. S then outputs whatever the environment
outputs. Notice how in the left setting, the distribution of all values is like in hybrid j,
and in the right setting, the distribution of all values is like in the hybrid j − 1. Also
note that since rP is erased before the last message of “Fgzk[· · · , 6]”, S5 will not get
into trouble if P is corrupted.

The advantage of S in the DDH-game is therefore equal or better than the advantage
of the environment in distinguishing between the two hybrids. The former being
negligible by assumption, the latter must also be negligible. Since the number of queries
is polynomial, the overall advantage of the environment in distinguishing between Game5

and Game4 is negligible.

Game6. S6 runs like S5 , except that when ChkPwd is run by an honest Q and whenever
δ 6= 0, S6 chooses AQ and BQ at random from G. S6 will make proofs of false statements
with Fgzk.

We now argue that the advantage that E has in distinguishing between Game6 and
Game5 is negligible under the DDH assumption. We do this by running a hybrid
arguments over all retrieve queries.

In the hybrid j, the simulator S5,j behaves like S6 for the first j queries, and like
S5 for the following queries.

We now construct a distinguisher S that operates with an environment which tries
to distinguish between hybrid j − 1 and j: the simulator S gets a DDH challenge

(G, p, g, g′, g′′, g′′′) and chooses w
$← Zp and sets h ← gw, y ← (g′)w, Y ← (g′′)w, Z ←

(g′′′)w. I.e., either

4.4. Security Proof 105

• (h, y, Y, Z) are independent random elements of G (left setting); or
• (h, y, Y, Z) form a DDH tuple (right setting), i.e. Y = hrU ·rP ·rQ and Z = yrU ·rP ·rQ

for some (rU · rP · rQ).

S chooses u at random, and sets the CRS to (h, y, u). In the first j − 1 Retrieve queries,
S behaves like S6 . In queries j + 1 and following, S behaves like S5 . In jth query,
whenever δ 6= 0 and whenever Q is honest, S sets AQ ← Y −1, sets BQ ← Zδ, and
makes a proof of a false statement in the subsequent Fgzk. S then outputs whatever
the environment outputs. Notice how in the left setting, the distribution of all values
is like in hybrid j, and in the right setting, the distribution of all values is like in the
hybrid j − 1. Also note that since rQ is erased before the last message of “Fgzk[· · · , 7]”,
S6 will not get into trouble if Q is corrupted.

The advantage of S in the DDH-game is therefore equal or better than the advantage
of the environment in distinguishing between the two hybrids. The former being
negligible by assumption, the latter must also be negligible. Since the number of queries
is polynomial, the overall advantage of the environment in distinguishing between Game6

and Game5 is negligible.

Game7. S7 runs like S6 , except that now it chooses the CRS with CRSGen′0 instead of

CRSGen1 upon the first query to “FG3

crs”. The commitment scheme is now perfectly hiding,
and S7 can now efficiently equivocate commitments using the trapdoor information.

The advantage that E has in distinguishing between Game7 and Game6 is equal
to its advantage in breaking the security of the HMT commitment scheme, which is
negligible as DDH assumption holds for ggen by assumption.

Game8. S8 runs like S described in Section 4.4.2.1.
This is a purely conceptual change, so E has no advantage in distinguishing between

Game8 and Game7 .

5

Memory Erasability Amplification

Persistent and erasable memory is a crucial ingredient of many practical cryptographic
protocols that are secure against adaptive adversaries. However, for storage devices such
as solid state disks, hard disks, and tapes it is rather difficult to truly erase information
written on them. Therefore, constructions have been proposed that use a small amount
of memory that is easier to erase (or at least harder for an attacker to tap into), such as
smart cards and processor registers, to store a cryptographic key, and then to encrypt
the data to be stored so that it no longer matters whether or not the ciphertext can be
erased [Gut96,JL00,RCB12,RRBC13,RBC13,Yee94,YT95]. This approach is sometimes
referred to as crypto paging. Surprisingly, no formal model of erasable memory has
been proposed to date, despite of the importance of erasable memory for cryptographic
protocol design and the cryptographic constructions for it.

Contributions. In this chapter we rectify this and first model erasable memory as
a general resource in the constructive cryptography framework [MR11,Mau11a]. Our
memory resource defines how a user, an adversary, and the environment can interact
with the resource and to what extent stored data can be erased. In particular, different
memory resources are characterized by what information about the stored data an
adversary will be able to obtain when the environment allows it access to the memory
resource. As we discuss, this allows one to model many different types of memory
such as hard disks, solid state drives, RAM, and smart cards. Next, we study different
constructions of erasable memory from one with weaker erasability properties or, in
other words, constructions that amplify erasability. These constructions also show how
memory resources can be used in protocol design and analysis. We then study the
approach of crypto paging in our setting, i.e., constructions of a large erasable memory
from a small one and a non-erasable memory. As it turns out, achieving the strongest
possible type of erasable memory with this approach requires non-committing encryption
and hence is only possible in the random oracle model. We also show what kind of
erasable memory can be achieved with this approach in the standard model.

One of our memory constructions employs All-or-Nothing Transforms (AoNT)
[CDH+00] to obtain a perfectly erasable memory from one that leaks a constant fraction
of the erased data. Motivated by this protocol, we study AoNTs and propose several
new transforms that enjoy better parameters than previously known ones, a result that

108 Chapter 5. Memory Erasability Amplification

may be of independent interest. For example, we improve the standard construction of
a perfectly-secure AoNT from a Linear Block Code (LBC), by observing that an LBC
with a large minimum distance does not yield an AoNT with optimal privacy threshold.
We propose the metric of ramp minimum distance and show that LBCs optimized for
this metric yield perfectly secure AoNTs with better parameters than what can be
achieved with the standard construction. We further propose a computationally secure
AoNT that operates over a large alphabet (large enough for one symbol to encode a
cryptographic key) and that is optimal: the encoded data is just one symbol longer than
the original data, and the transform is secure even if all but one of the symbols of the
encoded data leak. We show that such an AoNT can be realized from a pseudo-random
generator (PRG) with some specific properties.

Related Work. In most security frameworks, unlimited and perfectly erasable memory
is available to protocols as part of the framework, with the exception of protocols that
are proven to be adaptively secure in the non-erasure model, where no erasable memory
is available. However, as mentioned already, no security framework explicitly models
memory and consequently security proofs treat the adversary’s access to the memory of
a compromised party informally only. The only exception to this is the work by Canetti
et al. and Lim [CEGL08a,Lim08], who model memory as special tapes of the parties’
Turing machines and define how an adversary can access these special tapes. This very
specific modelling therefore changes the machine model underlying the UC framework.

Hazay et al. [HLP15] follow a different approach. They introduce the concept of
adaptive security with partial erasures, where security holds if at least one party of a
given protocol can successfully erase. Their model requires a special protocol design and
has some restrictions regarding composition.

Both these approaches are rather limited. Indeed, if one wanted to consider different
types of memory, one would have to change the modelling framework each time and
potentially have to prove all composition theorems all over again. Moreover, these
approaches do not allow one to analyse protocols that construct one type of memory
from another type of memory, as we do in this chapter. Indeed, one cannot analyse
the security of protocols such as Yee’s crypto-paging technique [Yee94, YT95] and
the constructions of Di Crescenzo et al. [DCFIJ99]. In contrast, we model memory
as a resource (or ideal functionality) within the security framework (the constructive
cryptography framework in our case) and thus do not suffer from these limitations.

5.1 Modelling Imperfectly Erasable Memory

We now present our erasable memory resource. Recall that we aim to model memory
that is used for persistent storage (such as hard disks, solid state drives, RAM, and smart
cards), and not processor registers that store temporary values during computations. To
this end, we define how the resource behaves upon inputs on the user, the adversary, and
the world interfaces. It allows a user Alice to store a single data item once, retrieve it
(many times), and erase it. The adversary can get access to the data only if such access
is enabled on the World-interface. That is, the data stored is not initially available
to her. Then, once access is enabled via a weaken input on the World-interface, the
adversary can either read the data item stored (if the user has not yet deleted it) or

5.1. Modelling Imperfectly Erasable Memory 109

The resource M〈Σ,ψ, ρ, κ〉:
Internal state and initial values: data = ⊥, ldat = ⊥,hist = ().
Behavior:
• Alice(store, µ ∈ Σ): if data = ⊥: data← µ; ldat

$← ψ(µ);Alice← ().
• Alice(retrieve): if “e” 6∈ hist: Alice← data.
• Alice(erase): if “e” 6∈ hist ∧ data 6= ⊥: hist← (hist, “e”);Alice← ().

• Eve(gethist): Eve← hist.
• Eve(read): if ρ(hist): Eve← data.
• Eve(leak, ξ): if κ(hist, ξ): hist← (hist, “l”||ξ); Eve← ξ(ldat).

• World(weaken, w): if (“w”||w) 6∈ hist: hist← (hist, “w”||w);World← ().

Fig. 5.1: The general imperfectly erasable memory resource M〈·〉.

leak the data, meaning that she will obtain as answer a function of the once stored data.
This function determines the information that is still leaked although the data has been
deleted. The adversary can influence the leakage by providing an additional input to
the function (e.g., specify some bits that are leaked).

In reality, there might be many different reason why an adversary gains access to the
contents of a memory. This might be because the memory device is lost, the adversary
controlling some malware on the computer that uses the memory, or the adversary
running a cache-timing attack [Ber05] on the computer, etc. Offering a World-interface
via which it is determined what access is given to the adversary by the memory resource,
models any such event. The UC and GNUC frameworks use a similar mechanism for
corrupting parties, except that they (ab)use the party interfaces to do so. In UC, it is
the adversary who corrupts and the environment is informed of the corruption through
the party interfaces. In GNUC, the environment corrupts parties and the adversary is
informed thereof.

There seem to be two natural extensions to our erasable memory resource which for
simplicity we chose not to consider. First, we assume that inputs at the World-interface
do not impact the user’s ability to access the data, which might often not be the case.
Although this would not be hard to model, it is not important for the scope of this
chapter. Second, the user cannot change the stored data or store many different data
items, Again, while it would not be hard to extend the resource to allow for that, we
choose not to do that for simplicity. Also, this is not a serious restrictions as such
requirements can also be addressed by using several instances of our memory resources.

5.1.1 Specification of the General Imperfectly Erasable Memory Resource

We now present our formal specification of the general resource for imperfectly erasable
memory M〈Σ,ψ, ρ, κ〉 that is given in Figure 5.1 and then discuss in the next subsection
a few instantiations of this general resource that match different types of memory. The
resource maintains three variables data, ldat, and hist. The first one stores the
data provided by the user, the second the data that can potentially be leaked to the
adversary, and the third one logs the history of events, namely the erasure event, the
parameter of each call on the World interface, and the input arguments of each successful
leakage query. The resource is parametrized by an alphabet Σ, a conditional probability

110 Chapter 5. Memory Erasability Amplification

distribution ψ, and two predicates ρ and κ. The alphabet Σ is the set of possible values
that can be stored. The conditional distribution ψ operates on the data and determines
what information could potentially leak to the adversary by outputting ldat. This
models the extent to which the resource is able to erase the data. The predicate ρ takes
as input the history of the resource and determines whether or not the adversary is
allowed to read the memory. Finally, the predicate κ takes as input the history of the
resource and the deterministic function ξ submitted by the adversary and determines
whether or not the adversary obtains the leakage ξ(ldat).

Most of the commands that can be submitted to the resource and its behaviour
should now be clear from Figure 5.1, however, a few details merit explanation. First,
the data that is potentially leaked, ldat, is determined using ψ already when the data
is stored in the resource. This is without loss of generalty but is here useful because,
depending on the predicate κ, the adversary may query the resource multiple times
with the leak command and the answers to these commands need to be consistent.
Second, when the adversary queries the resource with a leak command, she can input
a parameter ξ that may influence the leakage she obtains. This models the process of
an adversary reading the erased data from a memory device, e.g., an adversary might
try to read the data bit by bit, each time influencing the remaining bits in the memory.
Third, the adversary is allowed to obtain the history from the resource at any time.
This is necessary so that a simulator has enough information to properly simulate a
construction. Finally, the World-interface accepts any value w for an external event,
because these depend on the particular resource that is modelled and possibly on how it
is constructed. This will become clear later when we discuss constructions of one type
of memory from other types in Section 5.2.

5.1.2 Instantiations of M〈Σ,ψ, ρ, κ〉

We now describe special cases of the M〈Σ,ψ, ρ, κ〉 resource that correspond to memory
devices appearing in the real world. We start by describing non-erasable memory, i.e.,
memory that becomes readable by the adversary once access is enabled by the World-
interface. This models what happens in a typical file system: files that are unlinked
are not actually erased and can often be completely recovered with specialized tools
(at least until the blocks are re-used). We then describe perfectly erasable memory.
Such a memory could be implemented by specialized hardware, such as smartcards,
but often will have only limited capacity. Large perfectly erasable memories are often
not directly available in reality. We are thus interested in the construction of such
memories from resources with lesser guarantees. Each of the latter can be influenced
through World-events separately, hence we will describe both a variant of the perfectly
erasable memory that accepts a single type of World-event (easier to describe) and a
variant that accepts an arbitrary number of events. Finally we describe imperfectly
erasable memories, i.e., memories with security guarantees between the two extremes
just discussed. Such memories leak partial information if the adversary is granted
access by World after an erasure. In reality, often not all the data is actually removed
during an erasure: on magnetic storage, overwritten data can still be partially recovered
with specialized equipment [Gut96]. Similarly, often parts of the data were copied to
a different medium (swap space, backup, file system journal, etc.) before the erasure

5.2. Constructing Better Memory Resources 111

and the copies were not fully erased themselves. One can thus easily imagine that the
adversary can deduce a constant number of bits that were stored, or obtains a noisy
version of the data that was stored. For simplicity, we consider imperfectly erasable
memories which ignore the parameter of weaken (only a single World-event can be
modelled), and only leak once (no adaptive leakage).

Non-erasable Memory. To model non-erasable memory, we let ρ return true if weaken
was called irrespective of erase. (In fact, the erase command could be dropped entirely.)
The memory does not leak, hence κ always returns false and ψ is irrelevant. The only
relevant parameter is the alphabet Σ and thus we denote this resource by NM〈Σ〉.

Perfectly Erasable Memory. To model perfectly erasable memory, we let ρ return
true only if weaken was called (perhaps multiple times with specific parameters) before
erase was called.1 This memory does not leak, hence κ always returns false and ψ
is irrelevant. We describe two versions of the resource: PM〈Σ〉 fixes ρ to return true
if weaken appears in the history earlier than or without erase, hence only a single
World-event can be modelled. PMM〈Σ, ρ〉 lets one specify a custom ρ, allowing the
modelling of many World-events. Figure 5.5 in the next section shows examples of ρ in
the case where there are two relevant World-events.

Imperfectly Erasable Memory. To model imperfectly erasable memory, we fix ρ
and split κ into two predicates: a fixed predicate that checks only the history and
a freely specifiable predicate Ξ that checks only the adversary’s choice ξ. The other
parameters Σ and ψ can be freely specified. We denote this resource by IM〈Σ,ψ,Ξ〉.
The predicate ρ returns true only if the first recorded event in the history is a weaken

command (as opposed to an erase command). The fixed predicate returns true if the
first two recorded events in the history are an erase command followed by a weaken

command (if weaken was called first, the adversary should call read and not leak), and
no leak query succeeded previously. The predicate κ returns true if the fixed predicate
does so and Ξ accepts ξ. In the next section, when we discuss erasability amplification,
we further specialize this resource.

5.2 Constructing Better Memory Resources

In this section we consider constructions of memory resources with stronger security
properties from memory resources with weaker ones. We start by showing how to
use our memory resources in protocol constructions and then explain the issues that
arise when doing so. Thereafter, we describe several specializations of the imperfectly
erasable memory resource IM〈·〉 presented in the previous section and then show how to
construct memory resources with stronger properties from ones with weaker properties.

1 In this chapter, we chose to consider monotone ρ’s. We chose to model the memory resource
in such a way that it only responds on the same interface it was activated, hence it is not
possible for the adversary to be notified of an event that causes the memory to become
readable. To simplify the modelling of simulators, we consider the adversary to be eager
and trying to read the memory as soon as possible and then placing the resulting data in an
“intermediate buffer” that can then be collected though the Eve-interface at a later point.

112 Chapter 5. Memory Erasability Amplification

For example, we show how to construct perfectly erasable memories from memories that
leak a certain number of bits. Finally, we consider the construction of a large perfectly
erasable memory from a small one plus a large non-erasable memory.

5.2.1 Admissible Converters for Constructions using Erasable Memory

As stated previously, one of our reasons to model memory is to be able to analyse
cryptographic protocols where the adversary at some point obtains access to the memory.
This means that one needs to restrict converters to use only our memory resources for
storage. Assuming that an adversary in a real environment may typically not be able to
get access to processor registers, we still allow a converter to store temporary values
locally and use a memory resource only for persistent storage. Let us now formalize the
distinction between persistent and temporary storage and the restrictions we put on
converters.

The computation done by a converter is divided in computation phases. A phase
starts when a converter is activated outside of a computation phase. Informally, a phase
ends as soon as the converter responds to that activation or makes a request that is not
guaranteed to be answered immediately, i.e., where there is a chance that the adversary
is activated before the request completes. For example, a computation phase ends if
the converter makes a request that goes over an unreliable communication network, but
does not end if the converter asks to store or retrieve data from a memory resource.

In this chapter, all our resources always respond on the same interface they were
activated. It is then easy to define a computation phase of a converter: the phase starts
as soon as the converter’s outer interface is activated, and stops as soon as the converter
writes on its outer interface. That is, activations of the inner interface do not interrupt
the phase. However, in a more general setting, resources may respond on a different
interface than the one they were activated on, and thereby activate a different party
or the adversary. The definition of computation phase of converters must therefore be
adjusted to take this into account.

State that is discarded at the end of a computation phase is temporary. State that
must persist between two or more computation phases is persistent. (Converters must
keep all persistent state in memory resources.) This distinction ensures that whenever
the adversary has control, the entire internal state of a protocol is inside memory
resources, and thus subject to attack.

Discussion. Other models, notably Canetti et al. and Lim [CEGL08a, Lim08], also
make a distinction between storage needed during computation and persistent storage.
However they do it in a way that does not cleanly separate the various layers of
abstraction: they assume the existence of a constant number of “processor registers”
that are perfectly erasable and place no restriction on the amount of time that data
can remain in such a register. For example, their model therefore does not exclude
reserving a part of the CPU registers to permanently store a cryptographic key, and
use a crypto paging technique [Yee94,YT95] to have as much (computationally secure)
perfectly erasable memory as required. Thus, to ensure a meaningful analysis, a similar
restriction would have to be used in their approach.

5.2. Constructing Better Memory Resources 113

5.2.2 Memory Erasability Amplification

We now describe several variants of imperfectly erasable memory that are relevant for
practice, namely memory that leaks a constant number of bits, memory that leaks bits
with a certain probability, memory that leaks a noisy version of the data, and memory
that leaks the output of a length-shrinking function of the data. We then show how to
construct memories which leak less information from each of these variants, in other
words, we show how to amplify the erasability of each variant.

5.2.2.1 Amplifying Memory Leaking Exactly d Symbols

On many file systems, unlinked files are not necessarily immediately erased in their
entirety. For instance, on most SSDs, deleted data persists until the flash translation
layer flashes the corresponding erase block. Furthermore, data may survive erasure
if it was copied to another medium, such as a cache, the swap space or backups. An
adversary could therefore potentially recover parts of data that were believed to be
erased. In full generality, the adversary may not obtain the entire data but still have an
influence on which parts of the data she obtains in an attack, e.g., because she can steal
just one backup tape, because of the cost of the attack or time constrains forcing her to
choose the most juicy parts of the data, or because the adversary could influence the
system beforehand to some degree and ensure that the parts of the data she is interested
in were backed-up/swapped/cached.

To model such a scenario, we define the memory resource IMR〈Φ, n, d〉 storing n
symbols of an alphabet Φ, and where the adversary can obtain exactly d symbols of his
choice when the memory leaks. This resource is a specialization of IM〈Σ,ψ,Ξ〉, where
Σ = Φn, ψ is the identity function, and Ξ accepts any function that reads at most d
symbols from ldat.

In a real setting, and depending on the nature of the attack, the adversary may
obtain less than d symbols or might not have full control over which symbols she obtains.
A memory resource in such a setting can be perfectly constructed from IMR〈Φ, n, d〉
with the identity converter. (A memory resource where the adversary can obtain more
than d symbols with a small probability ε can also be constructed from IMR〈Φ, n, d〉,
albeit with an error probability equal to ε; see, e.g., Section 5.2.2.2.)

The converter I2P shown in Figure 5.2 constructs PM〈Φk〉 from IMR〈Φ, n, d〉. This
converter is parametrized by an AoNT (cf. Section 2.4.9). In a nutshell, I2P just applies
the AoNT encoding algorithm aenc(·) to the incoming data before storing it in IMR〈·〉;
and decodes the encoded data stored in IMR〈·〉 using adec(·) before outputting it. The
erasure command is transmitted to IMR〈·〉 directly. The privacy property of the AoNT
guarantees that if the adversary obtains d symbols of the encoded data, she obtains no
meaningful information about the original data. Thus, we obtain the following theorem.

Theorem 5.1. If (aenc, adec) is an ε-secure (Φ, n, d, k)-AoNT, then

IMR〈Φ, n, d〉
I2P〈Φ,k,aenc,adec〉

ε PM〈Φk〉.

A similar theorem can be stated for the computational case.

114 Chapter 5. Memory Erasability Amplification

The converter I2P〈Φ, k, aenc, adec〉:
Behavior:
• Outer(store, µ ∈ Φk): Inner

$← (store, aenc(µ)). Inner→ (). Outer← ().
• Outer(retrieve): Inner← (retrieve). Inner→ φ.

If φ 6= (): Outer← adec(φ). Else: Outer← ().
• Outer(erase): Inner← (erase). Inner→ (). Outer← ().

Fig. 5.2: The converter I2P constructing PM〈Φk〉 from IMR〈Φ, n, d〉. The converter is
parametrized by a (Φ, n, d, k)-AoNT (aenc, adec).

The simulator SI2P〈Φ, n, d, k, aenc〉:
Internal state and initial values: leaked = 0.
Behavior:
• Outer(gethist): Inner← (gethist). Inner→ λ. Outer← λ.
• Outer(read): upon error in the following, abort with Outer← ().

Inner← (read). Inner→ µ ∈ Φk. Outer
$← aenc(µ).

• Outer(leak, ξ ∈ (x 7→ [x]L with L ∈ 2{1,...,n} ∩ Nd)):
upon error in the following, abort with Outer← ().

If leaked = 0:
Inner← (gethist); Inner→ (“e”, “W”); leaked← 1; Outer

$← ξ(aenc(0k)).

Fig. 5.3: The simulator SI2P in the proof of the construction of PM〈Φk〉 from IMR〈Φ, n, d〉
using a (Φ, n, d, k)-AoNT (aenc, adec).

Proof. Figure 5.3 shows the simulator SI2P. We now prove that all distinguishers have
at most advantage ε in distinguishing I2P〈Φ, n, aenc, adec〉IMR〈Φ, n, d〉 (the “real world”)
from PM〈Φk〉SI2P〈Φ, k, d, n, aenc〉 (the “ideal world”).

Consider a system W that interacts with any distinguisher D and that behaves like
the ideal world except that instead of outputting ξ(aenc(0k)) during a leak, W plays
the AoNT distinguishing game with ξ and 0k and the message µ that was stored in the
memory, obtains (0k, µ, ω) from that game, and outputs ω on leak. W outputs the same
value as D. If D never triggers a leak, W outputs a random bit.

It is easy to see that if leakage output by the AoNT privacy game corresponds to
the message 0k, the behavior of W is exactly the same as the ideal world for D; and the
distribution output by the AoNT privacy game corresponds to µ, the behavior of W is
exactly the same as the real world for D. W’s advantage in the AoNT distinguishing
game is thus not less than the distinguishing advantage of D.

ut

Multi-part leakage. It is sometimes the case that the memory is segmented into
multiple independent parts, e.g., over two different file systems on different partitions of
the same physical disc and that each part reacts differently to an attack.

We define a multi-part memory resource IMRP〈Φ, s1, s2, d〉 storing data in Φs1+s2 .
The memory is divided in two parts, the first part consisting of the first s1 symbols
and the second of the other s2 symbols. The first part of the memory leaks similarly to
IMR〈Φ, s1, d〉, while the second one leaks the entire data. When attacking the memory,
the adversary must submit the choice of leakage for the first part before obtaining the
leakage of the second part. We get the following theorem.

5.2. Constructing Better Memory Resources 115

Theorem 5.2. If (aenc, adec) is an ε-secure (Φ, n + ν, d, k)-AoNT with public part ν,
then

IMRP〈Φ, n, ν, d〉
I2P〈Φ,k,aenc,adec〉

ε PM〈Φk〉.

Proof. The proof is similar to the proof of Theorem 5.1 and is omitted.

A similar theorem can be stated for the computational case.

Choice of alphabet. The most suitable choice of Φ depends on the application. Possible
values are GF(2) when bits can be leaked independently, e.g., because the adversary must
read them one by one from the surface of a disc; GF(2512·8) to GF(24096·8) when the
smallest leakable unit is a file system block; or even GF(2128·1024·8) to GF(28192·1024·8)
when the smallest leakable unit is an erase blocks of an SSD. In the latter two cases, it
is also possible to design the system in such a way that only parts of a block are written
to before proceeding with the next one, thereby reducing the alphabet size and limiting
the amount of exposure per leaked block.

5.2.2.2 Amplifying Memory Leaking Symbols with Probability p

Above, we modelled an adversary who chooses which symbols leak from the imperfect
memory. In practice, the adversary may not have this much power: for example, some
parts of a deleted file might still be present in the journal, but the adversary has no
control over which ones. To model this, let us now consider an adversary who obtains each
symbol of the data uniformly and independently at random with a certain probability
p during a leakage. We denote a memory with such a behaviour by IME〈Φ, n, d〉. This
resource is a specialization of IM〈Σ,ψ,Ξ〉 where Σ = Φn, ψ acts like an erasure channel
with erasure probability (1− p) (i.e., each symbol of the data is transmitted correctly
with probability p and otherwise is replaced with “⊥”), and Ξ accepts only the identity
function.

One can treat IME〈·〉 similarly to IMR〈·〉 in constructions with just a small statistical
error, as the following observation shows. Constructing PM〈Φk〉 from IME〈Φ, n, p〉
directly without first constructing IMR〈Φ, n, d〉might be more efficient (better parameters,
less statistical error), but such a direct construction is out of the scope of this chapter.

Observation 5.3 For all (n, d) ∈ N2, p ∈ [0, 1], fields Φ: IME〈Φ, n, p〉 id
ε IMR〈Φ, n, d〉.

Here id is the identity converter, and ε = (1− BinomialCDF(d;n, p)) =
∑n
i=d+1

(
n
i

)
pi ·

(1− p)n−i.

Proof. In Figure 5.4 we show a simulator SE2R, such that IMR〈Φ, n, d〉SE2R〈n, d, p〉 and
IME〈Φ, n, p〉 can be distinguished with advantage at most (1− BinomialCDF(d;n, p)).

It is easy to see that if the simulator does not abort, then the simulation is perfect.
Since the number of bits of b set to 1 follows a binomial distribution with parameters n
and p, the probability of an abort is (1− BinomialCDF(d;n, p)). Hence the maximal
advantage of any distinguisher is (1− BinomialCDF(d;n, p)).

ut

116 Chapter 5. Memory Erasability Amplification

The simulator SE2R〈n, d, p〉:
Internal state and initial values: leaked = 0.
Behavior:
• Outer(gethist): Inner← (gethist). Inner→ λ. Outer← λ.
• Outer(read): Inner← (read). Inner→ µ. Outer← µ.
• Outer(leak): Inner← (gethist). Inner→ λ.

if leaked = 0 ∧ λ = (“e”, “W”):
leaked← 1; b← 0n; ω ← (⊥, . . . ,⊥) with |ω| = n;
for i ∈ {1, . . . , n}, set bi ← 1 with probability p;
if
∑
i bi > d, then abort with Outer← ();

ξ ← {i | bi = 1}; add additional indices to ξ until ξ ∈ (2{1,...,n} ∩ Nd);
Inner← (leak, ξ); Inner→ δ;
for all i where bi = 1, set ωi to the corresponding value in δ; Outer← ω.

Fig. 5.4: The simulator SE2R in the proof of the construction of IMR〈Φ, n, d〉 from
IME〈Φ, n, p〉.

5.2.2.3 Amplifying Memory with Noisy Leakage with Crossover
Probability (1− p)/|Φ|

Another possible setting is that the data is written to and erased from magnetic storage,
and the adversary, who has physical access to the storage medium, must make an
educated guess for each bit of the data [Gut96]. One can model this as if the data was
transmitted through a noisy binary symmetric channel. We denote such a memory by
IMN〈Φ, n, d〉. This resource is a specialization of IM〈Σ,ψ,Ξ〉 where Σ = Φn, ψ acts like
a noisy |Φ|-ary channel with crossover probability (1− p)/|Φ| (i.e., each symbol of the
data is transmitted correctly with probability p and otherwise is replaced with a symbol
drawn uniformly at random from Φ), and Ξ accepts only the identity function.

Observation 5.4 For all (n, d) ∈ N2, p ∈ [0, 1], fields Φ: IMN〈Φ, n, p〉 id
IME〈Φ, n, p〉.

Proof. The proof for this observation is very similar to the proof of Observation 5.3
and is omitted. The difference is that the simulator instead initializes ω to a random
element of Φn.

ut

5.2.2.4 Amplifying Memory with Limited Leakage Output Volume

Another possible setting, is that the adversary does not obtain individual symbols of the
data, but rather a function of the data. For example, with a cache-timing attack [Ber05],
she might deduce some information about the data without recovering it completely. In
general, one can consider an adversary that obtains any length-shrinking function of
the contents of the memory. We denote such a memory by IML〈Σ, v〉. This resource
is a specialization of IM〈Σ,ψ,Ξ〉, where ψ is the identity function and Ξ accepts only
functions that have at most v different output values.

For any non-trivial parameters, it is not possible to construct a perfectly erasable
memory from IML〈·〉, because the adversary can submit a leakage function ξ ∈ Ξ that

5.2. Constructing Better Memory Resources 117

runs the decoding logic of the converter. The reason for this is as follows. Let v ≥ 2,
|Σ′| ≥ 2, |Σ| ≥ 2, and let π be a converter that constructs PM〈Σ′〉 from IML〈Σ, v〉. We
now show that this construction has a statistical error of at least 1

2 . The distinguisher

chooses two distinct messages a0, a1 ∈ Σ′, flips a coin b
$← {0, 1}, and stores ab. He

then makes the memory weak by setting the relevant flags on the World-interface and
submits a leakage function ξ that returns 0 iff a0 was encoded in IML〈·〉 by using the
decoding logic of π—recall that the distinguisher may depend on π. The distinguisher
then outputs 1 iff ξ outputs b. No simulator will be able to properly simulate that
scenario with probability more than 1

2 as it does not know if the distinguisher stored a0

or a1.
However, one can obtain a meaningful construction by starting from a memory re-

source with multi-part leakage. Let IMLP〈Φ, s1, s2, v〉 be analogous to IMRP〈Φ, s1, s2, d〉
defined previously, except that the first part leaks similarly to IML〈Φs1 , v〉. Here it is
crucial to note that the function ξ submitted by the adversary can read only the first part
of the memory. In particular, given a universal hash function h : Φa×Φn 7→ Φk, one can
construct the resource PM〈Φk〉 from IMLP〈Φ, n, a+ k, v〉, by using the AoNT defined in
Section 2.4.9.3 with I2P. The construction is (2v2(k−n)/2)-secure [CDH+00,CEGL08b].
This construction is essentially the one proposed by Canetti et al. [CEGL08a] and
Lim [Lim08].

5.2.3 Constructing a Large Perfectly Erasable Memory from a Small One

We now discuss how a small perfectly erasable memory can be used together with a large,
possibly non-erasable memory to construct a large perfectly erasable memory. The basic
idea underlying this construction is that of Yee et al.’s crypto paging [Yee94,YT95]: one
stores a cryptographic key in the small perfectly erasable memory, encrypts the data
with that key, and stores the resulting ciphertext in the large, possibly non-erasable
memory. The resulting resource PMA〈GF(2`(η))〉 will allow the adversary to read the
stored data if the resource is weakened by the environment before the user erases the
key. The specification of this resource is given in Figure 5.5a and the protocol XPM for
the construction is provided in Figure 5.6.

The resource just constructed allows the adversary to read the stored data if either
the small erasable or the large non-erasable memory become weak before the user erases
the key. Thus, this resource is weaker than what one would expect, i.e., it should be
the case that the adversary can only read the data if both underlying resources become
weak before the user erases the key. The corresponding resource PMB〈GF(2`(η))〉 is
depicted in Figure 5.5b. Unfortunately, the realization of this resource would require a
non-committing encryption scheme, which can only be constructed in the random oracle
model but not in the standard model.

However, it is possible to construct the somewhat better resource PMC〈GF(2`(η))〉,
shown in Figure 5.5c. Here the adversary can read the stored data if the memory storing
the ciphertext becomes weak before the user calls delete. It is not hard to see that
PMC〈GF(2`(η))〉 implies PMA〈GF(2`(η))〉, essentially the simulator attached to the Eve
interface of PMA〈GF(2`(η))〉 has to hold back the leaked data until the non-erasable
memory becomes leakable. In summary, we get the following theorem.

118 Chapter 5. Memory Erasability Amplification

(a) The resource PMA〈Σ〉
denotes PMM〈Σ, {K, C}, ρa〉,
where ρa(hist) is true iff:
hist starts with
(K) or (C).

s

R R s

s s

s s

K C e

C

C

K

K

(b) The resource PMB〈Σ〉
denotes PMM〈Σ, {K, C}, ρb〉,
where ρb(hist) is true iff:
hist starts with
(K, C), (K, “e”, C), or (C, K).

s

R

R

s

s s

s s

K C e

C

C

C

C

K

K

K

K

ee

R

s s

s s

s

(c) The resource PMC〈Σ〉
denotes PMM〈Σ, {K, C}, ρc〉,
where ρc(hist) is true iff:
hist starts with
(K, C), (K, “e”, C), or (C).

s

R

R

s

s s

s s

K C e

C

C

C

C

K

K

e

Rs

s

Fig. 5.5: Several variants of a perfectly erasable memory resource with two World-flags.
The prefix decision trees visualize whether the adversary has read access to the memory
depending on the event history hist. A branch labelled “e” represents an erasure
event, and branches labelled “K” (key) or “C” (ciphertext) represent the setting of the
corresponding flags on the World-interface. An “R” node means that the memory is
readable (and allows the adversary to collect the data at any time from then on), and
an “s” (secure) node means that it does not.

The converter XPM〈`, prg〉:
Behavior:
• Outer(store, µ ∈ GF(2`(η))): sk

$← GF(2η). δ ← prg(sk) + µ. Inner← (MEMP, store, sk).
Inner→ (). Inner← (MEMNE, store, δ). Inner→ (). Outer← ().

• Outer(retrieve): upon error in the following, abort with Outer← ().
Inner← (MEMP, retrieve). Inner→ sk ∈ GF(2η).
Inner← (MEMNE, retrieve). Inner→ δ. µ← δ − prg(sk). Outer← µ.

• Outer(erase): Inner← (MEMP, erase); Inner→ (). Outer← ().

Fig. 5.6: The converter XPM constructing a large perfectly erasable mem-
ory PMA〈GF(2`(η))〉 or PMC〈GF(2`(η))〉 using a small perfectly erasable memory
PM〈GF(2η)〉 and a large non-erasable memory NM〈GF(2`(η))〉. The converter is
parametrized by an `-PRG prg, and the implicit security parameter η.

Theorem 5.5. If prg is a secure `-PRG, then[
PM〈GF(2η)〉,NM〈GF(2`(η))〉

] XPM〈`,prg〉
c PMC〈GF(2`(η))〉.

Proof. Figure 5.7 shows the simulator SXPM.
For the sake of contradiction, let us assume the existence of an efficient distin-

guisher D that has non-negligible advantage in distinguishing between the “real world”
XPM〈`, prg〉[PM〈GF(2η)〉,NM〈GF(2`(η))〉] and PMC〈GF(2`(η))〉SXPM〈`, prg, ρa〉 , the
“ideal world”. (We assume that the difference on the World-interface is implicitly taken

5.2. Constructing Better Memory Resources 119

The simulator SXPM〈`, prg, ρ〉:
Internal state and initial values: ct = ⊥, sk = ⊥.
Behavior:
• Outer(MEMP, gethist): Inner← (gethist). Inner→ λ.

Remove any “C” from λ. Outer← λ.
• Outer(MEMNE, gethist): Inner← (gethist). Inner→ λ.

Remove any “K” and “e” from λ. Outer← λ.
• Outer(MEMP, read): Inner← (gethist). Inner→ λ.

If λ does not start with (“K”) nor (“C”, “K”): abort with Outer← ().

If sk = ⊥: sk
$← GF(2η).

Outer← sk.
• Outer(MEMNE, read): Inner← (gethist). Inner→ λ.

If “C” 6∈ λ: abort with Outer← ().

If sk = ⊥: sk
$← GF(2η).

If ct = ⊥ ∧ ρ(λ): Inner← (read); Inner→ µ; ct← µ+ prg(sk).

If ct = ⊥: ct
$← GF(2`(η)).

Outer← ct.

Fig. 5.7: The simulator SXPM in the proof of the construction of PMC〈GF(2`(η))〉 from
PM〈GF(2η)〉 and NM〈GF(2`(η))〉 using the converter XPM〈`, prg〉 and with ρ := ρc. The
same simulator with ρ := ρa can be used in the construction of PMA〈GF(2`(η))〉.

care of.) We show how to construct an efficient distinguisher W with non-negligible
advantage for the PRG distinction game.

W behaves like the ideal world, except that, when asked to leak the non-erasable
memory when the “C” World-flag was set after the data was erased but before the “K”
World-flag was set (in the sequel, we call this the (“e”, “C”)-event), W obtains a challenge
c from the PRG distinction game and outputs (c+ µ). W then outputs the same thing
as D. If D terminates without having provoked the (“e”, “C”)-event, then W outputs a
random bit.

Notice that W is constructed in such a way that:

• If the (“e”, “C”)-event does not happen, then the real and ideal worlds are perfectly
indistinguishable.

• If the PRG distinction game outputs c = prg(sk), then W behaves exactly like the
real world to D.

• If the PRG distinction game outputs a random c, then W behaves exactly like the
ideal world to D.

Hence WD has the same non-negligible advantage in the PRG distinction game than
D has in distinguishing the real and ideal world.

ut

As stated above, XPM also constructs PMA〈GF(2`(η))〉 from the same resources.
Furthermore, in the random oracle model, a protocol that is identical to XPM except
that calls to prg are replaced by calls to the random oracle, constructs PMB〈GF(2`(η))〉
from the same resources.

120 Chapter 5. Memory Erasability Amplification

Let us discuss our the memory resources just discussed in light of some secure
memory constructions in the literature. As mentioned, Yee et al. introduce crypto
paging [Yee94, YT95] to let a secure co-processor encrypt its virtual memory before
paging it out to its host’s physical memory or hard disk. Translated to our setting, this
means that the non-erasable memory is weak from the beginning. Therefore, to get
meaningful guarantees, only the resource PMB〈GF(2`(η))〉 can be used in their setting,
the other two would allow the adversary to always read the data. Thus, to realize their
system, Yee et al. require a non-committing encryption scheme (and hence random
oracles).

Di Crescenzo et al. [DCFIJ99] consider a memory resource that allows one to update
the stored data such that when the resource becomes weak the adversary can only read
the data stored last. They then provide a construction for a large such resource from a
small one and a large non-erasable memory. Again they assume that for both resources
the data can be updated and that the non-erasable one leaks all data ever stored in it.
None of our resources does allow for such updates but, as already discussed, resources
that allow this can be constructed by using several of our respective resources in parallel.
Thus, their security definition and construction can be indeed modelled and analysed
with the memory resources we define, however, doing this is out of scope of this chapter.

5.3 New Realizations of All-or-Nothing Transforms

In Section 5.2 we saw the importance of AoNTs for constructing perfectly erasable
memory from certain types of imperfectly erasable ones. In this section we present
several novel AoNTs. We start by showing the dual of the I2P protocol: any protocol
that constructs PM〈Φk〉 from IMR〈Φ, n, d〉 can be used to realize a (Φ, n, k, d)-AoNT.
We then present a perfect AoNT with better parameters than what is found in the
literature, based on the novel concept of ramp minimum distance of a matrix. We
then show that one can combine several AoNTs to achieve an AoNT over a small field
but with a large message space and a good privacy threshold d. Finally, we provide a
computationally-secure AoNT over a large field that has a very large privacy threshold.

5.3.1 AoNT from a Protocol that Constructs PM〈Φk〉 from IMR〈Φ, n, d〉

Section 5.2.2.1 described the protocol I2P, parametrized by an AoNT, that constructs a
perfectly erasable memory PM〈Φk〉 from an imperfectly erasable one IMR〈Φ, n, d〉. As
the following theorem states, any protocol π (not necessarily one based on an AoNT)
that constructs PM〈Φk〉 from IMR〈Φ, n, d〉 can be used to construct an AoNT using
the algorithm C2A, albeit one that where adec is a probabilistic algorithm and where
decoding might fail with a small probability.

Theorem 5.6. If π is a converter such that IMR〈Φ, n, d〉 π ε PM〈Φk〉, then the algorithm
C2A〈Φ, n, k, π〉 is a 6ε-secure (Φ, n, d, k)-AoNT with a probabilistic adec and where
decoding may fail with probability less than 2ε.

5.3. New Realizations of All-or-Nothing Transforms 121

The algorithm C2A〈Φ, n, k, π〉:
Behavior:

• aenc(µ ∈ Φk): π.Outer← (store, µ).
While true:

If π.Inner→ (store, φ ∈ Φn): return φ.
Else if anything is sent by π.Inner: π.Inner← ().
Else: abort by returning ⊥.

• adec(φ ∈ Φn): π.Outer← (retrieve).
While true:

If π.Inner→ (retrieve): π.Inner← φ.
Else if π.Outer→ µ ∈ Φk: return µ.
Else if π.Inner→ (erase): abort by returning ⊥.
Else if anything is sent by π.Inner: π.Inner← ().
Else: abort by returning ⊥.

Fig. 5.8: The algorithm C2A that realizes a (Φ, n, d, k)-AoNT from a converter π, where
π constructs PM〈Φk〉 from IMR〈Φ, n, d〉.

The distinguisher D〈µ, x〉:
Upon error in any of the following, abort and return 1.

Do x times: Y.Alice← (retrieve); Y.Alice→ ().
Y.Alice← (store, µ). Y.Alice→ ().
Do x+ 1 times: Y.Alice← (retrieve); Y.Alice→ µb.
Y.Alice← (erase). Y.Alice→ ().
Do x times: Y.Alice← (retrieve); Y.Alice→ ().
Return 0.

Fig. 5.9: The distinguisher for the correctness condition of Theorem 5.6.

Proof of correctness. We first show that if there exists a message µ such that
encoding and decoding fails with probability at least 2ε, then the distinguisher D shown
in Figure 5.9 distinguishes between the “real world” πIMR〈Φ, n, d〉 and the “ideal world”
PM〈Φk〉σ with advantage at least ε for any σ, which would be a contradiction. Let Y
denote the system D is interacting with. Let x be an integer such that (1

4)x < ε.
Notice that σ is never activated, hence D works for all simulators.
It is clear that if D interacts with the ideal world, D always outputs 0. When

interacting with the real world, intuitively, D outputs 1 if encoding or decoding failed,
i.e., with probability 2ε. However, one has to take possible “malicious behavior” of π
into account: it is possible that C2A〈Φ, n, k, π〉 fails because π issued an erase command
during retrieval or because π never stored anything in the memory, but D outputs 0
anyway.

Recall that π cannot keep state between phases, hence if π issued an erase command
during the first retrieval in the second loop, π cannot distinguish between any of the
retrieval phases in the second and third loop. Let y denote the probability that π returns
µ if faced with an empty memory. The probability that no error happens in D if the
memory was erased during the first retrieve by π, is thus at most yx · (1−y)x < (1

4)x < ε.
A similar argument shows that if π never stored anything in the memory during the

122 Chapter 5. Memory Erasability Amplification

The distinguisher D〈µ0, µ1, ξ, x,W〉:
Upon error in the following “first part”, abort and return 1.

Do x times: Y.Alice← (retrieve); Y.Alice→ ().

b
$← {0, 1}. Y.Alice← (store, µb). Y.Alice→ ().

Do x times: Y.Alice← (retrieve); Y.Alice→ µb.
Y.Alice← (erase). Y.Alice→ ().
Do x times: Y.Alice← (retrieve); Y.Alice→ ().
Y.World← (weaken). Y.World→ ().

Upon error in the following “second part”, abort and return 0.
Y.Eve← (leak, ξ). Y.Eve→ λ ∈ Φd.

W← (µ0, µ1, λ). W→ g. If b = g: return 1. Else: return 0.

Fig. 5.10: The distinguisher for the privacy condition of Theorem 5.6.

store command, then π cannot distinguish any of the retrieval phases in the first and
second loop. The probability that no error happens is thus also smaller than ε.

Hence the distinguishing advantage is at least 2ε− ε = ε.

Proof of privacy. We now show that if there exists a distinguisher W for the AoNT
distinguishing game with advantage at least 6ε on a set ξ with messages µ0 and µ1, then
the distinguisher D shown in Figure 5.10 that distinguishes between the “real world”
πIMR〈Φ, n, d〉 and the “ideal world” PM〈Φk〉σ has distinguishing advantage at least ε
for any σ, which would be a contradiction. Let Y denote the system D is interacting
with. Let x be an integer such that (1

4)x ≤ ε.
It is clear that D never aborts in the first part if it interacts with the ideal world

(recall that σ was never activated up to now).
It is also clear that if D interacts with the real world and if something was stored in

the memory and the memory has been erased D never aborts in the second part (recall
that D doesn’t interact with π in the second part).

Let us calculate the probability that π did not erase the memory and that no error
happened during the first part. Recall that π does not keep state between phases. Since
π does not erase the memory in any of the 2x retrieve queries following the store

command, the memory behaves identically in all queries, and thus π cannot determine
which query number it is currently servicing. Hence for a given µb, there must be a
constant probability y that π returns µb in a retrieve phase. Also, π must return µb as
expected in all x queries of the second loop (probability = yx) and return () as expected
in all x queries of the third loop (probability at most (1− y)x). The probability is thus
(y · (1− y))x ≤ (1

4)x.
If no error occurred in D, and D interacted with the ideal world, it is clear that the

leakage λ is independent of the chosen bit b, hence W cannot have any advantage in the
AoNT distinction game.

If D interacted with the real world, and if the memory contains the value that would
have been returned by C2A.aenc, W will output the correct guess with probability at
least 1

2 + 3ε. Similar to the correctness condition, it is possible that π did not store
anything in the memory during the store command: this happens with probability at
most (1

4)x. Thus if D interacted with the real world, and no error occurred, then the
probability that W outputs the correct guess will be at least 1

2 + 3ε− (1
4)x.

5.3. New Realizations of All-or-Nothing Transforms 123

To conclude, the distinguishing advantage of D is at least 3ε−2 ·(1
4)x ≥ ε, as required.

ut

One can make an analogous statement in the computational case.

5.3.2 Perfectly Secure AoNT Based on Matrices with Ramp Minimum
Distance

This subsection shows how one can improve the standard realization of AoNTs based
on linear block codes of Canetti et al. [CDH+00] by using our novel concept of ramp
minimum distance.

The standard realization. Let G be the k × n generator matrix with elements in
GF(q) of a linear block code with minimum distance d. The encoding function of the
perfectly secure (GF(q), (n+ k), d, k)-AoNT is as follows:

aenc(a ∈ GF(q)k) : b
$← GF(q)n; y←

[
In 0
G Ik

] [
b
a

]
; return y.

Further details are given in Section 2.4.9.2.
Let us now show how to use the concept of ramp minimal distance to construct

better AoNTs.

Definition 5.7. A k×n matrix G with elements in GF(q) has ramp minimum distance
d if for every r ∈ {1, . . . , k}, every r × (n− (d− r)) submatrix of G has rank r.

Note that the concept of (regular) minimum distance comes from coding theory, and
requires that all k × (n− (d− 1)) sub-matrices of G have rank k (which is equivalent to
saying that for every r ∈ {1, . . . , k}, all r × (n− (d− 1)) sub-matrices of G have rank
r), where G is the generator matrix of a linear block code. A matrix with minimum
distance d also has a ramp minimum distance d (the converse is obviously not true).

Now for the generator matrix with ramp minimum distance, we can construct an
AoNT and thus obtain the following theorem.

Theorem 5.8. The standard realization of a AoNT (sketched above and detailed in
Section 2.4.9.2), parametrized by a k × n matrix G with elements in GF(q) with ramp
(instead of regular) minimum distance d, is a perfectly secure (GF(q), (n+k), d, k)-AoNT.

Proof. We now show that the privacy threshold of the AoNT is at least d. For any set
L of size d, let r denote the number of elements of x output by the AoNT distinguishing
game (therefore d−r elements of b are output by the game). Let kb denote the sub-vector
of b of size d−r containing all elements of b that are output by the AoNT distinguishing
game, and let ub denote the sub-vector of size n+ r − d containing the elements that
are not output. Similarly, let kx denote the sub-vector of x of size r that is output by
the AoNT distinguishing game, and let ux denote the sub-vector of size k− r containing
the elements that are not output. Let P be the permutation matrix such that:

P

[
b
x

]
=

ub
kb
kx
ux

 .

124 Chapter 5. Memory Erasability Amplification

Let kuG, kkG, uuG, ukG be sub-matrices of G, and let ka and ua be the sub-vectors of a
such that:

In+r−d 0 0 0
0 Id−r 0 0
kuG kkG Ir 0
uuG ukG 0 Ik−r

 := PMPT and

ub
kb
ka
ua

 := P

[
b
a

]
.

We thus have:
ub
kb
kx
ux

 = P

[
b
x

]
= PM

[
b
a

]
= PMPTP

[
b
a

]
=

In+r−d 0 0 0
0 Id−r 0 0
kuG kkG Ir 0
uuG ukG 0 Ik−r

ub
kb
ka
ua

 =

ub
kb

kuGub + kkGkb + ka
uuGub + ukGkb + ua

 .
Since G has ramp minimum distance d, the r × (n− (d− r)) sub-matrix kuG has

rank r, thus kuGub is uniformly distributed. Therefore

[
kb
kx

]
, which is the output of

the AoNT distinction game, is uniformly distributed and independent from a. This
concludes the proof.

ut

It remains to find a matrix with a desired ramp minimum distance. One way it so
chose a random matrix, as show the following theorem.

Theorem 5.9. For all (n, k, d) ∈ N3, and all prime powers q, a k × n matrix where all
elements were chosen independently and uniformly at random over GF(q), has ramp
minimum distance d with probability at least

1−
k∑
i=1

(
k

i

)
(q − 1)iq(Hq(

d−i
n)−1)n

where Hq (x) :=

{
0 if x = 0 or x = 1;
x logq(q−1)− x logq(x)− (1−x) logq(1−x) if 0<x<1.

Proof. Let HW(w) “Hamming weight” denote the number of non-zero entries of a
vector w. Let HBq(n, r) “Hamming ball” denote the set of vectors of length n in GF(q)
which have a Hamming weight of at most r.

Further, let MCq(k) “minimal codewords” be the set of row vectors of length k in
GF(q) whose leading non-zero entry is 1.

From the definition of ramp minimum distance, it follows that a (GF(q), n, k)-linear
block code with generator matrix G has ramp minimum distance d if:

∀w ∈ MCq(k) : wG 6∈ HBq(n, d−HW(w)).

5.3. New Realizations of All-or-Nothing Transforms 125

Since the coefficients of G are chosen independently and uniformly at random, the
codeword wG is distributed uniformly. The probability that wG is in some Hamming
ball of radius r thus is:

Pr [wG ∈ HBq(n, r)] =

|HBq(n, r)|
qn

=

∑r
i=0

(
n
i

)
(q − 1)i

qn
≤ qHq(

r
n)·n

qn
= q(Hq(

r
n)−1)·n.

Using the union bound (Boole’s inequality):

Pr [∃w ∈ MCq(k) : wG ∈ HBq(n, d−HW(w))]

≤
∑

w∈MCq(k)

Pr [wG ∈ HBq(n, d−HW(w))]

≤
∑

w∈MCq(k)

q(Hq(
d−HW(w)

n)−1)·n

=

k∑
i=1

(
k

i

)
(q − 1)iq(Hq(

d−i
n)−1)·n.

The probability that G has ramp minimum distance d is therefore at least:

Pr [G has ramp minimum distance d]

= Pr [∀w ∈ MCq(k) : wG 6∈ HBq(n, d−HW(w))]

= 1− Pr [∃w ∈ MCq(k) : wG ∈ HBq(n, d−HW(w))]

≥ 1−
k∑
i=1

(
k

i

)
(q − 1)iq(Hq(

d−i
n)−1)·n.

ut

Unfortunately, we do not know of any efficient method to check whether a random
matrix has a given ramp minimum distance. For practical parameters, however, it is
feasible to generate and test such matrices with small values of k and d (e.g., less than
20).

Better AoNTs using our realization. Given a fixed size, it is sometimes possible
to find matrices with a given ramp minimum distance but no matrix with the same
(regular) minimum distance. Hence AoNTs based on matrices with a ramp minimum
distance can achieve better parameters than previously known realizations. We now
illustrate this fact with a numerical example. Let us determine the best message length
k that a perfect AoNT with fixed parameters n = 30, d = 12, and q = 2 can achieve
with both our realization and the standard realization. Both realizations will require a
matrix with (30− k) rows and (ramp or regular, respectively) minimum distance d = 12.
First, observe that there exists a 6× 24 matrix over GF(2) with ramp minimum distance
12.2 Hence using our realization, we can achieve k = 6. Plotkin [Plo60] showed that a

2 Here is an example of such a matrix found using exhaustive search:

126 Chapter 5. Memory Erasability Amplification

binary code with block length 2d and distance d can have at most 4d codewords. Hence
there cannot exist a 6× 24 matrix with (regular) minimum distance d = 12 (as it would
generate a code with 26 = 64 codewords, which is more than 4d = 48). The best AoNT
one can hope for using the standard realization thus has k = 5.

Statistical security. Theorem 5.9 stated that by choosing a random generator matrix,
one can achieve a certain ramp minimum distance with a certain probability (1 − ε).
If one uses our realization, but without checking that the matrix actually has the
required ramp minimum distance, then the resulting AoNT will be perfectly secure with
probability (1− ε). (Note that this is different from saying that the AoNT is ε-secure, as
the randomness used to generate the AoNT is not part of the distinguishing experiment.)
In practice, one can make ε very small, e.g., ε < 2−η, and it might be acceptable to
chose a random matrix and not check its properties to realize an AoNT.

5.3.3 Realizing a Perfectly Secure AoNT over a Small Field by Combining
AoNTs

Designing perfectly-secure AoNTs over very small fields, e.g., GF(2), is hard. The
previous realization does not scale well to large message lengths k and large privacy
thresholds d; and realizations based on Shamir’s secret sharing scheme (see Section
2.4.9.1) are always over large fields—using such a (GF(2a), n, d, k)-AoNT unmodified over
GF(2) instead would result in a (GF(2), an, d, ak)-AoNT with a poor privacy threshold
d. The leakage of any GF(2) element means that the entire original GF(2a) element is
compromised. We now show how to combine the two approaches to realize a perfectly
secure AoNT over a small field but with large k and d.

Our realization requires two AoNTs, a “fine-grained” one and a “coarse-grained”
one, operating over a small field S and a large field L, respectively. We require that the
number of elements of L be a power of that of S and that ks = log(|L|)/ log(|S|) be
true. We need to interpret a string of klks elements from S as a string of kl elements of
L, an operation we denote by S.L. The converse operation is denoted L.S.

The encoding function of our combined AoNT then works as follows. One first applies
the coarse-grained AoNT to the whole data vector and then applies the fine-grained
AoNT to each element of the result:

aenc(a ∈ Skskl) : x
$← aencl(S.L(a));∀j ∈ {1, . . . , nl} : b[j]

$←
aencs(L.S(x[j])); return b.
It’s easy to see how the decoding function adec of the combined AoNT works and it is
thus omitted.

Theorem 5.10. Given a perfectly secure (S, ns, ds, ks)-AoNT (aencs, adecs) and a per-
fectly secure (L, nl, dl, kl)-AoNT (aencl, adecl) such that ks = log(|L|)/ log(|S|), the

G =

111101101110000010111000
111111001111010101011111
011100111010001100001111
100110010110110011011010
110001100110100011000111
111110010100001001100110

 .

5.3. New Realizations of All-or-Nothing Transforms 127

AoNT (aenc, adec) described above is a perfectly secure (S, nsnl, (ds +1)(dl +1)−1, kskl)-
AoNT.

Proof. We now show that the combined scheme is secure. For any set E of at most

(ds+1)(dl+1)−1 elements of {1, . . . , kskl}, and any two challenge messages a1,a2 ∈ Sk
skl ;

let E′ be the following set: E′ contains the integer i ∈ {1, . . . , nl} if at least (ds + 1)
elements of {(i− 1)ns + 1, . . . , ins} are contained in E. Notice that E′ has at most dl

elements.
We now show 2nl + 2 distributions, where any two consecutive distributions are

perfectly indistinguishable. The first and the last distributions correspond to the two
possible outputs of the AoNT distinguishing game; hence proving the claim.

Distribution i ∈ {1, . . . , 2nl + 2} is [b]E , where b is calculated as follows:

x
$←
{

aencl(S.L(a1)) if i ≤ nl + 1
aencl(S.L(a2)) otherwise.

∀j ∈ {1, . . . , nl} : x′[j]←
{

0 if j 6∈ E′ ∧ j + 1 ≤ i ≤ j + 1 + nl

x[j] otherwise.

∀j ∈ {1, . . . , nl} : b[j]
$← aencs(L.S(x′[j])).

It is easy to see that all two consecutive distributions except (nl + 1) to (nl + 2)
are indistinguishable by the security property of the fine-grained scheme and since at
most ds elements of b affect the output. The distributions (nl + 1) and (nl + 2) are
indistinguishable because of the security property of the coarse-grained scheme and since
at most dl elements of x affect the output.

ut

Numerical example. Let us suppose that we are interested in a perfect AoNT that
operates over S = GF(2) and that can store a cryptographic key of size k = 256 bits
using at most n = 8192 bits (a kilobyte) of memory.

If we use a (GF(210), 819, 793, 26)-AoNT built according to Franklin and Yung [FY92]
unmodified over the field GF(2), we get a (GF(2), 8190, 793, 260)-AoNT. This AoNT
has a privacy threshold d of only 793 bits.

By combining a (GF(2), 32, 11, 8)-AoNT (which can be found by exhaustive search)
with a (GF(28), 255, 223, 32)-AoNT built according to Franklin and Yung [FY92], one
gets a (GF(2), 8160, 2687, 256)-AoNT. This AoNT has a much better privacy threshold
d of 2687, i.e., 2687 arbitrary bits may leak to the adversary.

5.3.4 Computationally Secure AoNT over a Large Field from a PRG

We now present a realization of a computationally secure AoNTs over a large field
GF(2η), where η is the security parameter. Our realization is optimal in the sense that it
achieves both an optimal message length k = n− 1 (thus an optimal rate (n− 1)/n) and
an optimal privacy threshold d = n−1. That is, the AoNT needs just a single additional
element to encode a message and remains private even if the adversary obtains all but
any one element.

128 Chapter 5. Memory Erasability Amplification

Definition 5.11. An `-PRG where the output length is a multiple of the input length,
i.e., prg : GF(2η) 7→ GF(2η)`(η)/η, is KD-secure, if for all i = 1, . . . , `(η)/η, these
ensembles are computationally indistinguishable:
• {(x1, . . . , xi−1, x

′
i, xi+1, . . . , x`(η)/η)}1η where sk

$← GF(2η), x ← prg(sk), and
x′i ← xi + sk.

• {x}1η where x
$← GF(2η)`(η)/η.

Note that this property is somewhat reminiscent of the KDM-CCA2 security of encryption
functions [CCS09].

Our realization, somewhat reminiscent of the OAEP realization of Canetti et al. [CDH+00],
is as follows:

aenc(m ∈ GF(2η)`(η)/η) :sk
$← GF(2η); x← prg(sk); y← x + m;

return y||
(
sk +

`(η)/η∑
i=1

yi
)
.

adec(y||z) : return y − prg(z −
`(η)/η∑
i=1

yi).

Theorem 5.12. Given an `-PRG that is both secure and KD-secure, the realization
above yields a secure (GF(2η), 1 + `(η)/η, `(η)/η, `(η)/η)-AoNT.

Proof. Recall that we need to prove that the output of the AoNT distinguishing game
is computationally indistinguishable for any set L of size exactly `(η)/η. Let i denote
the index that is missing from L. We treat now the two cases i = `(η)/η + 1 and
i ∈ {1, . . . , `(η)/η} separately.

Case i = `(η)/η + 1. For any two challenge messages m and m′, we consider the
ensembles {y}1η computed as follows:

1. sk
$← GF(2η) and y←m + prg(sk).

2. y
$← GF(2η)`(η)/η.

3. sk
$← GF(2η) and y←m′ + prg(sk).

Ensembles 1 and 2 on the one hand, and ensembles 2 and 3 on the other hand are
computationally indistinguishable because the PRG is secure. Therefore ensembles 1
and 3, corresponding to the two ensembles output by the AoNT distinction game, are
also computationally indistinguishable.

Case i ∈ {1, . . . , `(η)/η}. For any two challenge messages m and m′ we consider the
ensembles {(y1, . . . , yi−1, yi+1, . . . , y`(η)/η, z)}1η computed as follows:

1. sk
$← GF(2η); x← prg(sk); y←m + x; z ← sk +

∑
j yj .

2. Idem, except that z
$← GF(2η).

3. Idem, except that y
$← GF(2η)`(η)/η.

4. Idem, except that y←m′ + x.
5. Idem, except that z ← sk +

∑
j yj .

5.3. New Realizations of All-or-Nothing Transforms 129

Ensembles 1 and 2 are computationally indistinguishable because the PRG is KD-
secure. Indeed, for index i, let {(x1, . . . , xi−1, e, xi+1, . . . , x`(η)/η)}1η be the ensemble
output from the PRG KD distinction game. Consider the ensemble {(y1, . . . , yi−1, yi+1,
. . . , y`(η)/η, z)}1η where for j 6= i : yj ← xj +mj and z ←

∑
j 6=i yj + e+mi. If e is equal

to xi + sk , this is exactly ensemble 1; if e is random, this is exactly ensemble 2.
Ensembles 2 and 3 are computationally indistinguishable because the PRG is secure.

Indeed, let {e}1η be the ensemble output by the PRG security game. Consider the
ensemble {(y1, . . . , yi−1, yi+1, . . . , y`(η)/η, z)}1η where for j 6= i : yj ← ej + mj and

z
$← GF(2η). If e is equal to x, this is exactly ensemble 2; if e is random, this is exactly

ensemble 3.
Ensembles 3 and 4 are computationally indistinguishable because the PRG is secure.

Indeed, let {e}1η be the ensemble output by the PRG security game. Consider the
ensemble {(y1, . . . , yi−1, yi+1, . . . , y`(η)/η, z)}1η where for j 6= i : yj ← ej + m′j and

z
$← GF(2η). If e is random, this is exactly ensemble 3; if e is equal to x, this is exactly

ensemble 4.
Ensembles 4 and 5 are computationally indistinguishable because the PRG is KD-

secure. Indeed, for index i, let {(x1, . . . , xi−1, e, xi+1, . . . , x`(η)/η)}1η denote the ensemble
output by the PRG security game. Consider the ensemble {(y1, . . . , yi−1, yi+1, . . . ,
y`(η)/η, z)}1η where for j 6= i : yj ← xj +m′j and z ←

∑
j 6=i yj + e+m′i. If e is random,

this is exactly ensemble 4; if e is equal to xi + sk , this is exactly ensemble 5.
Hence ensembles 1 and 5, corresponding to the ensembles output by the AoNT

distinction game, are computationally indistinguishable.
ut

In Section 2.4.9.4 we observed that Canetti et al.’s [CDH+00] computationally-secure
AoNT built by combining an exposure resilient function (ERF) with a pseudo-random
generator (PRG) can have an essentially arbitrarily high message length k and message
rate k/n, but cannot achieve a very high privacy threshold d.

6

Conventions for Usable Universal Composability

Over the last two decades, a series of composition frameworks have been proposed
[Can00,Can01,PW00,Kue06,HS11,KT13,Mau11b,MR11,CDPW07,BPW07]. However,
all these frameworks are either too restrictive or too general to be (easily) used in a
formally correct way by protocol designers. As an example of the former, the GNUC
framework by Hofheinz and Shoup [HS11] supports “top-down” corruption only, meaning
that machines can be corrupted only if their parent machine is already corrupted as well,
leaving out other forms of corruption. Both the UC and GNUC models fix a specific
addressing mechanism directly in their underlying communication model based on
party idenifiers (PIDs) and session identifiers (SIDs). While convenient for hierarchical
protocol design, handling protocols with joint state then is out of scope or requires rather
cumbersome extensions of the models [CR03,HS11], which in some cases causes problems
(see the discussion in [KT08]). Moreover, as already discussed in [HS11], because of
the runtime notions used in the GNUC model some natural functionalities cannot
be realized, such as certain digital signature and public-key functionalities proposed
in [Can00] (version of 2005). Conversely, the IITM model [Kue06,KT13] aims at highest
possible generality, and only fixes as few details as possible. In particular, wiring,
addressing, or corruption mechanisms are not specified in the framework. While this
allows for general theorems, in particular composition theorems, it leaves a lot for the
protocol designer to specify. Partly also the latest version of the UC framework, which
is motivated by some fundamental flaws in previous versions, leaves more freedom to
the protocol designers but thereby places more burden on them. The Constructive
Cryptography framework by Maurer et al. [Mau11b, MR11] follows a very abstract
approach and certain concepts, such as dynamic corruptions and runtime, are not yet
modeled in the published literature.

Furthermore, none of the existing frameworks gives clear guidelines to protocol
designers on how the framework has to be used, leading to numerous formally underspec-
ified protocols in the literature and to protocols that are hard to compare. This makes it
very difficult, if not impossible, to use such protocols as subroutines, hence defeating the
very purpose of these frameworks, namely modular protocol design. For instance, it is
often (e.g., [AMQR15,Wik04]) not clear against which types of adversaries the protocol
is secure, as protocol designers only state security against “static corruption”. Seemingly,
they sometimes mean strong static corruption (the adversary may only corrupt parties

132 Chapter 6. Conventions for Usable Universal Composability

at the beginning of the session) and sometimes weak static corruption (the adversary
may corrupt a machine upon its first activation). Moreover, runtime issues are largely
ignored in the specification of protocols, even though, in some models they are quite
subtle and tricky. For example, in the UC framework a machine is not allowed to send
more bits to subroutines than it received on its I/O interface; if it does, it is forced to
immediately stop its execution.

What is thus needed is a formally sound and expressive framework, which allows the
protocol designer to specify protocols, on the one hand, in a flexible and convenient way,
but, on the other hand, enforces fully specified protocols.

In this chapter, we provide an abstraction layer with templates on top of the IITM
model with responsive environments (see Section 2.5.3 and [CEK+16a]) to allow for
concise yet flexible protocol design, including handling of joint state. Finally, we provide
a precise mapping from the templates to our model model for unambiguous and complete
protocol specifications.

Roadmap. We provide the templates supporting a protocol designer in specifying
ideal and real protocols in Section 6.1. We give the details of the machinery that
maps specifications using these templates onto concrete interactive Turing machines in
Section 6.2. We then introduce a programming language for functionalities and protocol
machines in Section 6.3, and exemplify our conventions based on some examples in
Section 6.4. Finally, we extend our conventions to joint state, and provide a detailed
example in Section 6.5.

6.1 Templates for Real Protocols and Ideal Functionalities

In the following, we provide templates for efficiently and unambiguously specifying real
as well as ideal protocols. We explain which parts of these protocols need to be specified
by the protocol designer; all other parts will be formally defined once and forever in
Section 6.2, where we formally specify the protocol systems induced by our templates.
In Section 6.3, we will then suggest some concrete pseudocode elements that can be
used to describe the different parts of our templates.

Before presenting the templates, we briefly sketch the overall structure of real and
ideal protocols as well as the way corruption is handled, with full details provided in
Section 6.2.

An atomic real protocol R is a system of ITMs of the form {Mrole1 , . . .,Mrolen}, where
Mrolei is an ITM (in this case also called real protocol machine), which specifies the
i-th role of the protocol R, cf. Figure 6.2. As usual, roles are used to group protocol
participants running the same code; however, it is up to the protocol designer to decide
how and whether she wants to split the protocol participants into roles. Each machine
in R has one bidirectional network tape to connect to the adversary. It also has I/O
tapes to connect to other machines. However, no machine in R is connected via any
tape to another machine in R. In our conventions, I/O tapes are divided into parent
tapes and subroutine tapes, to connect to higher-level protocols or the environment, and
to subroutines, i.e., lower-level protocols, respectively. In a run of R, by our conventions,
each instance of Mrolei has an identity (ID) id, which is set upon the first activation of
the instance, and cannot be changed later on. The ID is of the form (pid , sid), where pid

6.1. Templates for Real Protocols and Ideal Functionalities 133

F

· · ·Drole1

· · ·

NET

NET

· · ·

I

NET Drolen

· · ·

· · ·

PAR PAR

· · ·

id = (pid , sid)

· · · · · ·

F
· · · · · · · · ·

id = (sid)

D1
id = (pid ′, sid) id = (pid , sid)

D1 D2

· · ·

id = (pid ′, sid ′)

· · ·

D1

· · ·

id = (pid ′′, sid ′)

· · ·

D3

F id = (sid ′)

PAR PAR PAR

PAR PAR

NET NET NET

NET

NET

NET NET

I ′[sid]

I ′[sid ′]

Fig. 6.1: Left: Static structure of an ideal protocol I = {Drole1 , . . ., Drolen ,F} with n
roles and an ideal functionality F . Dummies have an arbitrary number of PAR-tapes
(and the same number of SUB-tapes connected to F) for communication with higher
level protocols or the environment.
Right: Example of a possible dynamic structure of an ideal protocol I ′ = {D1, D2, D3,F},
where two sessions sid and sid ′ were created by parties pid , pid ′, and pid ′′. Note that
instances of the same machine use the same tape names; mode CheckAddress is used
to find the correct instance for each message. Note that pid takes part in two different
roles in the same session sid .

· · ·
Mrole1

· · ·

NET

· · ·

R

NET Mrolen

· · ·

· · ·

PAR PAR

SUB SUB

· · ·

id = (pid , sid)

· · · · · ·

· · · · · · · · ·

M1
id = (pid ′, sid) id = (pid , sid)

M1 M2

· · ·

id = (pid ′, sid ′)

· · ·

M1

· · ·

id = (pid ′′, sid ′)
· · ·

M3

NET NET NET

NET NET

R′[sid] PAR PAR PAR

PAR PAR

SUB SUB

SUB SUB SUB

R′[sid ′]

Fig. 6.2: Left: Static structure of an atomic real protocol R = {Mrole1 , · · ·,Mrolen} with
n roles. Each role has arbitrary numbers of SUB and PAR tapes to communicate with
other protocols and the environment, respectively.
Right: Example of a possible dynamic structure of an atomic real protocol R′ =
{M1,M2,M3} that is meant to realize the ideal protocol I ′ = {D1, D2, D3,F} from the
right side of Figure 6.1. Note that every instance of a real protocol machine corresponds
to one instance of a dummy, but the real protocol machines may additionally have
subprotocols (as shown in Figure 6.3). Also note that, just as in Figure 6.1, instances of
the same machine use the same tape names; mode CheckAddress is used to find the
correct instance for each message.

134 Chapter 6. Conventions for Usable Universal Composability

M1 M2

M4M3 M5

R

R′ R′′

· · · · · ·

M1
id = (pid , (sid1, . . . , sidn))

· · ·
M1

id = (pid ′, (sid1, . . . , sidn))

· · ·
M2

id = (pid ′, (sid1, . . . , sidn))

· · ·

M3
id =
(pid ′, (sid1, . . . , sidn, sidn+1))

M3
id =
(pid ′, (sid1, . . . , sidn, sid ′n+1))

M5
id =
(pid ′, (sid1, . . . , sidn, sid ′′n+1))

R

R′ R′′

Fig. 6.3: Top: Example of the static structure of a real protocol R = {M1,M2}, where
M1 uses the real protocol R′ = {M3,M4} and both M1 and M2 use the real protocol
R′′ = {M5}.
Bottom: Example of a possible dynamic structure of the real protocol R and its
subroutines R′ and R′′ from the upper part of this figure. Note that instances of real
protocol machines can only talk to each other if they belong to the same party. Also
note that, just as in Figure 6.1, instances of the same machine use the same tape names;
mode CheckAddress is used to find the correct instance for each message.

is a party ID (PID) and sid = (sid1 , . . . , sidn) is the session ID (SID). We refer to the
instance of Mrolei with identity id as Mrolei [id]. The structure of identities is such that any
subroutine instance of Mrolei [id] has an ID of the form id ′ = (pid , (sid1 , . . . , sidn , sidn+1)),
i.e., only the SID gets extended by sidn+1 . In particular, any subroutine instance of
Mrolei [id] has the same PID as Mrolei [id]. Similarly, a parent instance of Mrolei [id] has ID
id′′ = (pid , (sid1 , . . . , sidn−1)). We note that, while every ID identifies a unique instance
of a single role, IDs are not necessarily unique across different roles. Hence, unlike other
frameworks, it is possible for a single party pid to play different roles in the same session
sid . See Figures 6.2 and 6.3 for an example.

An ideal protocol I is a system of ITMs of the form {Drole1 , . . .,Drolen ,F}. The ITMs
Drole1 , . . . ,Drolen are called dummies, akin to the “ideal peers” in GNUC or “dummy
parties” in UC. A dummy Drolei corresponds to a role Mrolei in a real protocol. However,
dummies essentially only act as forwarders between a higher-level protocol or the
environment and the ideal functionality F , which realizes the actual cryptographic task.
Just like real protocol machines, a dummy has a network tape to the adversary as well as
parent tapes. For every parent tape it has a corresponding subroutine tape to F which
is used to forward messages. The functionality F has a network tape, no subroutine
tapes, and for every subroutine tape of a dummy a corresponding parent tape. In a
run of I, each instance of dummy has an ID of the form (pid , (sid1 , . . . , sidn)) just as

6.1. Templates for Real Protocols and Ideal Functionalities 135

their corresponding real machines. An instance of a dummy with such an ID talks
to an instance of the ideal functionality F with ID (sid1 , . . . , sidn). Note that the ID
of an instance of F does not contain a specific PID since such an instance performs
cryptographic tasks for all parties in session (sid1 , . . . , sidn).

A real protocol is a composition of atomic real protocols and ideal protocols. We
might have one or more higher-level (real) protocols which may use one or more real
protocols as subroutines, which in turn may have subroutines, etc. (see Figure 6.3 for an
example). Ideal protocols might be subroutines as well, in which case we have a hybrid
system.

Figure 2.1 (on page 27) shows an example of an ideal protocol I which is realized
by a real protocol P = {R, I ′}, where R makes use of the ideal protocol I ′ as a
subroutine. The protocol R = {M1,M2} consists of two roles M1 and M2. In this case,
the subroutine I ′ has two roles as well, but in general higher- and lower-level protocols
are not required to have the same number of roles. Since R has two roles, the ideal
protocol I it is supposed to realize has two roles as well. In Figure 6.1 an example for a
possible instantiation of an ideal protocol I ′ with two sessions is given, while Figure 6.2
shows the corresponding instances of a real protocol R′ which tries to realize I ′. In this
case both protocols have three roles, which do not necessarily have instances in every
session.

The adversary can explicitly corrupt real protocol machines and dummies by sending
a corruption request on their network tape. Depending on whether (strong/weak) static
corruption or dynamic corruption is modeled, such a corruption request might not always
be possible, though. Also, the machine might reject the corruption request. In particular,
a real protocol machine may first check the corruption status of its subroutines and then
decide, depending on its own state, whether or not corruption is granted; dummies ask
their ideal functionality whether corruption is allowed. For example, a real protocol
machine might reject the corruption request if not all of its subroutine instances are
corrupted. By this, bottom up corruption can be enforced. Once a corruption request is
granted by a machine, the machine from then on is (explicitly) corrupted and just acts
as a forwarder between the environment/the higher level protocol and its subroutines
on the one hand and the adversary/simulator/environment on the other hand. In other
words, the machine is in full control of the adversary/simulator/environment.

Every time a fresh instance enters Compute mode, it first asks the adversary with a
special message whether he wants to corrupt this instance. The answer of the adversary
is processed as described in the last paragraph, i.e., the instance may decide to reject a
corruption request.

On the I/O interface, an environment or a higher-level protocol can ask at any time
about the corruption status of (an instance of) a machine. If the machine was explicitly
corrupted by the adversary, then the machine returns true immediately. Otherwise, the
machine may check the corruption status of its subroutines first in order to determine the
corruption status it returns. If, for example, one of its subroutine instances was corrupted,
then the machine might return true as its corruption status. We emphasize that it might
do so even if the machine itself was not (explicitly) corrupted by the adversary, and
hence, follows its honest program. So, the status returned represents the overall status of
the machine and its subroutines. This can be used to, e.g., model top-down corruption
by considering a machine corrupted if at least one subroutine is corrupted. Then, as

136 Chapter 6. Conventions for Usable Universal Composability

Protocol Setup for R = {Mrole1 , . . .,Mrolen}:
Participating roles: List of all roles participating in this protocol.
Corruption model: strong/weak static, dynamic with/without erasures.
Protocol parameters∗: e.g., externally provided algorithms can parametrize a machine.

Realization Mrolei for each participating role rolei:

Implemented role: name of the role implemented by this machine, i.e., rolei.
Subroutines∗: typically lists sub-functionalities if protocol is hybrid.
Internal state∗: state variables used to store data across different invocations.
CheckIDformat∗: algorithm to check format of ID.
Corruption behavior∗: description of DetermineCorruptionStatus and AllowCorruption?.
Initialization∗: this block is only executed the first time the machine receives a message; useful

to assign initial values, etc.
MessagePreprocessing∗: this block is executed every time a message is received.
Main: description of the actual behavior of the uncorrupted machine.

Fig. 6.4: Template for specifying ARPs (atomic real protocols). Blocks labeled with an
asterisk are optional. CheckIDformat is part of the CheckAddress mode, whereas
Corruption behavior, . . . , Main are all executed within the Compute mode of the
machine.

soon as a machine is corrupted by the adversary/simulator/environment, all higher level
protocols that use this machine as subroutine (directly or indirectly) will automatically
consider themselves to be corrupted, too.

The templates presented in the following will be used to specify the behavior of
real protocol machines (i.e., the Mi), as well as ideal functionalities (i.e., F). All other
parts of Figure 2.1 (on page 27), in particular the behavior of dummies or the precise
wiring of protocols and their subroutines is fixed in Section 6.2, and do not need to be
specified by a designer. As for corruption, the protocol designer still has some freedom
and can specify the desired behavior by certain algorithms she may specify as part of
the protocol specification (otherwise defaults are used).

6.1.1 Specifying Real Protocols

Figure 6.4 shows the template for specifying (atomic) real protocols (ARPs) of the form
R = {Mrole1 , . . .,Mrolen}. This template consists of two parts: the protocol setup part,
which specifies properties for the entire protocol, and the realizations of all roles Mrolei

for i = 1, . . . , n.
The protocol setup block of the protocol specification specifies the following properties:

Participating roles. This block simply lists the names of all roles participating in the
protocol.

Corruption model. Here, one specifies the considered corruption model. Our con-
ventions distinguish the following types of corruption: strong static, weak static,
and dynamic with/without erasures. Each type makes fewer assumptions about the
adversary, thus providing stronger security guarantees than the previous one.
Informally, strong static corruption means that the adversary has to determine
upfront which instances are involved in a session and their corruption status. For
weak static corruption the adversary can decide whether he wants to corrupt an

6.1. Templates for Real Protocols and Ideal Functionalities 137

instance the first time this machine enters the Compute mode. He does not have
to fix the instances involved in a session upfront. In the case of dynamic corruption,
the adversary may corrupt every machine at any point in time; in this case, it needs
to be specified whether one assumes secure erasures or not, i.e., whether temporary
variables are assumed to be ephemeral or whether they are leaked to the adversary
upon corruption.

Protocol parameters. If the given protocol is parametrized, the respective parameters
as well as their required properties have to be specified here. This is often the case if
R realizes an ideal protocol that outputs concrete cryptographic values. For instance,
the realization of the (standard) signature functionality Fsig is typically parametrized
by an EUF-CMA secure signature scheme, cf., e.g., [KT08] and Section 6.4.

Apart from the protocol setup, one has to specify each real procotol machine Mrolei , and
hence, each role listed in the protocol setup.

Implemented role. This simply states which role is implemented by this machine.
This name is used to uniquely identify each role.

Subroutines. Here the protocol designer lists all subroutines used by Mrolei . The
machine will then be connected to all roles of that subroutine, and hence can (but
does not need to) use all these roles. In most cases, the subroutines will be ideal
functionalities, which then together with the higher-level protocol specify a hybrid
system. If the protocol does not realize a message transmission functionality, this
block typically at least contains a functionality for (insecure/secure/authenticated)
channels between protocol participants.

Internal state. In this optional block one can declare state variables whose values are
preserved across different activations of an instance of Mrolei . Such variables are
always denoted by sans-serif fonts, e.g., a, b.
Besides the protocol-specific internal state variables, by our conventions, every
machine has one default permanent variables that can be accessed by the protocol
designer: A state variable id containing the identity of the machine of the form
(pid , (sid1 , . . . , sidn)) as explained before. This variable is initialized by ⊥. It
must not be set by the protocol designer, but is assigned and changed according
to our conventions by framework-specific procedures, cf. Section 6.2. Some addi-
tional framework-specific (and therefore hidden) state variables will be detailed in
Section 6.2.

CheckIDformat. As mentioned before, by our conventions the CheckAddress mode
of Mrolei ensures that every instance of Mrolei has an ID of the form (pid , (sid1 , . . . ,
sidn)). Often it is convenient to enforce more structure on the ID. For instance, it
may often be convenient to require that sidn = ((pid1, . . . , pidk), sidn

′), in order
to encode the identities of distinguished parties into the SID. For example, for the
signing functionality Fsig, this allows one to encode the identity of the signer into
the SID, i.e., we would have sidn = ((pid signer), sidn

′) in this case. By checking that
a signing request was sent by a machine with party ID pid signer, the functionality can
now easily ensure that only the legitimate owner of the secret key can sign messages
in any given session. We refer to Section 6.4 for details on this example.
Therefore, in this optional block of the machine specification the protocol de-
signer can enforce such a structure by specifying a deterministic, polynomial-time

138 Chapter 6. Conventions for Usable Universal Composability

(in the size of its input and the security parameter), non-interactive algorithm
CheckIDformat(m, role), which takes the current input m and the role role that
sent m (i.e., the tape that this message was received on) as input and outputs
accept or reject. This algorithm is performed within the CheckAddress mode of
Mrolei when the machine does not have an ID yet. (Once the machine has entered
Compute for the first time and has set its ID, the machine, in CheckAddress
mode, only accepts messages that are prefixed with this ID.) Although formally id has
not been initialized during the execution of CheckIDformat, we allow an author
to write id to refer to the ID which is currently being checked by this algorithm (and
which is part of the message m). If this block is not specified, CheckIDformat
always returns accept.

Corruption behavior. As mentioned before, an adversary may send a corruption
request to a machine in order to (explicitly) corrupt a machine. However, the
machine may reject this request (e.g., after having checked the corruption status of
its subroutine instances). The protocol designer should specify the exact behavior
upon receiving corruption requests by providing an algorithm AllowCorruption?;
otherwise the machine behaves in a default way (see below). Also, as mentioned,
the environment and higher-level protocols may ask for the corruption status of
a machine. In order to determine this status, the machine may again consult
its subroutine instances first. The protocol designer should therefore specify the
exact behavior by providing an algorithm DetermineCorruptionStatus; again a default
behavior is specified by our conventions if no algorithm is provided.
More specifically, the algorithm AllowCorruption?(id, internalState, initialMessage) is
a deterministic, non-interactive algorithm which is executed every time the adversary
tries to corrupt an uncorrupted machine. It gets the id and the current internal state
(which consists of all variables specified in the Internal state-block) of this instance
as input. Furthermore, if the instance was activated by an initial message for the
first time in Compute mode and thus asked the adversary for its corruption state,
then this initial message is also given to AllowCorruption? (otherwise initialMessage
is ⊥). Before the algorithm outputs a bit indicating whether or not the corruption
request by the adversary is accepted, it may ask about the corruption status of
its subroutine instances (this is the only exception to the non-interactivity of this
algorithm and we define a special macro for it in Section 6.2 such that a protocol
designer must never use a send-command in this algorithm). After the algorithm
finished, the state of the machine is set to the one before executing this algorithm,
i.e., this algorithm can not change the state of the machine. If not specified, this
algorithm always returns true.
The algorithm DetermineCorruptionStatus(id, internalState) is a deterministic, non-
interactive algorithm which is executed every time the environment/a higher level
protocol asks for the corruption status of an uncorrupted machine. It gets the id
and the internal state of this instance as input. It may ask for the corruption status
of its subroutine instances (this is the only exception to the non-interactivity and
we define a special macro for it in Section 6.2 such that a protocol designer must
never use a send-command in this algorithm), before it outputs a bit indicating
whether or not the machine considers itself as corrupted. After the algorithm fin-
ished, the state of the machine is set to the one before executing this algorithm,

6.1. Templates for Real Protocols and Ideal Functionalities 139

i.e., this algorithm can not change the state of the machine. Note that if the
machine was explicitly corrupted, i.e., it received a corruption request from the
adversary which was accepted, then, by our conventions, true is returned in any
case. Furthermore, if the algorithm DetermineCorruptionStatus outputs true once,
then all following requests are answered with true immediately without calling
DetermineCorruptionStatus again. Therefore, DetermineCorruptionStatus is invoked
only if the machine has never considered itself corrupted before (either because it
was explicitly corrupted or DetermineCorruptionStatus returned true) in order to de-
termine the corruption status it returns. If not specified, DetermineCorruptionStatus
always outputs false by default.

Initialization. If this optional non-interactive algorithm is specified, it is executed
in mode Compute only upon receiving the first non–corruption-related message.
(Being executed in mode Compute implies that the message received has been
accepted in mode CheckAddress before.) This algorithm gets the current input
m, the role role that sent this message (i.e., the tape that m was received on), the
ID id and the internal state as input. Typically, it is used to assign initial values
to variables or to set up key material used in the protocol. For this purpose, this
algorithm may use the restricting Respond message to ask the adversary for some
information necessary for initialization like, e.g., algorithms. Note that this is the
only exception to the non-interactivity and only allowed because the adversary
is forced to answer “immediately” such that the computation is not interrupted.
More precisely, this algorithm may use the “send responsively” command defined in
Section 6.3.

MessagePreprocessing. If this optional algorithm is specified, it is executed in mode
Compute every time a non–corruption-related message is received. (The first such
message will, however, first trigger the initialization explained above.) This algorithm
gets the same input as Initialization. Note that this algorithm may send messages
to other machines and thus potentially end the execution of the Compute mode.
This algorithm is useful to specify certain tasks and checks that should be executed
for all incoming non-corruption related messages in case the machine is not corrupted.
For example, malformed message could be handled by MessagePreprocessing.

Main. This block specifies the main computation performed in mode Compute.
It gets the same input as Initialization and MessagePreprocessing and is
performed only after Initialization and MessagePreprocessing (if Message-
Preprocessing did not stop the run by sending a message).

There are some framework specific messages that may not be sent in Message-
Preprocessing and Main; these are noted in Section 6.2. In Section 6.3, we pro-
vide a convenient syntax for the specification of the blocks Initialization, Message-
Preprocessing, and Main.

6.1.2 Specifying Ideal Functionalities

Recall that an ideal protocol I is a system of the form {Drole1 , . . .,Drolen ,F}. We next
present a template for specifying ideal protocols in Figure 6.5. A protocol designer
mainly has to specify the ideal functionality. The behavior of dummies is mostly fixed by

140 Chapter 6. Conventions for Usable Universal Composability

Protocol Setup for I = {Drole1 , . . .,Drolen ,F}:
Participating roles: List of all roles participating in this protocol.
Corruption model: strong/weak static, dynamic.
Protocol parameters: e.g., externally provided algorithms can parametrize a machine.

Description of F :

Internal state∗: state variables used to store data across different invocations.
CheckIDformat{rolei , . . . , rolej }∗: algorithm to check the well-formedness of the session

ID (executed by dummies in roles rolei , . . . , rolej).
...

CheckIDformat{rolek , . . . , rolel}∗: algorithm to check the well-formedness of the session
ID (executed by dummies in roles rolek , . . . , rolel).

CheckIDformat{}∗: algorithm to check the well-formedness of the session ID (executed by all
remaining dummies).

CheckIDformatIdeal∗: algorithm to check the well-formedness of the session ID (executed by
ideal functionalities for messages from the adversary).

Corruption behavior∗: description of AllowDummyCorruption? and LeakedData.
Initialization∗: an algorithm that is only executed for the first message that is received; useful

to assign initial values, etc.
MessagePreprocessing∗: an algorithm that is executed every time a message is received.
Main: description of the actual behavior of the ideal functionality.

Fig. 6.5: Template for specifying ideal protocols. Blocks labeled with an asterisk are
optional.

our conventions and does not have to be specified by the protocol designer. However, the
protocol designer has to specify the list of roles, and hence, the number of dummies. Also,
just as for real protocol machines, the protocol designer may want to impose specific
restrictions on the form of IDs of dummies (and thus on the IDs of the ideal functionality
F) by specifying the algorithm CheckIDformat. Just as for real protocol machines,
this algorithm is executed as part of the CheckAddress mode of a dummy. Otherwise,
the dummies, including their behavior related to corruption, are fully specified by our
conventions.

The blocks “Participating roles” and “Protocol parameters” in the protocol setup
specification in Figure 6.5 as well as the blocks “Initialization”, “MessagePreprocessing”,
and “Main” correspond to those for real protocols. The corruption model does not
need to distinguish between dynamic corruption with and without erasures anymore, as
explained below. The remaining blocks are explained next.

Internal state. Similar to real machines, there are two framework-specific state vari-
ables that are visible to the protocol designer: the identity id of the form (sid1 , . . . ,
sidn) and a variable CorruptionSet, which keeps track of all corrupted dummies
that are connected to this instance of the functionality, where a dummy is uniquely
identified by a pair (role, pid) describing the role und the PID of the dummy instance
(the SID is the same as the one of the functionality). Again, id and CorruptionSet
must not be set by the protocol designer, but are automatically changed by the
framework.

CheckIDformat{set of roles}. This block specifies the CheckIDformat that is exe-
cuted by the dummies in one of the roles listed in set of roles ; the same conventions as
for RPMs also apply here (in particular, we allow the usage of id to refer to the ID of

6.1. Templates for Real Protocols and Ideal Functionalities 141

the dummy that is currently being checked. Note that this ID has a different format
as the one of an ideal functionality since it includes a PID). A protocol designer is free
to let an arbitrary number of roles use the same CheckIDformat by including them
in the set of roles, or specify one CheckIDformat per role by defining only one role
in set of roles. If no role is specified, then this CheckIDformat is executed by all
roles that are not defined in any set of roles of another CheckIDformat, i.e., this
can be used to define some default CheckIDformat. One role may not be specified
in more than one set of roles, i.e., it has to be unambigous which CheckIDformat
is used. If a role is not included in any set of roles and no default CheckIDformat
is specified, it behaves as if CheckIDformat always returns accept.

CheckIDformatIdeal. Since all PAR tapes of an IF connect to dummies and we
already specified CheckIDformat for those dummies, we can re-use this algorithm
to check the IDs of message on PAR tapes. However, there may also be messages
from the adversary on the NET tape of the ideal functionality. If such a message
arrives and activates a fresh instance of the ideal functionality (i.e., this instance has
never accepted any messages before), then, after the usual checks, this algorithm is
executed to enforce a specific format for the session ID during the CheckAddress
mode of the ideal functionality. For this algorithm the same conventions apply as
for CheckIDformat. Note that, if this algorithm uses id to refer to the ID that is
being checked, then id is of the form (sid1 , . . . , sidn), unlike in the CheckIDformat
algorithm.

Corruption behavior. As explained before, upon receiving a corruption request by
the adversary, a dummy asks its functionality whether the request is granted. (If
yes, the dummy is under complete control of the adversary.) For this purpose, the
protocol designer can specify an algorithm AllowDummyCorruption?, similarly to
AllowCorruption? in the case of real protocols.
To be more precise, AllowDummyCorruption?(pid , role, id,CorruptionSet, internal-
State,messageList) is a deterministic, non-interactice algorithm that may depend on
the specific instance of the dummy (which is uniquely identified by its pid and role),
the SID id, the currently corrupted dummy instances and the internal state of the
ideal functionality. Additionally, it can depend on a list of all messages that were
sent to or received from every dummy instance. Note that this also includes a special
variable initialMessage from the corruption request of the dummy, which contains
either the first message that was received by that dummy instance (if the dummy is
fresh and currently determines its initial corruption) or ⊥ of the dummy instance is
no longer fresh. The algorithm is executed by the ideal functionality every time a
dummy asks whether it may be corrupted.1 It outputs either true or false and after
that, the state of the ideal functionality is set to the state before the execution of
this algorithm, i.e., this algorithm can not change the state of the ideal functionality.
Since dummies already internally take care of dynamic and static corruption, it is
not necessary to differentiate between those in this algorithm (i.e., it will only be

1 Note that the ideal functionality first executes the Initialization algorithm, if this is the
first message that was received in Compute mode. Neither MessagePreprocessing nor
Main are executed upon such a request.

142 Chapter 6. Conventions for Usable Universal Composability

called if allowed by the current corruption mechanism). If this algorithm is not
specified, it returns true by default.
Now, if the corruption request is accepted (according to AllowDummyCorruption?),
the ideal functionality also decides which data is leaked to the adversary, i.e., which
data is forwarded via the dummy to the adversary. The protocol designer can specify
which data is leaked by the deterministic, poly-time, non-interactive algorithm
LeakedData. More specifically, LeakedData(pid , role, id,CorruptionSet, internalState,
messageList) gets the same input as AllowCorruption?. Note that by this algorithm
the protocol designer can specify whether (dynamic) corruption with or without
secure erasures is modeled, which is why this, unlike in the case of real protocols,
is not explicitly stated in the protocol setup specification. If LeakedData is not
specified, it will return the transcript of all communication between the corrupted
instance of the dummy and the functionality, cf. also Section 6.2.3.3.

6.2 Mapping Templates to ITMs

In the following, we explain how the templates specified in Section 6.1 are mapped
to actual systems in the sense of the IITM model with responsive environments. The
resulting systems will be instantiations of the protocol systems in the responsive IITM
model (see Section 2.5.3 and [CEK+16a]). Hence, all theorems in the responsive IITM
model, such as composition theorems, will still hold true for these systems.

The mapping from templates to actual systems will fix all the framework-specific
parts of our conventions which do not need to be specified by the protocol designer,
thereby remedying the drawback of the original very general IITM model where the
specific addressing conventions, the specific protocol structure for real and ideal protocols
as well as corruption behavior are left open, and hence, left to the protocol designer.

As a result of this translation from templates to actual systems of ITMs, the protocol
designer only has to take care of protocol specific aspects of a specification. Using our
conventions, the modeling thus becomes close to that in other universal composability
frameworks, making it easy for protocol designers to transition from those models to
ours. However, as discussed in the introduction of this chapter our conventions have
several advantages compared to other models.

6.2.1 Notation for the Formal Specification of ITMs

Before being able to formally specify how the resulting ITMs look like, we need to
introduce some notation. This notation will only be used for this compilation, and
partially in security proofs of protocols when specifying the simulators in full details.
In Section 6.3, we will introduce some more abstract notation that allows for a more
convenient and direct instantiation of our templates.

Message patterns. A message pattern mp is used to describe the format of a message
m ∈ {0, 1}∗ ∪{⊥}. It is built from local variables (denoted in italic font), global variables
(denoted in sans-serif font), strings (denoted in typewriter font) and special characters
such as “(”, “)”, “,” and “⊥”.

6.2. Mapping Templates to ITMs 143

Message patterns can be used to describe outgoing messages, in the following denoted
by mpout, and incoming messages, in the following denoted by mpin. If a message
pattern is used for sending, then the current values of global and local variables are
inserted, while the remainder of the pattern stays as is (in particular, strings and special
signs are not altered). The resulting message is then sent. If a message pattern is used
for receiving, then, if a message m is received, it is matched against the pattern: After
inserting the values of global variables and, if defined, those of local variables into mpin,
the resulting message must be the same as m except for undefined local variables, which
match to an arbitrary text. After a successful match, all local variables contain the
value that they matched on. The special symbol can be used in mpin instead of an
undefined local variable if the value that is matched on is not needed anymore.

Sending raw messages. When we write send mpout on t, we mean that the message
m that is created from mpout at runtime is sent as-is on tape t.

Wait for. One can force an instance to continue its computation in mode Compute
right where it stopped by using a wait-for command right after sending a message, such
as send mpout on t; wait for mpin on t′ s.t. 〈condition〉. More specifically, in mode
Compute when executing send mpout on t; wait for mpin on t′ s.t. 〈condition〉 the
machine does the following: it outputs a message m (created from mpout at runtime) on
tape t and stops for this activation. In the next activation, when receiving a message and
after this message has been accepted in mode CheckAddress, the machine, in mode
Compute, will directly check whether it received a message of a form that matches
mpin and satisfies 〈condition〉 on input tape t′. If the message is valid, the computation
continues at this point in the code. Otherwise, the machine drops the received message
and stops for this activation without producing output; the instance now repeats this
behavior until it received a message of the correct form on the correct tape.

Restricting messages. As explained in Section 2.5.3 and [CEK+16a], we consider a
restriction relation R and responsive environments such that if a real or ideal protocol
outputs a restricting message x ∈ R[0] on a network tape, then the environment/ad-
versary/simulator has to send a reply y on the corresponding tape with (x, y) ∈ R
immediately, i.e., without sending an incorrect message (wrong message according to R
or wrong tape) to the protocol before.

Therefore we write send responsively mpout on NET; wait for mpin on NET s.t.
〈condition〉 to say that the machine sends a restricting message on NET (we typically
only have one network output tape) and then waits to receive a response on the
corresponding input network tape that matches with mpin and satisfies 〈condition〉.
This command has to be used if and only if a message m ∈ R[0] is sent (i.e., when
sending raw messages it is not possible to sent restricting messages with other commands
or normal messages with this command) and the message pattern mpin is usually defined
in such a way that it accepts (some of the) possible answers to the restricting message.
Furthermore, unlike the wait-for command for normal messages, if a message is received
(after it was accepted in CheckAddress mode) which is not accepted by this wait-for
command (either because the message m′ does not match or because condition is not
fulfilled), then the command automatically sends the first message m on NET again. Since
our restriction guarantees that answers are always accepted in CheckAddress, this
definition of the wait-for command ensures that the environment/adversary/simulator

144 Chapter 6. Conventions for Usable Universal Composability

has to provide an expected answer that fulfills condition before any instance in the
protocol can continue.

Abort. We use the special keyword abort to say that a machine stops its computation
at some point. More specifically, as soon as a machine in Compute mode reaches the
abort command, it will produce empty output and thus stop its computation. Then,
by definition, the master IITM is activated with empty input on the start tape.

6.2.2 Real protocols

In this section, we describe how the template in Figure 6.4 for real protocols is mapped
to a (real protocol) system in the sense of the IITM model. We first describe how a
real protocol system is structured and then detail the CheckAddress and Compute
modes of the ITMs in such a system, including the behavior in case of corruption. While
some of the following was already sketched in Section 2.5.3, we now provide full details.

Atomic real protocols. An atomic real protocol R (ARP) is a collection of what we
call real protocol machines (RPM): we write R = {Mrole1 , . . .,Mrolen}. See for example
Figure 6.2. The RPM Mrolei is an ITM that is meant to model the ith role of the ARP.
Here n is the number of roles that an ARP offers. For example, a client-server ARP
would have two roles, irrespective of the number of clients. A (hybrid) real protocol then
is a composition of atomic real protocols (ARP) and ideal protocols.

Tapes. Recall that each ITM uses a pair of tapes to communicate with another ITM. In
the following, for simplicity, we call a pair of related unidirectional tapes with opposite
directions a bidirectional tape (or just a tape). In the basic IITM model, tapes are
divided into NET (network) and I/O tapes. We further divide the latter into PAR
(parent) and SUB (subroutine) tapes.

Each RPM has one network tape NET to communicate with the adversary, several
PAR tapes to communicate with higher-level ARPs or the environment, and several
SUB tapes to communicate with lower-level ARPs or ideal sub-protocols. ARPs have
no internal tapes: RPM instances cannot communicate directly. More specifically, if
an ARP machine M (according to its specification, Figure 6.4) has a subroutine, then,
according to our conventions, we define M to have one SUB tape to every machine (role)
in the subroutine; the subroutine can be a real protocol itself or an ideal protocol, where
in the latter case M would be connected to all dummies of the ideal protocol. Conversely,
every machine in the subroutine (ARP or dummy) has a PAR tape to M . To ensure
connectability with arbitrary higher-level protocols, ARPs (and for ideal protocols also
dummies and ideal functionalities) thus must be able to accommodate any number of
roles in higher-level protocols and are therfore implicitly parametrized by the number of
roles in a higher-level protocol. When connected as a subroutine to a specific higher-level
protocol (or several higher-level protocols), then an ARP has exactly those PAR tapes
needed to connect to the higher-level protocol(s) (refer to Figure 6.3 for an example).

To make our pseudocode in this section easier to read, we will not refer to tapes
by giving them specific names but instead refer to the role role that they connect to.
In particular, we will write NET if we want to denote the (single) network tape of a
machine, SUB[rolell] to denote the tape that connects to the machine with role rolell in

6.2. Mapping Templates to ITMs 145

one of the subroutines, and PAR[rolehl] to denote the tape that connects to a machine
with role rolehl in a higher level protocol. Note that rolehl may be the environment
which may play arbitrarily many roles (i.e., connect to an arbitrary number of PAR
tapes). We will use a similar way to address different tapes in Section 6.3.

Check address mode of ARPs. As mentioned before, in our conventions, every
instance of an RPM M has a unique ID id of the form (pid , (sid1 , . . . , sidn)), where pid
is interpreted to be a party ID (PID) and (sid1 , . . . , sidn) is interpreted to be a session
ID (SID). This is ensured by an appropriate definition of the CheckAddress mode of
an RPM, provided next. We note that the meaning of what a PID and SID is, is given
solely by our rules regarding PIDs and SIDs.

Recall that by the IITM model, whenever a message m was written on an output
tape (with name) t and if M has an input tape t, then all existing instances of M (in the
order of their creation) are invoked in mode CheckAddress to check which instance
accepts m. The first instance to accept m gets to process m in mode Compute. If no
such instance exists, then a new one is created and run in mode CheckAddress. If
this instance accepts, it gets to process m, and otherwise, m is dropped and the new
instance is removed from the run.

Now, in the CheckAddress mode, an instance of the RPM M does the following,
as specified in detail in Figure 6.6. There are two cases: id = ⊥, i.e., the instance of M
does not have an ID yet, or id 6= ⊥, i.e., an ID has been set.

We first consider the case id = ⊥. This case means that the instance of M was
just created and invoked in mode CheckAddress in order to check whether this new
instance accepts the incoming message, and hence, gets to process this message in mode
Compute. More specifically, upon receiving a message m on some tape t, the instance
of M checks that m is prefixed with an identifier id , i.e., m = (id ,m′). For messages
that arrive on NET or an PAR tape, id must be of the form (pid , (sid1 , . . . , sidn)). For
messages that arrive on a SUB tape, id must be of the form (pid , (sid1 , . . . , sidn+1)).
Additionally, the deterministic, polynomial-time (in the length of its input and the size
of the security parameter), non-interactive algorithm CheckIDformat specified for the
given role (cf. Figure 6.4) is performed, given (m, t) as input. It outputs either accept or
reject; if this algorithm is not specified, then it always outputs accept by default. If this
algorithm accepts m as well, then the instance of M accepts m in mode CheckAddress.
Hence, according to the IITM model, this instance of M then gets to process m on
tape t in mode Compute; otherwise this instance of M is removed again from the
run and m is dropped. In mode Compute (as explained below), M will store the ID
(pid , (sid1 , . . . , sidn)) in id.

We now consider the case that id 6= ⊥. This means that the instance of M has
already accepted a message before in mode CheckAddress and set id to an ID of
the form (pid , (sid1 , . . . , sidn)). As already mentioned in Section 6.1, we refer to this
instance of M by M [id]. Now, upon receiving a message m on NET or an PAR tape
in mode CheckAddress, M [id] accepts m if and only if it parses as (id,m′). If m is
received on a SUB tape, then m is parsed as ((pid , (sid1 , . . . , sidn+1)),m′) for some
sidn+1 and some m′.

As specified in mode Compute below, the messages M [id] outputs on NET and
PAR tapes will always be prefixed by id. The messages M [id] outputs on SUB tapes will
always be of the form ((pid , (sid1 , . . . , sidn+1)),m′) with id = (pid , (sid1 , . . . , sidn)). In

146 Chapter 6. Conventions for Usable Universal Composability

Upon receiving a message m on tape t in mode CheckAddress do the following.

• If id = ⊥ (i.e., this is the first message the instance received):
– If t is the NET or a PAR tape: parse the message as m = (id ,m′) for id = (pid , (sid1 ,
. . . , sidn)) and some n ≥ 1; otherwise return false. Return whatever CheckIDformat(m, t)
does.

– If t is a SUB tape: parse the message as m = ((pid , (sid1 , . . . , sidn+1)),m′) for some n ≥ 1;
otherwise return false. Return whatever CheckIDformat(m, t) does.

• Else (id 6= ⊥, i.e., this is not the first message the instance received and accepted, and hence,
the ID of the machine is stored in id):
– If t is the NET or a PAR tape: check whether the message pareses as m = (id,m′), if it does,

return true, otherwise return false.
– If t is a SUB tape: check whether the message parses as m = (id ′,m′) where id ′ =

(pid , (sid1 , . . . , sidn+1)) and (pid , (sid1 , . . . , sidn)) = id, if it does, return true, otherwise
return false.

Fig. 6.6: The CheckAddress mode of real protocol machines (RPMs).

particular, M [id] can send messages only under its PID pid and SID (sid1 , . . . , sidn).
Also, M [id] addresses subroutine instances always by appending another SID sidn+1 to
its ID id.

We finally note that by the definition of the CheckAddress mode every instance of
an RPM indeed has a unique ID (of the required form).2

Compute mode of ARPs. As already explained, the Compute mode of an ITM
specifies the actual computation performed by (an instances of) the ITM. Our conventions
restrict the behavior of RPMs in a specific way mainly to guarantee the desired behavior
in terms of addressing of other machines and corruption. Also, our generic description
of the Compute mode of an RPM includes the algorithms for initizalization, message
preprocessing, and main specified in the template of an RPM in Figure 6.4.

We provide the formal specification of Compute for RPMs in Figures 6.7–6.8. When
activated for the first time in Compute mode with a message, an RPM instance first
initializes its id based on the message in the described way. The instance then asks
the adversary about its corruption status, as explained in detail in Section 6.2.2.1. If
the message is a regular message (i.e., not corruption-related), uncorrupted instances
execute the Initialization, MessagePreprocessing, and Main algorithms. These
three algorithms must be specified by the protocol designer (see Figure 6.4) and constitute
the “inner shell” of the RPM. For subsequent regular messages, instances only execute
the MessagePreprocessing and Main algorithms. For special corrupt messages, or
in case they are corrupted, instances behave as explained in Section 6.2.2.1.

The three algorithms Initialization, MessagePreprocessing, and Main can read
id and have access to the internal state specified in the template, but cannot access any
other (framework-specific) state including corruption-related state. The Initialization
algorithm is non-interactive, i.e., it may not send messages to other machines or end
the run. However, sometimes it is convenient to let the adversary initialize the internal
state of an instance. For this purpose, we make an exception to the non-interactivity

2 Remember that this only means that no two instances of a machine M can have the same
ID. However, there might be multiple RPM instances with the same ID in a protocol, as IDs
are not required to be unique across roles.

6.2. Mapping Templates to ITMs 147

and allow Initialization to send a restricting message (specified by a message pattern
mpout) to the adversary, using the

send responsively mpout to NET
wait for mpin from NET s.t. 〈condition〉

construct.3 We note that this has to be answered by the adversary immediately since it
is a restricting message. Formally, by the definition of this construct (which is given in
Section 6.3), the message (Respond,m), where m is built according to the pattern mpout,
is sent until the adversary responds with a message that matches the pattern mpin

such that condition is fulfilled. This is why we allow this message in Initialization:
it is guaranteed that the execution will finish and no other machine of the protocol
will be activated in the mean time. Of course, a protocol designer is free to also use
this special message in MessagePreprocessing and Main to get information from
the adversary; however, it may not be used to model real network traffic (as motivated
in Section 2.5.3). Finally, none of Initialization, MessagePreprocessing, and Main
may send any of the following framework specific messages (for id = (pid , sid) or id = sid ,
where pid is some PID and sid is some SID as described above, b ∈ {true, false}, and
s ∈ {0, 1}∗ ∪ {⊥}):
• (id , CorruptionStatus?)
• (id , (CorruptionStatus, b))
• (id , (CorruptionStatus, b, s))
• (id , (CorrStatRestricting, b, s))
• (id , CorruptionList?)
• (id , AmICorrupted?)
• (id , CorruptMe?)
As already mentioned above, whenever an RPM instance M [id] outputs a message on

the NET or a PAR tape, then that message must be prefixed by id; messages output on
a SUB tape must be prefixed by some identity id ′ of the intended subroutine machine,
where id ′ extends id with some sidn+1 . While every message that is sent by our
framework already fulfills this requirement, it must also hold for all messages that are
sent by the protocol designer in MessagePreprocessing and Main. Note that we
introduce a special syntax for sending messages in these algorithms in Section 6.3, which
already takes care of this requirement by implicitly adding the correct prefix to every
message. So, as long as a protocol designer uses this syntax, he does not have to care
about this requirement at all and can focus his attention entirely on the actual contents
of the message.

6.2.2.1 Corruption of RPMs

Recall that the IITM model does not fix the corruption behavior of protocols. We
thus need to define it as part of our conventions. Like in the UC and GNUC models,
we consider a central adversary that controls all dishonest ITM instances. As a first

3 Note that here we use the notation conventions for the “inner shell” introduced in Section 6.3
here. These are slightly different than the general conventions introduced at the beginning
of Section 6.2.1 since messages do not explicitly have to be prefixed with id; this is taken
care of by the framework.

148 Chapter 6. Conventions for Usable Universal Composability

State variable id ∈ {0, 1}∗ ∪ {⊥} = ⊥. {Identity of the instance.
State variable corr ∈ {false, true,⊥} = ⊥. {Corruption status.
State variable subcorr ∈ {false, true} = false. {Consider instance corrupted?
State variable init ∈ {false, true} = false. {“Inner shell” initialized?
State variable internalState. {State of “inner shell” of instance as per template in Sec. 6.1.
State variable transcript. {Transcript of all actions of “inner shell”.

Upon receiving a message m = ((pid , (sid1 , . . . , sidn)),m′) from the NET or a PAR tape t,
or a message m = ((pid , (sid1 , . . . , sidn+1)),m′) from a SUB tape t do:
if id = ⊥:

id← (pid , (sid1 , . . . , sidn)). {Initialize identity of instance.

if corr = ⊥: {Initialize corruption status.
if t = NET ∧m′ = (SetCorruptionStatus, b): {First message sets corruption status.

corr← b ∧ AllowCorruption?(id, internalState,m).
{AllowCorruption? is only executed if b = true.

send (id, (CorruptionStatus, corr,⊥)) on NET.
else: {For all other first messages.

send responsively (id, CorruptMe?) on NET;
wait for (id, (SetCorruptionStatus, b)) on NET.
corr← b ∧ AllowCorruption?(id, internalState,m).

{AllowCorruption? is only executed if b = true.
if corr = true: {Else: continue processing (m, t).

if t = PAR[rolehl] ∧m′ = CorruptionStatus?:
{This message has to be processed after the notification.

send responsively (id, (CorrStatRestricting, true, (m, t))) on NET;
wait for (id, OK) on NET. {Continue processing m.

else:
send (id, (CorruptionStatus, true, (m, t))) on NET.

else if corr = false ∧ t = NET ∧m′ = (SetCorruptionStatus, true): {Corruption request.
corr← AllowCorruption?(id, internalState,⊥).
if static corruption is specified:

corr← false.
if corr = true:

if secure erasures are specified:
send (id, (CorruptionStatus, true, internalState)) on NET.

else:
send (id, (CorruptionStatus, true, transcript)) on NET.

else:
send (id, (CorruptionStatus, false,⊥)) on NET.

else if corr = false ∧ t = NET ∧m′ = (SetCorruptionStatus, false):
{(Useless) corruption request.

send (id, (CorruptionStatus, false,⊥)) on NET.

Continued in Figure 6.8...

Fig. 6.7: The Compute mode of real protocol machines (RPMs) and dummies.

6.2. Mapping Templates to ITMs 149

...continued from Figure 6.7.

if t = PAR[rolehl] ∧m′ = CorruptionStatus?: {Query corruption status.
subcorr← subcorr ∨ corr ∨ DetermineCorruptionStatus(id, internalState).

{DetermineCorruptionStatus is only executed if subcorr = corr = false.
send (id, (CorruptionStatus, subcorr)) on PAR[rolehl].

if corr = true: {Corrupted instances are multiplexers.
if t = PAR[rolehl]:

send (id, (par, rolehl ,m
′)) on NET.

else if t = NET ∧m′ = (par, rolehl ,m
′′):

send (id,m′′) on PAR[rolehl].
else if this is an instance of an RPM:

if t = SUB[rolell]:
send (id, (sub, rolell , sidn+1 ,m′)) on NET.

else if t = NET ∧m′ = (sub, rolell , lastsid ,m′′):
send ((pid , (sid1 , . . . , sidn , lastsid)),m′′) on SUB[rolell].

else if this is an instance of a dummy:
if t = SUB[rolell]:

send (id, (sub, rolell ,m
′)) on NET.

else if t = NET ∧m′ = (sub, rolell ,m
′′):

send (id,m′′) on SUB[rolell].

else: {Honest behaviour.
Append (m, t) to transcript.
if init = false:

init← true. {Initialize internal state upon first regular message.
Call Initialization(m, t, id, internalState, transcript).

Call MessagePreprocessing(m, t, id, internalState, transcript).
Call Main(m, t, id, internalState, transcript).

abort. {In case no message was sent.

Fig. 6.8: The Compute mode of real protocol machines (RPMs) and dummies (contin-
ued).

idea, it seems the adversary should have full control over ITMs that he corrupts. This
however would disrupt the execution of the system of ITMs and thus not meaningfully
model reality. For example, providing the adversary with full control over an instance
M [id] = M [(pid , (sid1 , . . . , sidn)], would allow the adversary to send messages under
IDs different than id, and hence, impersonate parties other than pid . Also, this would
allow the adversary to access subroutines for arbitrary other parties and in arbitrary
subroutines. In the case of RPMs, we therefore instead fix the “outer shell” of instances
and give the adversary control only over the “inner shell”. The adversary thus has just
enough power so that our conventions meaningfully model dishonest behavior in reality.

In a nutshell, each RPM instance keeps track of its corruption status. When honest, it
executes the code specified by the Initialization, MessagePreprocessing and Main
algorithms. When corrupt, it first sends its internal state (as specified in the template
in Figure 6.4) to the adversary and then instead acts as a (bidirectional) multiplexer
between the NET tape on one hand, and the PAR and SUB tapes on the other, which is
equivalent to giving the adversary control over the “inner shell” of the instance. The
adversary can corrupt an instance by sending a special message on its NET tape. It
is important that the environment is aware of the corruption status of top-level ITMs:
in the ideal world, we must limit the amount of corruptions that can be performed by

150 Chapter 6. Conventions for Usable Universal Composability

the simulator in order to guarantee a meaningful indistinguishability experiment for
universal composability. To that effect, in our conventions the environment is allowed
to query the corruption status of top-level RPMs. This will force a simulator to keep
the corruption status returned by dummies (in the ideal world) and the corresponding
RPMs (in the real world) in sync.

Corruption state. Every instance of an RPM has a special state variable corr ∈
{true, false,⊥}, not accessible by the “inner shell”, which is initially ⊥ and indicates
whether it is corrupted. As detailed below, upon the first activation in mode Compute
the adversary is asked by the RPM whether to corrupt the instance, thereby causing corr
to be set to true or false. If dynamic corruptions are allowed, the adversary can corrupt
the instance also at a later point in time by sending a special corruption message to
it. Transient corruptions, where the adversary can un-corrrupt a party (cause corr to
switch back to false) are also conceivable, but not further modelled here.

As sketched above, once an instance is corrupted it acts as a multiplexer for regular
messages between the NET tape on one hand, and the PAR and SUB tapes on the other.
Messages on NET carry a prefix containing the source/destination tape, and in the case
of a SUB tape, also the sidn+1 of the subroutine. The corrupted instance still handles
corruption-related messages (e.g., CorruptionStatus?) directly and analogously to the
honest instance.

Setting the initial corruption status. When an RPM instance receives its first
message m, it saves m and the tape t it arrived on, and gives the adversary the chance to
corrupt it before processing the message by sending a restricting message (id, CorruptMe?)
on NET. The instance then immediately receives (id, (SetCorruptionStatus, b)) on
NET: here we rely on the fact that the adversary and the environment are responsive, i.e.,
they are not allowed to activate any other RPM instance before responding as sketched
in Section 2.5.3 and explained in detail in [CEK+16a]. If b = false, the instance sets corr
to false. If b = true, the instance calls an algorithm AllowCorruption? (see Figure 6.4) to
determine whether to set corr to true or false (see also below). In any of these cases, if corr
is set to false, the instance processes the saved first message m as if it was just received
on tape t; if corr is set to true, then one has to distinguish two cases. If the original
message m was received on a PAR tape and m = (id, CorruptionStatus?), then the
adversary is notified via a restricting message (id, (CorrStatRestricting, true, (m, t)))
on NET such that he knows that the corruption request was successful. He then has
to answer with (id, OK) “immediately”, i.e., without activating other machines in the
protocol. As soon as this response is received, the initial message m is processed. This
is done because otherwise the environment/higher level protocols could not hope to
obtain the real corruption status of fresh instances. In any other case, the instance
sends (id, (CorruptionStatus, true, (m, t))) on NET, containing the internal state of the
instance — which at this point consists of the initial message and tape.

Note that there is a special case to this rule: if the first message received by
an instance is m = (id, (SetCorruptionStatus, b)) on NET, then the instance does
not send (id, CorruptMe?) but instead treats this initial message also as response to
(id, CorruptMe?). If the instance determines that it is not corrupted, it will then send an
acknowledgment (id, CorruptionStatus, false,⊥) to the adversary instead of processing

6.2. Mapping Templates to ITMs 151

the initial message. This rule is primarily for convenience, since it simplifies the
specification of simulators.

Allowing corruption. The protocol-designer–specified predicate AllowCorruption?(id,
internalState, initialMessage) is a deterministic, non-interactive algorithm that is used
to determine whether to allow the corruption of an RPM instance or refuse it. It may
depend on the ID id and all variables defined in internalState. Furthermore, if this
algorithm is called because the adversary tries to corrupt a fresh instance (i.e., this is the
first time that the instance gets a (id, (SetCorruptionStatus, b)) message), then this
algorithm may also depend on the initial message that was first accepted by this instance;
this message is stored as is (i.e., including the prefix which contains id) in initialMessage.
Otherwise, initialMessage is ⊥ and hence can be used to distinguish these two cases.
This predicate allows, for example, the modeling of bottom-up corruption (an instance
can only be corrupted if all of its subroutines are) or incorruptible machines (such
as secure hardware tokens). Inside the AllowCorruption?, the instance may query the
corruption status of an instance with id ′ = (id, sidn) and role rolell in a subroutine S
via the corr(S[sidn+1], rolell) macro. Formally, the macro corr(S[sidn+1], rolell) does the
following: (id ′, CorruptionStatus?) is sent out on the corresponding SUB tape. Our
conventions ensure that an answer is returned immediately; the machine cannot receive
any other message in the meantime, as explained in the next paragraph. Note that this
is the only exception to the non-interactivity of this algorithm; a protocol designer must
not send any messages himself but only use this macro. If this algorithm is not specified,
then it always outputs true by default and thus allows every corruption request.

Querying the corruption status. An instance of an RPM can be queried about
its corruption status on any PAR tape, and hence, by a higher-level protocol or the
environment. When an instance receives a message (id, CorruptionStatus?) on a PAR
tape and it was corrupted by the adversary at some point in the past, then it returns
(id, CorruptionStatus, true) on the same PAR tape. If it was not explicitly corrupted be-
fore, it may consider itself corrupt nevertheless by calling the DetermineCorruptionStatus
predicate (as specified by the protocol designer, see Figure 6.4) and respond with a mes-
sage (id, CorruptionStatus, b) to the PAR tape where b ∈ {true, false} is the output of
DetermineCorruptionStatus. As we do not consider transient corruptions, if the instance
has sent b = true in the past, it must always send b = true. (This is ensured indepen-
dently of how the DetermineCorruptionStatus predicate is specified, see Figures 6.7–6.8.)
If a CorruptionStatus?-query arrives before the instance is initialized, i.e., corr = ⊥,
then it first asks the adversary for its corruption status (which is then determined
immediately).

Formally, the DetermineCorruptionStatus(id, internalState) predicate is a determinis-
tic, non-interactive algorithm which may depend on the ID id and every variable in
internalState and outputs either true or false. Like for AllowCorruption?, in the specifica-
tion of the predicate DetermineCorruptionStatus the protocol designer may use the macro
corr(S[sidn+1], rolell) to check for the corruption status of its subroutines instances.
Again, this is the only exception to the non-interactivity; a protocol designer must not
send any messages himself but may only use this macro. If this algorithm is not specified,
then it always outputs false.

152 Chapter 6. Conventions for Usable Universal Composability

As mentioned above, an instance of an RPM that has not been corrupted explicitly
by the adversary (i.e., corr still is false) may still return true as its corruption status
via the DetermineCorruptionStatus algorithm. This allows a simulator to corrupt the
corresponding dummy in the ideal world. For instance, this might be useful when a
machine cannot perform its task anymore because too many of its subroutines have
already been corrupted. Note that even if true is returned as the corruption status, the
instance itself still behaves honestly (and is not controlled by the adversary) because
corr = false.

Our conventions regarding corruption ensure that CorruptionStatus?-queries from
higher-level protocols/the environment (and hence, also those queries done with the
macro corr(S[sidn+1], rolell)) are answered immediately. When answering such queries
subroutine instances (recursively) could be asked about their corruption status. Now,
some of these subroutine instances might not have been initialized yet, which means
that the adversary is queried to determine the value of corr for these instances. These
queries are restricting messages, and hence, because environments and simulators are
responsive, they have to be answered immediately, i.e., environments/simulators may
not send a message to any other instance of the protocol before answering such queries.
Even if the adversary corrupts a fresh instance, this message is answered immediately
nevertheless since he is only notified of the successful corruption by a restricting message.
So altogether, CorruptionStatus?-queries are answered immediately. In particular,
the adversary cannot change the corruption status of subroutine RPM instances that
were already processed during such a query. Thus CorruptionStatus?-queries are
atomic, thereby removing complex edge cases in corruption-related algorithms from
consideration.4

Specific conventions for different types of corruption. As discussed earlier, we
support various types of corruption. Depending on the concrete type being used to
model a concrete protocol, different specific conventions apply.

Dynamic corruptions. Recall that for dynamic corruptions, the adversary is allowed
to corrupt RPM instances even after their initialization. So, if the adversary sends a
corruption request (id, (SetCorruptionStatus, true)) at any point after the instance
was created, AllowCorruption? is invoked and if this procedure returns true, then corr is
set to true.

If an instance is corrupted, its internal state as specified in the template, i.e., the state
variables accessible to its “inner shell”, are sent to the adversary. In a setting when secure
erasures are not allowed, one must assume that all computations, temporary variables,

4 Note that a protocol designer is able to abuse the freedom of our framework to disrupt the
atomicity of CorruptionStatus? by using the corr(S[sidn+1], rolell) macro for an sidn+1 which
will not be accepted by the CheckIDformat of a fresh instance. The protocol designer
is also able to explicitly reject the CorruptionStatus? message in CheckIDformat; in
both cases the environment gets control and is free to do anything, while instances that
are still waiting for an answer become stuck forever. However, these problems depend
entirely on the definitions of the protocol designer; the adversary is never able to disrupt a
CorruptionStatus? request himself. Furthermore, these problems are artificial and should
never occur in a well defined protocol; in particular, they can easily be spotted and corrected
in the definition of the protocol.

6.2. Mapping Templates to ITMs 153

random coins, sent and received messages, and previous assignments of all variables are
still part of the state sent to the adversary. To ease the burden of protocol designers,
we introduce an extra state variable transcript, not readable by the “inner shell”, that
records everything the instance does. Upon corruption, the value of transcript is sent
to the adversary in lieu of the internal state. The exact format of these notifications is
the same as the one specified in the Setting the initial corruption status paragraph, but
instead of (m, t) it includes either internalState or transcript.

Formally, the adversary can also try to send the (useless) message (id, (Set-
CorruptionStatus, false)) to an instance that already determined its initial corrup-
tion state. This message is always answered with (id, CorruptionStatus, false,⊥) such
that a protocol designer does not have to care about this special case.

Weak static corruptions. For (weak) static corruptions, RPM instances can be corrupted
only during their initialization, i.e., when corr = ⊥. Therefore, once corr has been set to
true or false after the initial query to the adversary, it is made sure that it cannot be
changed anymore (independently of how AllowCorruption? is defined). If the adversary
tries to send a corruption message after the initial corruption is fixed, it will always be
answered with (id, CorruptionStatus, false,⊥).

Strong static corruptions. For strong static corruptions, the adversary has to fix all RPM
instance of one session, i.e., those with the same SID, and fix their corruption status at
the beginning of the session. For this purpose, in addition to applying the conventions
for weak static corruptions, all RPMs in an ARP are surrounded with an ITM called
Mcorrupt: an ARP P = {M1, . . .,Mn} thus becomes a system P ′ = {Mcorrupt,P}, where
the machine Mcorrupt acts as a filter around all external tapes of {M1, . . .,Mn}. There
is one instance of Mcorrupt per sid .

Upon receiving the first message on a filtered NET, an PAR, or a SUB tape,
Mcorrupt[sid] restrictively asks the adversary for a list containing the corruption status
of all RPM instances in that session. Mcorrupt[sid] then checks the corruption status of
all instances against the list (it forwards CorruptMe?-queries and CorruptionStatus?-
queries and the corresponding responses while doing so) and finally forwards the initial
message. Whenever another message arrives on a filtered tape, Mcorrupt[sid] re-checks the
corruption status of all instances. In case any corruption status check fails, Mcorrupt[sid]
stops forwarding messages forever to prevent the adversary from gaining any illicit
advantage in the indistinguishability experiment.

Discussion. By using the algorithms AllowCorruption? and DetermineCorruptionStatus
to define corruption, our model becomes very flexible compared to other models. A
protocol designer can easily define both top-down and bottom-up corruption, which
are usually hardwired in many models. For top-down corruption, one uses the
DetermineCorruptionStatus to answer true as soon as at least one of the subroutine
instances is corrupted. In this case, the adversary is still free to corrupt any instance
I, but by doing so, all higher-level instances that use I (directly or via other subpro-
tocols) will consider themselves to be corrupted, too. For bottom-up corruption, one
uses AllowCorruption? to only allow corruption of some instance I if all instances of its
subroutines (that are used by an honest I) are also corrupted.

The main advantage of this approach is that one can specify a very fine grained
corruption model. For example, it is possible to combine a protocol P with bottom-up

154 Chapter 6. Conventions for Usable Universal Composability

and a protocol P ′ with top-down corruption, model honest (uncorruptible) parties, or
only allow corruption after some setup is completed.

6.2.3 Ideal protocols

Recall that in ideal protocols (IPs), the input is handed to a trusted ITM instance
called an ideal functionality (IF) instance. To simplify the corruption model, as usual,
additionally dummy ITMs are introduced that act as a filter to the PAR tapes of the IF:
when a dummy instance is honest, it transparently forwards messages to and from the
IF, but when corrupt, it gives the adversary direct access to the IP’s input/output and
to the IF.

We now present the overall structure of IPs. Next we define dummies and IFs.

6.2.3.1 Structure

Recall that an ideal protocol I is a system (in the sense of Section 2.5.3) of the form
{Drole1 , . . .,Drolen ,F}, where Drole1 , . . . ,Drolen ,F are ITMs. The ITMs Drole1 , . . . ,Drolen

are called dummies. A dummy Drolei corresponds to a role Mrolei in a real protocol.
However, dummies essentially only act as forwarders between a higher-level protocol
(or the environment) and the ideal functionality (IF) F , which realizes the actual
cryptographic task. Just like real protocol machines, a dummy has a network tape to
the adversary as well as PAR tapes. For every PAR tape it has a corresponding SUB
tape to F (in order to forward messages). The functionality F has a network tape, no
SUB tapes, and for every subroutine tape of a dummy a corresponding PAR tape. The
dummies’ SUB tapes and the IF’s PAR tapes are the only internal tapes of the IP. In
Figure 6.1, the left side shows the structure of an ideal protocol with n dummies, while
the right side shows several instances of a sample ideal protocol. This example contains
the dummies D1, D2, and D3.

As further explained below, in a run of I, each instance of a dummy has an ID of
the form (pid , (sid1 , . . . , sidn)) just as their corresponding real machines. An instance
of a dummy with such an ID talks to an instance of the ideal functionality F with ID
(sid1 , . . . , sidn). Note that the ID of an instance of F does not contain a specific PID since
such an instance performs cryptographic tasks for all parties in session (sid1 , . . . , sidn).

If an ARP realizes an IP, the two must have an identical set of external PAR tapes.
Furthermore there is one dummy in the IP for each RPM in the ARP, and each dummy
has the same PAR tapes as the corresponding RPM.

IPs designed to be secure against strong static corruption, additionally consist of an
Mcorrupt ITM that surrounds the dummies and the IF, i.e., I ′ = {Mcorrupt, I}. That
Mcorrupt is similar to the one for ARPs, except that it has additional network tapes to
accommodate the IF, and has no subroutine tapes.

6.2.3.2 Dummies

In a nutshell, when honest, dummy instances forward all protocol messages between their
PAR tapes and the corresponding SUB tapes, and thus directly forward the IP’s input
to the IF, and the IF’s output to the IP’s output. When corrupted, dummy instances

6.2. Mapping Templates to ITMs 155

Upon receiving a message m on tape t in mode CheckAddress do the following.

• If id = ⊥ (i.e., this is the first message the instance received):
Parse the message as m = (id ,m′) for id = (pid , (sid1 , . . . , sidn)) and some n ≥ 1; otherwise
return false. Return whatever CheckIDformat(m, t) does.

• Else (id 6= ⊥, i.e., this is not the first message the instance received and the ID of the dummy
has been stored in id before):
Parse the message as m = (id,m′); otherwise return false.

Fig. 6.9: The CheckAddress mode of dummies.

act as a multiplexer for regular messages between their NET tape on one hand and their
PAR- and SUB-tapes on the other, giving the adversary direct access to the inputs and
outputs of the IF and the IP.

Dummies are very similar to RPMs, and thus their CheckAddress and Compute
are similar as well. In particular, the ITM that specifies a dummy in mode Compute is
defined in the same way as the one for RPM, namely it is the one defined in Figures 6.7–
6.8; the CheckAddress is defined in a slightly different way. However, except for the
algorithm CheckIDformat, which is defined in the specification of an ideal protocol
(see Figure 6.5), all other algorithms that the protocol designer has to specify for RPMs,
are now fixed for dummies in a specific way. So, there is almost nothing left for the
protocol designer to specify.

We now specify the ITM that specifies a dummy in detail. That is, we give a
specification of the CheckAddress and the Compute modes of such a machine.

Identity and Check address. Just as for RPMs, the ID of a dummy instance is of
the form (pid , (sid1 , . . . , sidn)). Unlike RPMs, the ID written on and expected to receive
on a SUB tape is of this form as well, rather than of the form (pid , (sid1 , . . . , sidn+1)).
This is because a dummy merely acts as a forwarder between the environment/higher
level protocol and the IF; the messages sent on SUB tapes are those forwarded to the IF.
Accordingly, the CheckAddress mode of dummies is defined as specified in Figure 6.9.

Compute. The Compute mode of dummies is a special case of the Compute mode
of RPMs, where, as mentioned, most algorithms that for RPMs would be specified by
the protocol designer are now fixed in a specific way (see Figure 6.10). In particular,
the Initialization and MessagePreprocessing algorithms are no-ops. In the Main
algorithm, honest instances forward regular messages received on one of their PAR
tapes to the corresponding SUB tape, and vice versa. The algorithm AllowCorruption?
of dummies is, unlike the one specified by protocol designers, interactive: It asks the
IF that belongs to the dummy by sending ((pid , id), (AmICorrupted?, initialMessage))
about whether or not to allow corruption, and in case the corruption request is granted,
which information to forward to the adversary/simulator/environment; this information
is then written to internalState and thus it will be given to the adversary (see Figure 6.10
and Figures 6.7–6.8). The algorithm DetermineCorruptionStatus is the default one, i.e.,
it returns false, which means that CorruptionStatus?-requests are always answered
with the corruption status corr of the dummy (see Figures 6.7–6.8). The algorithms are
defined in detail in Figure 6.10. The actual Compute mode of the ITM describing a
dummy is specified in Figures 6.7–6.8 (the same as the one for RPMs).

156 Chapter 6. Conventions for Usable Universal Composability

function AllowCorruption?(id, internalState, initialMessage):
Let rolell be one SUB tape to the IF.
send (id, (AmICorrupted?, initialMessage)) on SUB[rolell];
wait for (id, (CorruptionStatus, b, leakage)) on SUB[rolell].
if b = true:

internalState← leakage. {Upon corruption, get internal state from ideal functionality.

return b.
function Main(m, t, id, internalState, transcript): {Honest dummy is a forwarder.

if t = PAR[rolehl]:
send m on SUB[rolehl].

else if t = SUB[rolell]:
send m on SUB[rolell].

Fig. 6.10: Algorithms in Compute mode of dummies.

6.2.3.3 Ideal functionalities

Recall that IFs codify the actual behavior of the IP. In the following, we precisely
specify the ITM that defines the IF obtained from the specification of an ideal pro-
tocol (see Figure 6.5). For this purpose, we have to specify the CheckAddress and
Compute modes of this ITM. This includes the specification of corruption. Formally,
the CheckAddress and Compute modes are defined in Figures 6.11 and 6.12.

Check address. As mentioned before, the id of IFs consists only of an sid =
(sid1 , . . . , sidn). Hence, this ID does not contain a PID as an IF handles the tasks
of all parties in session sid . Messages received or sent on a PAR tape are prefixed
with (pid , id), while messages sent or received on the NET tape must be prefixed with
id. This leads to the following definition of the CheckAddress mode: If a fresh copy
(i.e., id = ⊥) of an IF received a message on a PAR tape, it first tries to parse it as
((pid , sid),m) and then simulates the CheckIDformat of the dummy that belongs to
this tape, where the simulation assumes that the message was received on the corre-
sponding PAR tape of the dummy.5 If a fresh copy of an IF received a message on NET,
then the algorithm CheckIDformatIdeal is used to check whether the ID has the
expected format. We note that this format is different to what dummies expect on NET
as the ID of an IF does not contain a PID, which is why we use a second algorithm
for this case instead of reusing CheckIDformat. Otherwise, CheckIDformatIdeal
is essentially the same as CheckIDformat; in particular, both get the same input and
both have the same default (i.e., they always accept if not specified). If an already
existing copy (i.e., id 6= ⊥) of an IF receives a message on PAR, it tries to parse it as
((pid , id),m) and accepts iff this is possible. If an already existing copy of an IF receives
a message on NET, it tries to parse it as (id,m) and accepts iff this is possible.

Compute and Corruption. The Compute mode of IFs is greatly simplified compared
to that of RPMs, as IF instances cannot be corrupted directly (only dummies can). The
Compute mode of IFs is formally defined in Figure 6.12. When activated for the first

5 For usual definitions of CheckIDformat this step will accept since the message was already
checked by the dummy that sent this message. In particular, the IF will always be able to
parse the message since it is guaranteed to have the correct format. However, we perform
this step nervertheless since this makes the IF a σ-session version as defined in [CEK+16a].

6.2. Mapping Templates to ITMs 157

Upon receiving a message m on tape t in mode CheckAddress do the following.

• If id = ⊥ (i.e., this is the first message the instance received):
– If t is a PAR tape: parse the message as m = (id ,m′) for id = (pid , (sid1 , . . . , sidn)) and

some n ≥ 1; otherwise return false. Simulate CheckIDformat(m, t′) of the dummy that is
connected to t, where t′ is the PAR tape (of the dummy) that corresponds to the tape t.

– If t is the NET tape: parse the message as m = (id ,m′) for id = (sid1 , . . . , sidn) and some
n ≥ 1; otherwise return false. Return whatever CheckIDformatIdeal(m, t) does.

• Else (id 6= ⊥, i.e., this is not the first message the instance received and the ID of the IF has
been stored in id before):
– If t is a PAR tape: parse the message as m = ((pid , id),m′); if this works, return true,

otherwise return false.
– If t is the NET tape: parse the message as m = (id,m′); if this works, return true, otherwise

return false.

Fig. 6.11: The CheckAddress mode of ideal functionalities (IFs).

time in the Compute mode, IF instances first initialize their id based on the received
message. If the message was a regular message, they then execute the Initialization,
MessagePreprocessing, and Main algorithms, which are all specified by the protocol
designer. If the first message was the special ((pid , id), (AmICorrupted?, initialMessage))
request from a dummy, then only Initialization is executed before proceeding as
mentioned below. For subsequent regular messages, IF instances only execute the
MessagePreprocessing and Main algorithms. The same restrictions as with real
protocols also apply for the three algorithms of IFs, however, unlike ARPs, these
algorithms are allowed to access corruption-related state variables. This allows the
instance to, e.g., provide extra capabilities to the adversary in the face of dummy
corruption.

Note that all messages that are sent on the NET tape must be prefixed by id, while
all messages sent on a PAR tape (to a dummy) must be prefixed with (pid , id) for some
pid . Again, just as for ARPs, this requirement is automatically taken care of by the
syntax presented in Section 6.3, so as long as a protocol designer uses this syntax, he
does not have to care about this requirement at all.

In the Main algorithm, it is sometimes convenient to run externally-provided al-
gorithms. For example, in the signature functionality, we let the adversary choose an
algorithm (upon initialization) that Fsig uses to “sign” messages. Formally, the IP must
contain a polynomial prt in its protocol parameters that will bound the runtime of the
externally provided algorithms. When the IF instance with ID id in a run with security
parameter η executes such an algorithm alg with input i, which we denote by alg(prt)(i),
it will run alg for up to prt(|1η|+ |id |+ |i|) steps6 and else abort it with output ⊥. We
also note that such algorithms are not allowed to send messages.

When receiving an ((pid , id), (AmICorrupted?, initialMessage))-message from a du-
mmy instance, the IF instance will run an AllowDummyCorruption? predicate (as specified
by the protocol designer, see Figure 6.5) to decide whether to allow the dummy to be
corrupted, and if yes, it runs the LeakedData algorithm (as also specified by the protocol
designer) to determine what information it should leak to the adversary. More specifi-
cally, the deterministic, non-interactive algorithm AllowDummyCorruption?(pid , role, id,

6 We include the ID of the IF in the polynomial to allow for more elegant and natural joint-state
realizations. See Section 6.5.2 for an example.

158 Chapter 6. Conventions for Usable Universal Composability

CorruptionSet, internalState,messageList) outputs either true or false and can depend on
the PID and the role of the dummy, the session ID id, the currently corrupted dummy in-
stances, the internal state of the IF, and a list of all messages that were sent to or received
from every dummy instance. Note that this list also includes the current AmICorrupted?-
message and thus the initialMessage, which either contains the initial message that was
first accepted by the dummy (if the dummy instance currently determines its initial cor-
ruption status) or ⊥ (if the dummy instance is no longer fresh). Note that the initial mes-
sage is stored as is in initialMessage, i.e., including the prefix. If AllowDummyCorruption?
is not specified, the IF behaves as if true is always returned. The deterministic, non-
interactive algorithm LeakedData(pid , role, id,CorruptionSet, internalState,messageList)
outputs a bitstring and may depend on the same information as AllowDummyCorruption?.
If LeakedData is not specified, then messageList[pid , role], which contains a transcript
of all messages sent to and received from the dummy instance (pid , role), is leaked.
Note that an AmICorrupted?-message is answered immediately by an IF, i.e., no other
instance of the protocol is activated during this request.7

As mentioned above, IFs keep track of the list of corrupt dummy instances in an
implicit CorruptionSet state variable, where a dummy instance is specified by the pair
(role, pid), which consists of its role and PID (its SID is the same as the one of the
IF instance). IFs also keep track of all inputs received and outputs sent to a given
dummy instance (role, pid) in an implicit messageList[(role, pid)] variable. Per default,
i.e., if not specified by the protocol designer, LeakedData returns messageList[(role, pid)]
corresponding to the dummy instance (role, pid) that is being corrupted.

6.3 Programming Language for the Templates

We next introduce convenient notation for specifying the Initialization, MessagePre-
processing, and Main blocks of the machine specifications from Section 6.1. We only
introduce notation that is important to provide unique interfaces to protocol designers;
the remaining parts of these algorithms can be described in any pseudocode. The main
difference between this notation and the one presented in Section 6.2.1 is that protocol
designers do not have to worry about prefixing messages with the correct ID. This is
automatically taken care of, such that one only has to specify the “payload” of the
message. Note that all commands in this section can be distinguished from those in
Section 6.2.1 since they send/receive messages to/from roles, but not on tapes.

On a high level, each of the algorithms Initialization, MessagePreprocessing,
and Main consists of multiple blocks, where each block specifies for which messages it
is executed, the computations it performs, and the messages it sends out. Figures 6.13
and 6.15 provide examples.

More precisely, a single block has the following form:

• A block starts with a header of one of the following forms:

7 The environment/adversary/simulator may be activated since Initialization is executed
before an AmICorrupted? is processed. However, Initialization may only send a restricting
message, which gives the claim.

6.3. Programming Language for the Templates 159

State variable id ∈ {0, 1}∗ ∪ {⊥} = ⊥. {Identity of the instance.
State variable CorruptionSet ⊂ {0, 1}∗ × {0, 1}∗ = ∅. {Set of corrupted dummies.
State variable internalState. {State of “inner shell” of instance as per template in Sec. 6.1.
State variable messageList ∈ (({0, 1}∗)2 7→ {0, 1}∗).
{All messages received/sent per dummy instance. If a key does not exist yet, ε is returned.

Upon receiving a message m = ((pid , (sid1 , . . . , sidn)),m′) from tape t 6= NET or
a message m = ((sid1 , . . . , sidn),m′) from tape t = NET do:
if id = ⊥:

id← (sid1 , . . . , sidn). {Initialize identity of instance.
Call Initialization(m, t, id, internalState).

if t 6= NET ∧m′ = (AmICorrupted?, initialMessage):
Let role be the role of the dummy attached to the tape t.
Append (recv, t,m′) to messageList[(role, pid)].
b← AllowDummyCorruption?(m, t, id, internalState,CorruptionSet,messageList).
leakage ← ⊥.
if b = true:

Add (role, pid) to CorruptionSet.
leakage ← LeakedData(m, t, id, internalState,CorruptionSet,messageList).

m′′ ← (CorruptionStatus, b, leakage).
Append (send, t,m′′) to messageList[(role, pid)].
send ((pid , id),m′′) on t.

else:
if t 6= NET:

Let role be the role of the dummy attached to the tape t.
Append (recv, t,m′) to messageList[(role, pid)].

Call MessagePreprocessing(m, t, id, internalState,CorruptionSet).{
Before sending a message m′′ on tape t′′ belonging to a dummy in role role,
append (sent, t′′,m′′) to messageList[(role, pid)]. Also goes for Main.

Call Main(m, t, id, internalState,CorruptionSet).

abort. {In case no message was sent.

Fig. 6.12: The Compute mode of ideal functionalities (IFs).

– recv mpin from NET s.t. 〈condition〉, if the message is to be received on the
network tape.

– recv mpin from (pid , role, rolehl) s.t. 〈condition〉, if an ideal functionality ex-
pects a message from a dummy instance with PID pid in role role; here and
in the following, rolehl specifies the role of the sender in the higher-level
protocol which used the dummy. Recall that if the ID of the IF instance
is (sid1 , . . . , sidn), then such a message is received via the dummy instance
Drolerole [(pid , (sid1 , . . . , sidn))]. Also, recall that a dummy Drolerole in role role
has several PAR tapes (and corresponding SUB tapes), one for each role of
a higher-level protocol connected to the dummy. For the above header, the
message is expected on the tape corresponding to role rolehl of the higher level
protocol.

– recv mpin from (PAR, rolehl) s.t. 〈condition〉, if a real protocol machine expects
a message from a higher-level protocol in role rolehl .

– recv mpin from (S[sidn+1], rolell) s.t. 〈condition〉, if an RPM expects a message
from its subroutine S with session ID extension sidn+1 , where the sender takes
role rolell in S. If the instance of the RPM has ID (pid , (sid1 , . . . , sidn)), then

160 Chapter 6. Conventions for Usable Universal Composability

this means that this instance expects a message from the subroutine instance
with ID (pid , (sid1 , . . . , sidn+1)) and role rolell . Note that this uniquely identifies
the instance of the subroutine from which a message is expected.

In all cases, the message pattern mpin specifies the format and structure the
incoming message has to satisfy (see Section 6.2.1 for a definition of message
patterns). As described in Section 6.2.2 and Section 6.2.3, incoming messages
always have the form m = (id ,m′), i.e., they need to be prefixed either by id or by
an extension thereof. This structure does not need to be enforced by mpin, but
the protocol designer only has to specify the format of m′; the correct prefixing is
taken care of by the framework. Hence, m′ (not m) will be matched with mpin.
Also note that, similar to message patterns, if one uses an undefined local variable
to describe, e.g., the rolehl , then this variable will accept any value and store it.
Finally, 〈condition〉 specifies a condition that has to be satisfied for entering this
block. This condition might depend on the incoming message itself, as well as on
the internal state of the instance of the machine (again see Figures 6.13 and 6.15
for examples).
• The header of a block is followed by 〈code〉, describing the actual computations

performed by this block. This can be any arbitrary probabilistic algorithm. We use
the command abort to say that the machine aborts by producing empty output,
in which case the environment gets activated upon empty input. Note that this
implies that only interactive algorithms may use this command.
• The activation of an instance ends as soon as the machine sends a message (or

executes abort). The notation here is analogous to the header of the block and
has one of the following forms (see again Figures 6.13 and 6.15 for examples):
– send mpout to NET, if the message is to be sent on the network tape.
– send mpout to (pid , role, rolehl), if an IF sends a message (via the corresponding

dummy) on an PAR tape to an instance of a higher-level protocol with PID
pid in role rolehl that accessed the functionality via the dummy in role role.
This message will be sent to the dummy instance Drolerole [(pid , (sid1 , . . . , sidn))],
where (sid1 , . . . , sidn) is the ID of the IF, on the tape corresponding to the
higher-level protocol role rolehl .

– send mpout to (PAR, rolehl), if an RPM sends a message on a PAR tape to an
instance of role rolehl in the higher-level protocol.

– send mpout to (S[sidn+1], rolell), if an RPM sends a message to role rolell in
session sid = (sid1 , . . . , sidn+1) of the subprotocol S.

– reply mpout, if the message is to be sent back exactly to the sender of the
message upon which the machine was activated.

Similar to before, the outgoing message pattern mpout only needs to specify the
payload m′ of an outgoing message. The correct prefixing by the ID according to
Section 6.2.2 and Section 6.2.3 is handled by the framework.

Whenever an instance of a machine gets activated and enters one of the parts of
the specification (i.e., Initialization, MessagePreprocessing, or Main), it will not
continue at the point where it stopped, but go through the entire sequence of blocks
starting with the first one, and enter the first block for which the message pattern, the
sender and the specified condition are satisfied. Note that the order of the blocks can

6.3. Programming Language for the Templates 161

therefore determine the behavior of a machine if incoming messages could satisfy the
templates and conditions of multiple blocks, and we thus recommend to avoid this, e.g.,
by adding headers specifying the type of every message.

Sometimes it is convenient not to go through all blocks again but start right at the
line where a message was sent, preserving all values of local variables. For this, a protocol
designer may also use a variant of the wait for command defined in Section 6.2.1:

send mpout to dest ;
wait for mpin from source s.t. 〈condition〉

This command essentially does the same as the wait for command defined in Section 6.2.1,
but automatically prefixes messages with the right ID and removes the prefix of incoming
messages. Furthermore, dest and source are not tape names but instead use the same
syntax as the send and recv commands from above (e.g., if an RPM wants to send a
message to role rolell in session sid = (sid1 , . . . , sidn+1) of the subprotocol S, it uses
dest = (S[sidn+1], rolell)).

A protocol designer may also send a generic restricting message on the NET tape,
which can be used to get, e.g., algorithms and key material from the environment/ad-
versary/simulator without influencing any other instances of the protocol. For this, as
already explained in Section 6.2.2, he may use the following command:

send responsively mpout to NET
wait for mpin from NET s.t. 〈condition〉

Formally, this command first prefixes m, which is built according to the pattern mpout,
with both the id and the special string Respond, i.e., it actually sends the (raw-)message
(id, (Respond,m)). This is done because every message that is prefixed with an ID and
the special string Respond has to be answered immediately (with an arbitrary message)
by the definition of our restriction, see [CEK+16a] for the exact definition. Then, just
as the command defined in Section 6.2.1, this command will wait for a response, check
whether the response matches mpin and condition is fulfilled, and then, if this is the
case, continue the computation at this point. If one of the checks fails, it sends the
message (id, (Respond,m)) again (thus still requiring an immediate answer) and waits
for the next answer. This guarantees that no other instance of the protocol will do
anything until a correct message was sent by the adversary to the instance that used
this command. Note that a protocol designer can use m to create arbitrary restricting
messages, which can be used to, e.g., model different requests for keys and algorithms.
We want to emphasize that a protocol designer has to pay very close attention when
using this construct: On the one hand, this command must never be used to model
real network traffic, since it will then overly restrict the distinguishing environment, i.e.,
some (real) attacks will no longer be possible in the model. On the other hand, it is
possible to define a message pattern or condition in such a way that an environment
does not know which message has to be sent to continue the run (e.g. by requiring a
witness to an NP problem).

162 Chapter 6. Conventions for Usable Universal Composability

6.4 An Example Functionality and its Realization: Digital
Signatures

In this section, we provide an example for how to apply our model and conventions
to actual functionalities: we specify the digital signature functionality Fsig and its
realization Psig. On a high level, the ideal functionality Fsig has to guarantee that
a verification request for a message/signature pair only succeeds if the message had
been signed using the functionality. This behavior implies perfect unforgeability of the
signature scheme.

For digital signatures, there are two roles: the role of a signer, who can sign arbitrary
messages, and the role of a verifier, who can verify given message/signature pairs.

Accordingly, the ideal system has the form Isig = {D signer
sig ,Dverifier

sig ,Fsig}, where D signer
sig

and Dverifier
sig are the respective dummies.

6.4.1 The Ideal Functionality Fsig

Figures 6.13–6.14 specify Fsig using our conventions presented before. The ID of Fsig is
of the form (sid1 , . . . , (pid , sidn

′)) where (pid , sidn
′) describes the session paramaters of

Fsig: The first component pid describes the owner of the key in this session. Only the
owner may sign messages, but everyone is allowed to verify them. The second component
sidn

′ can be used to model different keys per person, e.g., for different email addresses
or domains that belong to the same person. Of course, a protocol can model a single
key by only using a fixed value for sidn

′.
Upon its first activation (with a message not related to corruption), the Initialization

block of the machine asks the adversary for signing and verification algorithms, as well
as for the keys that should be used by the functionality. As the adversary might
submit algorithms that cannot be evaluated efficiently, the functionality needs to be
parametrized by a polynomial p, which is used to truncate the running time of those
algorithms. For instance, sig(p)(msg , sk) means that Fsig runs sig on the given inputs
for at most p steps; if the algorithm has not terminated by then, Fsig aborts sig and
sets its output to ⊥, cf. also Section 6.2.3.3.

Upon being initialized by the signer (InitSign), the functionality returns the public
encryption key pk to the signer, whose identity is encoded in the last component of the
SID. Now, whenever receiving a Sign-request for a message msg from the signer (but
not from any other party), the functionality will sign msg and check that the resulting
signature σ is valid. If this is the case, σ is returned to the signer, otherwise it returns
⊥.

Upon receiving a Verify request for a message/signature pair from an arbitrary
party for a given public key, Fsig distinguishes two cases: If the submitted public key is
not the one of the signer or the signer has been corrupted, Fsig just verifies the signature
and returns the result. If the submitted public key belongs to the signer, in order to
guarantee unforgeability, Fsig only returns true if the signature is valid and the message
had been signed by the functionality before.

This basic behavior of Fsig is in line with previous definitions [KT08,Can03]. We
slightly deviate from the standard definition to allow for an elegant joint state formulation

6.5. Joint State 163

Protocol Setup:

Participating roles: signer, verifier.
Corruption model: dynamic.
Protocol parameters:

– p ∈ Z[x]. {Polynomial that bounds the runtime of algorithms provided by the adversary.

Continued in Figure 6.14...

Fig. 6.13: The ideal signature functionality Fsig.

and realization, cf. Section 6.5.2. We therefore modify the functionality such that a
party sending input to Fsig will always obtain a response (potentially ⊥ for invalid
requests), which seems convenient anyway.

6.4.2 Realizing Fsig

Similar to previous realizations of Fsig, our realization Psig is parametrized by a signature
scheme Σ = (gen, sig, ver). As we shall see, this scheme must be EUF-CMA secure
(c.f. Section 2.7).

Figure 6.15 specifies the realization Psig of Fsig. According to the two roles in
the protocol, the real protocol has the form Psig = {Msigner,Mverifier}. The protocol is
parametrized by the aforementioned signature scheme Σ = (gen, sig, ver). As can be
seen, the realization of Fsig essentially consists of executing the algorithms of Σ.

We now obtain the following theorem, the proof of which is similar to the one found
in [KT08], and therefore omitted.

Theorem 6.1. Let p be a polynomial and let Σ = (gen, sig, ver) be a digital sig-

nature scheme such that (gen(p), sig(p), ver(p)) is correct; then the protocol Psig =

{Msigner,Mverifier} realizes Isig = {Dsigner,Dverifier,Fsig} if and only if (gen(p), sig(p), ver(p))
is EUF-CMA secure.

6.5 Joint State

Composition theorems (for unbounded self-composition) state that it suffices to prove
that a real protocol realizes an ideal functionality in a single session in order to con-
clude that multiple sessions of the real protocol realize multiple sessions of the ideal
functionality. The problem is that this requires the states of the different sessions of the
protocols/functionalities to be disjoint. In particular, the random coins used in different
sessions have to be chosen independently. This, for example for digital signatures or
public-key encryption, means that a party would have to choose new key pairs for every
session, which is completely impractical.

Canetti and Rabin [CR03] therefore proposed composition theorems with joint
state, or joint state (composition) theorems for short, to solve this problem (see also
[KT08,KT09]). These theorems allow multiple protocol sessions to share common state.
For example, in a joint state realization of Fsig the signing/verification keys of one party
are used in all sessions.

164 Chapter 6. Conventions for Usable Universal Composability

...continued from Figure 6.13.
Description of Fsig:

Internal state:
– (sig, ver, pk, sk) ∈ ({0, 1}∗ ∪ {⊥})4 = (⊥,⊥,⊥,⊥). {Algorithms and key pair.
– pidowner ∈ {0, 1}∗ ∪ {⊥} = ⊥. {Party ID of the key owner.
– msglist ⊆ {0, 1}∗ = ∅. {Set of recorded messages.
– StatusSign ∈ {0, 1}∗ ∪ {⊥} = ⊥. {The signing status.

CheckIDformat{signer}: accept iff id has the form (pid , (sid1 , . . . , sidn−1 , (pid , sidn
′))).a

CheckIDformat{verifier}: accept iff id has the form (pid , (sid1 , . . . , sidn−1 , (pid ′, sidn
′))).

CheckIDformatIdeal: accept iff id has the form (sid1 , . . . , sidn−1 , (pid , sidn
′)).

Corruption behavior: LeakedData: if the signer is corrupted, return StatusSign. Otherwise
return ⊥.

Initialization:

send responsively InitMe to NET;
wait for (Init, (sig, ver , pk , sk)) from NET.
(sig, ver, pk, sk)← (sig, ver , pk , sk).
Parse id as (sid1 , . . . , sidn−1 , (pid , sidn

′)).
pidowner← pid .

MessagePreprocessing:

recv from (pid , verifier,) s.t. (pid , verifier) ∈ CorruptionSet:
reply ⊥.

{
Prevent corrupted users from verifying.
Otherwise A may be able to test if messages are in msglist.

Main:

recv InitSign from (pidowner, signer,):
StatusSign← ready.

{
Successful initialization. Note that
signer can submit InitSign multiple
times, always with the same effect.reply (InitSign, success, pk).

recv (Sign,msg) from (pidowner, signer,) s.t. StatusSign = ready:
σ ← sig(p)(msg, sk).
b← ver(p)(msg, σ, pk). {Sign and check that verification succeeds.
if σ = ⊥ ∨ b 6= true:

reply (Signature,⊥). {Signing or verification test failed.
else:

add msg to msglist.
reply (Signature, σ). {Record msg for verification and return signature.

recv (Verify,msg, σ, pk) from (pid , verifier,):
b← ver(p)(msg, σ, pk). {Verify signature.
if pk = pk ∧ b = true ∧msg /∈ msglist ∧ (pidowner, signer) 6∈ CorruptionSet:

reply (VerResult, false). {Prevent forgery.
else:

reply (VerResult, b). {Return verification result.

recv from (pid , roleF ,):
reply ⊥.

{
Default answer if request failed.
By this, uncorrupted users will always obtain a response.

a Recall that, for CheckIDformat, id does not refer to the ID of the ideal functionality
Fsig but instead refers to the ID of the dummy that executes CheckIDformat.

Fig. 6.14: The ideal signature functionality Fsig (continued). Note that AllowDummy-
Corruption? is not specified, which means that we take the default behavior for this
algorithm, i.e., it always returns true.

6.5. Joint State 165

Protocol Setup:

Participating roles: signer, verifier.
Corruption model: dynamic with erasures.
Protocol parameters:

• a signature scheme Σ = (gen, sig, ver) (which should be EUF-CMA secure).

Realization of Msigner:

Implemented role: signer.
Internal state:

– (sk, pk) ∈ ({0, 1}∗ ∪ {⊥})2 = (⊥,⊥). {Key pair.
– StatusSign ∈ {⊥, ready} = ⊥. {The signing status.

CheckIDformat: accept iff id can be parsed as (pid , (sid1 , . . . , sidn−1 , (pid , sidn
′))).

Initialization:

(sk, pk)← gen(1η).

Main:

recv InitSign from (PAR,):
StatusSign← ready.

{
Only the specified owner
in the session may
get pk or sign.reply (InitSign, success, pk).

recv (Sign,msg) from (PAR,) s.t. StatusSign = ready:
σ ← sig(msg, sk). {Sign msg, return signature.
reply (Signature, σ).

recv from (PAR,):
reply ⊥. {Error message if not initialized.

Realization of Mverifier:

Implemented role: verifier.
CheckIDformat: accept iff id can be parsed as (pid , (sid1 , . . . , sidn−1 , (pid ′, sidn

′))).
Main:

recv (Verify,msg, σ, pk) from (PAR,):
b← ver(msg, σ, pk).
reply (VerResult, b). {Verify, return result.

recv from (PAR,):
reply ⊥. {Answer all other cases with an error message.

Fig. 6.15: The realization Psig of the ideal signature protocol Isig.

In the UC and GNUC models, extensions to the frameworks are needed to properly
model joint state. Also, specific composition theorems with joint state are needed.
Conversely, such a theorem follows immediately from the general composition theorem
available in the IITM model, as shown in [KT08,KT13].

One important reason for this is that in the IITM model the addressing of machines is
not fixed a priori, but can be specified flexibly using the CheckAddress mode. In other
models, a hierarchical addressing of machines with PIDs and SIDs is hard-wired into the
models, which imposes a tree (or forest) of instances. However, a joint state realization
has to handle requests for different sessions in one session-independent instance. In
particular, the ID of an instance of the joint state realization will typically be a PID

166 Chapter 6. Conventions for Usable Universal Composability

and this instance takes care of all requests for this party in all sessions.8 Hence, this
breaks the addressing conventions, particularly, the tree structure, and thus requires
changes to the models themselves.

Another reason for the smooth treatment of joint-state in the IITM model is that
in the IITM model the composition theorems are very general. They apply to a very
broad class of protocol systems. Hardly any assumption about a real or ideal protocol
system is made (see also Section 2.5.3 and [CEK+16a]). In particular, a real protocol
can be formulated in such a way that it realizes the ideal protocol with joint state.
The composition theorems of the IITM model then still apply because the joint state
realization still belongs to the class of real protocols handled by the composition theorems
of the IITM model.

So, the responsive IITM model itself can seamlessly deal with joint state, and this
benefit is also shared by the IITM model with responsive environments [CEK+16a].
However, to facilitate the design process of protocols in the responsive IITM model,
in Section 6.2 we defined specific instantiations for real and ideal protocols, including
the CheckAddress mode that they use. These conventions are meant to be close to
common conventions for real and ideal protocols, and thus again enforce a hierarchical
addressing mechanism and a tree structure for instances. Therefore, for the same reason
mentioned before, within the class of real protocols defined according to our conventions
it is not possible to specify joint-state realizations.9

In this section, we therefore extend our conventions to also deal with joint-state
realizations. We emphasize that the class of real protocols defined by these extended
conventions is still a subclass of the general class of real protocols in the sense of the
responsive IITM model. So, still there is no need to extend or modify the responsive
IITM model itself or to prove new composition theorems, as the extended conventions
are just a specific instantiation of the responsive IITM model and the theorems proved
within this model. See [CEK+16a] for a more detailed discussion.

In what follows, we first introduce our conventions for joint-state protocols/realiza-
tions, and then present an example joint-state protocol for signatures to illustrate these
conventions.

6.5.1 Conventions for Joint-State Protocols

In what follows, we present our conventions for joint-state protocols. We first start with
the general structure of these protocols and provide an overview. We then define the
different components in detail and also introduce useful syntax to specify joint-state
protocols.

8 For example, for signatures, the joint state realization has to handle signing and verification
requests for a party pid coming from different sessions. Hence, there will be one instance of
the joint state realization per PID, rather than per PID and SID.

9 Note that typically a protocol designer would first design and prove the security of the
protocols in the hierarchical setting and only later ideal functionalities for certain primitives
will be replaced by (often already existing) joint-state realizations in order to obtain realistic
implementations. In other words, for most cryptographic tasks a protocol designer just relies
on the existence of joint-state realizations but does not have to consider joint-state herself.

6.5. Joint State 167

Structure and Overview. A joint-state protocol system is a generalization of a real
protocol system, in that instances thereof handle multiple sessions. A joint-state protocol
system consists not only of atomic real-protocols (ARPs) and/or ideal protocols (IPs),
but, importantly, also of atomic joint-state protocols (AJSPs), which in turn consist of
a collection of joint-state ITMs (JSMs). In Figure 6.17, J is a joint-state protocol, T
is an AJSP with two JSMs, i.e., T = {W1,W2}, and I and I ′ are IPs. Typically, I
and I ′ coincide up to the names of tapes. In particular, if I = {D1, . . . , Dl,F}, then
I ′ = {D′1, . . . , D′l,F ′}, where Di coincides with D′i and F with F ′ up to tape names. In
the example presented in Section 6.5.2, both IFs coincide with Isig (up to tape names).
Roughly speaking, the purpose of T is to realize multiple sessions of I in just one session
of I ′.

More precisely, let us assume that we have a higher-level protocol P which uses
I = {D1, . . . , Dl,F} (or its joint-state realization J), as its subroutine. Let us assume
that the RPM Mi describes the ith role of P . Recall that according to our conventions, if
Mi[(pid , (sid1 , . . . , sidn−1))], i.e., party pid in the ith role of session (sid1 , . . . , sidn−1),
wants to send a request to, say the jth role of its subroutine, then it sends a request
to Dj [(pid , (sid1 , . . . , sidn))], for some sidn . This request is forwarded by this dummy
instance, if not corrupted, to F [(sid1 , . . . , sidn)].

The number n of roles in T = {W1, . . . ,Wl}, i.e., the number of JSMs in such
a protocol, coincides with the number of roles (dummies) in the ideal functionality
I it is supposed to realize. As defined precisely below, the ID of an instance of
Wj is of the form (pid , sidn). This instance handles all requests for party pid in
any session (sid1 , . . . , sidn−1) of the higher-level protocol run by pid . That is, if
Mi[(pid , (sid1 , . . . , sidn−1))] (see above) sends a request to Dj [(pid , (sid1 , . . . , sidn))],
then, if I is replaced by its joint-state realization, this request is handled by Wj [(pid ,
sidn)]. Usually, Wj [(pid , sidn)] uses another ideal protocol I ′ = {D′1, . . . , D′l,F ′} as
subroutine to process this request, where I and I ′ coincide except for renamed tapes.
In such a case, Wj [(pid , sidn)] uses the dummy instance D′j [(pid , sidn)], which in turn
uses F ′[sidn]. See Figure 6.16 for an example.

Note that sidn is set by the higher-level protocol. However, I, and analogously its
joint-state realization J , might expect a certain format (specified in CheckIDformat).
For example, I/J might require sidn to be ⊥. In this case, the above means that there
is (at most) one instance Wj [(pid ,⊥)] of Wj per party pid and role j in every run.
These instances use only one instance, namely F [⊥] (and its dummies) to handle all
instances F [(sid1 , . . . , sidn−1 ,⊥)] (and their dummies) for all (sid1 , . . . , sidn−1 ,⊥).

As is clear from the above, the main difference between an RPM and a JSM is that
a JSM has to handle multiple sessions. Also, an instance of a JSM invokes a (instance
of a) subroutine with its own ID (e.g., Wj [(pid , sidn)] invokes D′j [(pid , sidn)], rather
than D′j [(pid , sidn , sidn+1)], which we would require from an RPM instance). While the
latter is not essential, the fact that one JSM instance takes care of multiple sessions is
crucial and this is the core of every joint-state realization. In the IITM model, this is
easy to model. We merely have to modify the CheckAddress mode of JSM compared
to RPMs and in the Compute store the appropriate ID.

So, for the specification of joint-state realization we have to (slightly) break out of
our conventions for RPMs. But we do not have to break out of the responsive IITM
model itself: joint-state realizations are still real protocols in the sense of the responsive

168 Chapter 6. Conventions for Usable Universal Composability

M1
id = (pid , (sid1, . . . , sidn−1))

· · ·R
M1

id = (pid , (sid ′1, . . . , sid ′n′−1))

· · ·

W1
id = (pid , sidn)

D′1
id = (pid , sidn)

F ′
id = sidn

J T

I ′

M1
id = (pid , (sid1, . . . , sidn−1))

· · ·R
M1

id = (pid , (sid ′1, . . . , sid ′n′−1))

· · ·

D1
id =
(pid , (sid1, . . . , sidn−1, sidn))

F
id = (sid1, . . . , sidn−1, sidn)

D1
id =
(pid , (sid ′1, . . . , sid ′n′−1, sidn))

F
id = (sid ′1, . . . , sid ′n′−1, sidn)

I

Fig. 6.16: Example for the dynamic structure of an (atomic) real protocol R = {M1},
which uses an ideal functionality I = {D1,F} (bottom) or its joint state realization
J = {T , I ′} (top), where T = {W1} is an atomic joint state protocol and I ′ = {D′1,F ′}
is an ideal protocol. There are two instances of M1 in different sessions, potentially with
SIDs of different lengths, which both want to talk to a subroutine whose SID extends
their own SID by sidn. If these instances send messages to I, they will access different
instances of the dummy and the ideal functionality; however, if they send messages to
the joint-state realization J , they both access the same instances of W1, the dummy
and the ideal functionality.

IITM model (see Section 2.5.3 and [CEK+16a]). In particular, the composition theorem
still applies. To obtain such theorem, other models needed to be extended, since, as
explained before, it is not possible to directly specify joint-state realizations in such
models. Also, this theorem is not a trivial consequence of the composition theorems in
these model, but required a dedicated proof.

In what follows, we define joint-state protocols and joint-state machines in more
detail.

6.5. Joint State 169

E

W1 ≡

S

W2
J

F ′

D ′1 D ′2
I′

E

F

D1 D2

IT

sid = sidn

sid = (sid1 , . . . , sidn)

Fig. 6.17: Universal composability with joint state (J ≤ I) and an example for the
usual internal structure of joint-state protocols. Here we show the strong simulatabilty
setting (which is equivalent to the UC and dummy UC settings).

Upon receiving a message m on tape t in mode CheckAddress do the following.

• If id = ⊥ (i.e., this is the first message the instance received):
– If t is the NET or a SUB tape: parse the message as m = (id ,m′) for id = (pid , sidn);

otherwise return false. Return whatever CheckIDformat(m, t, id) does.
– If t is a PAR tape: parse the message as m = ((pid , (sid1 , . . . , sidn)),m′) for some n ≥ 1;

otherwise return false. Return whatever CheckIDformat(m, t, (pid , sidn)) does.
• Else (id 6= ⊥, i.e., this is not the first message the instance received and id was set in mode

Compute before):
– If t is the NET or a SUB tape: Check if the message parses as m = (id,m′); if it does, return

true; otherwise return false.
– If t is a PAR tape: Check if the message parses as m = (id ′,m′) where id ′ =

(pid , (sid1 , . . . , sidn)) and (pid , sidn) = id; if it does, return true; otherwise return false.

Fig. 6.18: The CheckAddress mode of joint-state machines.

Atomic Joint-State Protocols. As already mentioned, an AJSP is a collection of
joint-state ITMs (JSM): we write T = {W1, . . .,Wn}. See for example Figure 6.17.
JSMs are similar to real protocol machines (RPMs), except that one instance of a JSM
is active in multiple sessions.

The identity id of a JSM instance consists of a party identity and a shortened session
identity: id = (pid , sidn). The instance is active in all sessions (sid1 , . . . , sidn). The
session identifier of subroutine instances is just sidn , rather than (sidn , sidn+1), for some
sidn+1 , as also mentioned above. The CheckAddress and Compute of JSMs are
adapted from those of RPMs accordingly; see Figures 6.18 and 6.19–6.20 for the formal
definition. As can be seen from Figures 6.19–6.20, the Compute mode coincides with
the one for RPMs, except for the handling of IDs.

Template for AJSPs. The template for ARPs in Figure 6.4 is also used for AJSPs.

Wiring. ARPs and AJSPs use the same wiring for PAR tapes and the NET tape,
however, SUB tapes are handled differently. Formally, if W is a machine in an AJSP
which has an (ideal, atomic real or atomic joint-state) protocol Q listed as subroutine,
then, for every machine M in Q, W has as many SUB tapes as it has PAR tapes and all
of them connect to a PAR tape of M . This allows W to use different tapes if different
machines in a higher level protocol activate W ; in this case for the machine M it looks

170 Chapter 6. Conventions for Usable Universal Composability

State variable id ∈ {0, 1}∗ ∪ {⊥} = ⊥. {Identity of the instance.
State variable corr ∈ {false, true,⊥} = ⊥. {Corruption status.
State variable subcorr ∈ {false, true} = false. {Consider instance corrupted?
State variable init ∈ {false, true} = false. {“Inner shell” initialized?
State variable internalState. {State of “inner shell” of instance as per template in Fig. 6.4.
State variable transcript. {Transcript of all actions of “inner shell”.

Upon receiving a message m = ((pid , sidn),m′) from the NET or a SUB tape t,
or a message m = ((pid , (sid1 , . . . , sidn)),m′) from a PAR tape t do:
if id = ⊥:

id← (pid , sidn). {Initialize identity of instance.

if corr = ⊥: {Initialize corruption status.
if t = NET ∧m′ = (SetCorruptionStatus, b): {First message sets corruption status.

corr← b ∧ AllowCorruption?(id, internalState,m).
{AllowCorruption? is only executed if b = true.

send (id, (CorruptionStatus, corr,⊥)) on NET.
else: {For all other first messages.

send responsively (id, CorruptMe?) on NET;
wait for (id, (SetCorruptionStatus, b)) on NET.
corr← b ∧ AllowCorruption?(id,⊥).

{AllowCorruption? is only executed if b = true.
if corr = true: {If corr = false: continue processing (m, t).

if t = PAR[rolehl] ∧m′ = CorruptionStatus?:
{This message is processed after the notification.

send responsively (id, (CorrStatRestricting, true, (m, t))) on NET;
wait for (id, OK) on NET. {Continue processing m.

else:
send (id, (CorruptionStatus, true, (m, t))) on NET.

else if corr = false ∧ t = NET ∧m′ = (SetCorruptionStatus, true): {Dynamic corruption.
corr← b ∧ AllowCorruption?(id, internalState,⊥).
if static corruption is specified:

corr← false.
if corr = true:

if secure erasures are possible:
send (id, (CorruptionStatus, true, internalState)) on NET.

else:
send (id, (CorruptionStatus, true, transcript)) on NET.

else:
send (id, (CorruptionStatus, false,⊥)) on NET.

else if corr = false ∧ t = NET ∧m′ = (SetCorruptionStatus, false):
{(Useless) corruption request.

send (id, (CorruptionStatus, false,⊥)) on NET.

Continued in Figure 6.20...

Fig. 6.19: The Compute mode of joint-state machines.

6.5. Joint State 171

...continued from Figure 6.19.

if t = PAR[rolehl] ∧m′ = CorruptionStatus?: {Query status questions to subroutine.
subcorr← subcorr ∨ corr ∨ DetermineCorruptionStatus((pid , (sid1 , . . . , sidn)), internalState).a

{DetermineCorruptionStatus is only executed if subcorr = corr = false.
send ((pid , (sid1 , . . . , sidn)), (CorruptionStatus, subcorr)) on t.

if corr = true: {Corrupted instances are multiplexers.
if t = PAR[rolehl]:

send (id, (par, rolehl , (sid1 , . . . , sidn),m′)) on NET.
else if t = NET ∧m′ = (par, rolehl , (sid1 , . . . , sidn),m′′):

{Note that sidn must be the same as the one in id.
send ((pid , (sid1 , . . . , sidn)),m′′) on PAR[rolehl].

else if t = SUB[rolell]:
send (id, (sub, rolell ,m

′)) on NET.
else if t = NET ∧m′ = (sub, rolell ,m

′′):
send (id,m′′) on SUB[rolell].

else: {Honest behaviour.
Append (m, t) to transcript.
if init = false:

init← true. {Initialize internal state upon first regular message.
Call Initialization(m, t, id, internalState, transcript).

Call MessagePreprocessing(m, t, id, internalState, transcript).
Call Main(m, t, id, internalState, transcript).

abort. {In case no message was sent.

a Note that DetermineCorruptionStatus not only gets id but the full prefix of the message.
Thus, it may depend on the exact session that is simulated by this single joint-state
instance.

Fig. 6.20: The Compute mode of joint-state machines (continued).

like different higher level protocols try to access it, instead of only a single machine W .
In the next paragraph, we introduce a simple syntax to use these different SUB tapes.

Additional syntax for joint-state machines. As JSMs differ from RPMs, it is
necessary to introduce additional syntax on top of what we defined in Section 6.3 for the
sending and receiving of messages by JSMs. In particular, we need different commands
for sending and receiving messages on PAR and SUB tapes, while the commands for
sending and receiving messages on NET tapes are the same. As before, the framework
takes care of the correct prefixing of messages, so as to not overburden the protocol
designer.

Additional types of receive blocks in JSMs:

• recv mpin from (PAR, sid , rolehl) s.t. 〈condition〉, if the message is to be received
from a higher-level protocol with role rolehl in session sid . So, if the higher-level
protocol sends a message of the form ((pid , (sid1 , . . . , sidn)),m′), then mpin is
matched with m′ and the local variable sid is set to (sid1 , . . . , sidn−1).

• recv mpin from (I, rolehl) s.t. 〈condition〉, if the message is to be received from
the subroutine ideal protocol I in the higher-level role rolehl ; the lower-level role is
the same as the role of this joint-state machine instance. Recall that the instance
which sent this message has, according to our conventions, the same ID as the

172 Chapter 6. Conventions for Usable Universal Composability

instance of the joint-state realization, and therefore, no ID information needs to
be provided.

Additional types of send blocks in JSMs:

• send mpout to (PAR, sid , rolehl), if the message is to be sent to a higher-level
protocol with role rolehl in the session sid . Recall that an instance of the joint-state
realization has an ID of the form (pid , sidn), but it can send message to instances of
higher-level protocols where the messages are prefixed with (pid , (sid1 , . . . , sidn)).
To do so, in the send block specified above, this means that sid is defined to be
(sid1 , . . . , sidn−1), i.e., sid denotes the SID of the higher level protocol instance.
• send mpout to (I, rolehl), if the message is to be sent to the subroutine ideal

protocol I in the higher-level role rolehl ; again, the lower-level role is the same
as the role of this joint-state machine instance and the IDs of the instance of the
joint-state machine and the instance of the subroutine coincide, so this information
does not have be mentioned in the send block.

6.5.2 Joint State Realization of Signatures

We now construct a joint-state realization Jsig of the signature ideal functionality Isig.
The joint state protocol Jsig consists of an AJSP Tsig and another copy I ′sig of the
signature ideal functionality: Jsig = {Tsig, I ′sig}. Further, the AJSP Tsig consists of two
JSMs: Wsigner and Wverifier, corresponding to the two roles in I ′sig.

Recall that there is one instance of Isig per sid = (sid1 , . . . , sidn) in the ideal world,
but only one instance of I ′sig per sidn in the joint-state world. The AJSP Tsig acts as an
adapter so that one instance of I ′sig can emulate multiple instances of Isig. The rough
idea of the construction of Tsig is that if Tsig receives a message x to be signed or verified,
it forwards (sid , x) to I ′sig, instead of just x, thereby binding the SID to the signature,
and hence preventing that signatures generated in one session can be successfully used
in another session (otherwise, one could easily distinguish the joint-state protocol from
the ideal protocol since the ideal protocol can not share state between sessions). We
provide the formal construction of Tsig in Figures 6.21–6.22.

Theorem 6.2. For every polynomial p′, there is a polynomial p such that the joint-state
protocol Jsig = {Tsig, I ′sig} (where I ′sig uses the polynomial p′ to bound the runtime of
externally provided algorithms) realizes Isig (where Isig uses the polynomial p to bound
the runtime of externally provided algorithms), i.e.,

Jsig = {Tsig, I ′sig} = {{Wsigner,Wverifier}, I ′sig} ≤ Isig.

The proof of the above theorem is straightforward and therefore omitted.
By the construction of Jsig: in every run of Jsig, for every pid and sidn

′, we have
at most one instance of Wsigner[(pid, (pid , sidn

′))] but potentially several instances of
Wverifier[(pid

′, (pid , sidn
′))], one for each pid ′. These instances use F ′sig[(pid , sidn

′)] to

handle all requests in sessions (sid1 , . . . , sidn−1 , (pid , sidn
′)) of Isig. In particular, there

is only one key pair generated for each pair (pid , sidn
′) in the joint state world, while

there is a new key pair in the ideal world for every session (sid1 , . . . , sidn−1 , (pid , sidn
′)).

6.5. Joint State 173

Protocol Setup:

Participating roles: signer, verifier.
Corruption model: dynamic with erasures.

Realization of the joint state machine Wsigner for the signer role:

Implemented role: signer.
Subroutines: Isig from Figure 6.13, denoted I′sig.
Internal state:

– lastSid ∈ {0, 1}∗ ∪ {⊥} = ⊥. {The sid of the last message from PAR.
– initedSids ⊂ {0, 1}∗ ∪ {⊥} = ∅. {List of sids that completed initialization.

CheckIDformat: accept iff id has the form (pid , (pid , sidn
′)).a

Corruption behavior: AllowCorruption? and DetermineCorruptionStatus:
return corr(I′sig, signer).

Main:
recv InitSign from (PAR, sid , rolehl) s.t. lastSid = ⊥:

lastSid← sid .
send InitSign to (I′sig, rolehl).

{
Fsig will respond consistently
in case of duplicate queries.

recv (InitSign, success, pk) from (I′sig, rolehl) s.t. lastSid 6= ⊥:
Insert lastSid into initedSids.
(lastsid , lastSid)← (lastSid,⊥).
send (InitSign, success, pk) to (PAR, lastsid , rolehl).

recv (Sign, x) from (PAR, sid , rolehl) s.t. lastSid = ⊥ ∧ sid ∈ initedSids:
lastSid← sid .
send (Sign, (sid , x)) to (I′sig, rolehl). {Prepend sid to message.

recv (Signature, σ) from (I′sig, rolehl) s.t. lastSid 6= ⊥:
(lastsid , lastSid)← (lastSid,⊥).
send (Signature, σ) to (PAR, lastsid , rolehl).

recv from (PAR, sid , rolehl) s.t. lastSID = ⊥:
{

Handle malformed messages
or sign requests if uninitialized.

lastSid← sid .
send ⊥ to (I′sig, rolehl). {Fsig might initialize.

recv ⊥ from (I′sig, rolehl) s.t. lastSid 6= ⊥:
(lastsid , lastSid)← (lastSid,⊥).
send ⊥ to (PAR, lastsid , rolehl).

a Recall that by the CheckAddress mode of JSMs id is of the form (pid , sidn). Now,
CheckIDformat additionally imposes the structure (pid , sidn

′) on sidn .

Continued in Figure 6.22...

Fig. 6.21: The atomic joint state protocol Tsig in the joint state realization for Isig.

Hence, if Isig is used by some higher level protocol and one would replace Isig by its
realization Psig (the composition theorems allow one to do this), then this would typically
yield a completely impractical realization. If the higher level uses Jsig instead and in
Jsig one replaced I ′sig by its realization (also Psig but with tapes renamed), then this
would yield a realistic realization.

As already mention in Section 6.4, Isig requires sidn to be of the form (pid , sidn
′)

instead of just pid because this way a higher-level protocol can handle different keys
used for different purposes by the same pid : The SID sidn

′ might for example be a
domain name (e.g., www.example.com or subdomain.example.com) or a protocol name

174 Chapter 6. Conventions for Usable Universal Composability

...continued from Figure 6.21.
Realization of the joint state machine Wverifier for the verifier role:

Implemented role: verifier.
Subroutines: Isig from Figure 6.13, denoted I′sig.

CheckIDformat: accept iff id has the form (pid , (pid ′, sidn
′)).

Corruption behavior: AllowCorruption? and DetermineCorruptionStatus:
return corr(I′sig, verifier).

Internal state:
– lastSid ∈ {0, 1}∗ ∪ {⊥} = ⊥. {The sid of the last message from PAR.

Main:
recv (Verify, x, σ, pk) from (PAR, sid , rolehl) s.t. lastSid = ⊥:

lastSid← sid .
send (Verify, (sid , x), σ, pk) to (I′sig, rolehl). {Prepend sid to message.

recv (VerResult, b) from (I′sig, rolehl) s.t. lastSid 6= ⊥:
(lastsid , lastSid)← (lastSid,⊥).
send (VerResult, b) to (PAR, lastsid , rolehl).

recv from (PAR, sid , rolehl) s.t. lastSID = ⊥: {Handle malformed messages.
lastSid← sid .
send ⊥ to (I′sig, rolehl). {Fsig might initialize.

recv ⊥ from (I′sig, rolehl) s.t. lastSid 6= ⊥:
(lastsid , lastSid)← (lastSid,⊥).
send ⊥ to (PAR, lastsid , rolehl).

Fig. 6.22: The atomic joint state protocol Tsig in the joint state realization for Isig

(continued).

(TLS or SSH), and the party uses different keys for different domains and different keys
for different protocols. So, in the joint state realization Jsig uses one instance of Fsig for
every party pid and domain only, while in the ideal world there is an instance of Fsig

for every party pid , domain, and every SID.

7

Concluding Remarks

In this thesis we studied the design of practical and secure protocols. We now briefly
discuss a number of open problems which we did not cover.

We designed a (sub-)protocol for arithmetic circuit evaluation in which one can
securely employ an output from the circuit as an input to another (sub-)protocol and vice-
versa, by using commitments and zero-knowledge proofs. Our solution requires separate
commitments to the value being shared in both sub-protocols. To further improve
efficiency, it would be desirable for the sub-protocols to share the same commitments,
unfortunately the UC model does not allow this. Future work should design better UC
functionalities that allow such sharing. Furthermore, even if our protocol is the fastest of
its kind, in many real-world applications one needs protocols with even shorter runtime:
achieving better efficiency, especially for devices with limited computational capabilities,
is therefore another good future research direction.

The design techniques we used in our 2-server TPASS protocol were specific to two
parties (or a small number of parties). However, those techniques are not tailored to
protocols with a large number of parties, and providing techniques for the design of
practical protocols of this kind is an open problem. As a starting point, we suggest
improving the multi-server TPASS protocol of Camenisch et al. [CLLN14] to be resistant
against adaptive/transient corruptions.

In the area of modeling imperfectly erasable memory, we did not model all types
of memory that appear in practice. We believe it would be interesting to expand the
modeling of those memories, for example, by modeling multi-use memory, i.e., memory
that can be overwritten; and modeling adaptive leakage, i.e., memory that can leak
multiple times. Other interesting tasks are a systematic study of the best possible
protocols that realize perfectly erasable memory in different settings.

We proposed conventions for writing protocols in a flexible and convenient manner
in the responsive IITM model. Future work should provide a library of common
functionalities in the framework, which could be cherry-picked as needed when designing
higher-level protocols, provide writing conventions for formulating simulators and security
proofs, and extend the conventions to global setup.

Throughout the development of this thesis, we were surprised that cryptographic
protocol design and proof is still a largely manual process. Protocol design shares some

176 Chapter 7. Concluding Remarks

similarities with software engineering, except for the absence of tools one has come to
expect in the latter. Even if the design of a practical automatic proof creator or checker
seems out of immediate reach, we believe that the development of simple tools will
be of tremendous help for further protocol design. For example, it would be useful,
given their description using our conventions of Chapter 6, to be able to actually run a
protocol on the one hand, and an ideal functionality with a simulator on the other hand.
Thereby protocol designers could write automated unit tests to see if the two actually
produce identical (or indistinguishable) output for a particular distinguishing strategy,
thus freeing them for manually performing this tedious task.

References

AMQR15. Dirk Achenbach, Jörn Müller-Quade, and Jochen Rill. Universally composable
firewall architectures using trusted hardware. Cryptology ePrint Archive, Report
2015/099, 2015. http://eprint.iacr.org/.

BBCM95. Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Ueli M. Maurer. Gener-
alized privacy amplification. IEEE Transactions on Information Theory, 41(6):1915–
1923, 1995.

BCC+11. S. Babbage, D. Catalano, C. Cid, B. de Weger, O. Dunkelman, C. Gehrmann,
L. Granboulan, T. Güneysu, J. Hermans, T. Lange, A. Lenstra, C. Mitchell,
M. Näslund, P. Nguyen, C. Paar, K. Paterson, J. Pelzl, T. Pornin, B. Preneel,
C. Rechberger, V. Rijmen, M. Robshaw, A. Rupp, M. Schläffer, S. Vaudenay,
F. Vercauteren, and M. Ward. ECRYPT II Yearly Report on Algorithms and
Keysizes, 2011.

BCL+05. Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure
computation without authentication. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 361–377. Springer, August 2005.

BDN+11. W. E. Burr, D. F. Dodson, E. M. Newton, R. A. Perlner, W. T. Polk, S. Gupta,
and E. A. Nabbus. Electronic authentication guideline. NIST Special Publication
800-63-1, 2011.

BDOZ11. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 169–188. Springer, May
2011.

Ber05. Daniel J Bernstein. Cache-timing attacks on aes, 2005.
BH93. Donald Beaver and Stuart Haber. Cryptographic protocols provably secure against

dynamic adversaries. In Rainer A. Rueppel, editor, EUROCRYPT’92, volume 658
of LNCS, pages 307–323. Springer, May 1993.

BIB89. Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing
in constant number of rounds of interaction. In Piotr Rudnicki, editor, 8th ACM
PODC, pages 201–209. ACM, August 1989.

BJKS03. John Brainard, Ari Juels, Burton S. Kaliski Jr., and Michael Szydlo. A new
two-server approach for authentication with short secrets. In Proceedings of the
12th USENIX Security Symposium (SECURITY 2003), pages 201–214, Washington,
DC, USA, August 5–9, 2003. USENIX Association.

http://eprint.iacr.org/

178 References

BJSL11. Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and Yanbin Lu. Password-
protected secret sharing. In Yan Chen, George Danezis, and Vitaly Shmatikov,
editors, ACM CCS 11, pages 433–444. ACM Press, October 2011.

BM84. G. R. Blakley and Catherine Meadows. Security of ramp schemes. In G. R. Blakley
and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 242–268.
Springer, August 1984.

BPW07. M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (RSIM)
framework for asynchronous systems. Information and Computation, 205(12):1685–
1720, 2007.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73.
ACM Press, November 1993.

Can00. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.

iacr.org/2000/067.
Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

Can03. Ran Canetti. Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239, 2003. http://eprint.iacr.org/

2003/239.
CC06. Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and

secure multi-party computations over small fields. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 521–536. Springer, August 2006.

CCGS10. Jan Camenisch, Nathalie Casati, Thomas Groß, and Victor Shoup. Credential
authenticated identification and key exchange. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 255–276. Springer, August 2010.

CCS09. Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption
scheme secure against key dependent chosen plaintext and adaptive chosen cipher-
text attacks. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 351–368. Springer, April 2009.

CDH+00. Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai.
Exposure-resilient functions and all-or-nothing transforms. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 453–469. Springer, May 2000.

CDN01. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation
from threshold homomorphic encryption. In Birgit Pfitzmann, editor, EURO-
CRYPT 2001, volume 2045 of LNCS, pages 280–299. Springer, May 2001.

CDPW07. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, February 2007.

CEGL08a. Ran Canetti, Dror Eiger, Shafi Goldwasser, and Dah-Yoh Lim. How to protect
yourself without perfect shredding. In Luca Aceto, Ivan Damg̊ard, Leslie Ann
Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 511–523. Springer, July
2008.

CEGL08b. Ran Canetti, Dror Eiger, Shafi Goldwasser, and Dah-Yoh Lim. How to protect
yourself without perfect shredding. Cryptology ePrint Archive, Report 2008/291,
2008. http://eprint.iacr.org/2008/291.

CEK+16a. Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and Daniel
Rausch. Universal composition with responsive environments. Cryptology ePrint
Archive, Report 2016/034, 2016. http://eprint.iacr.org/2016/034.

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2003/239
http://eprint.iacr.org/2003/239
http://eprint.iacr.org/2008/291
http://eprint.iacr.org/2016/034

References 179

CEK+16b. Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, Daniel Rausch,
and Oana Ciobotaru. Universal composability—conventions for complete and
unambiguous protocol specifications. In submission, 2016.

CES13. Jan Camenisch, Robert R. Enderlein, and Victor Shoup. Practical and employable
protocols for UC-secure circuit evaluation over Zn. In Jason Crampton, Sushil
Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages
19–37. Springer, September 2013.

CF01. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, August
2001.

CGH98. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited (preliminary version). In 30th ACM STOC, pages 209–218. ACM Press,
May 1998.

CHK05a. Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-secure, non-interactive
public-key encryption. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS,
pages 150–168. Springer, February 2005.

CHK+05b. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie.
Universally composable password-based key exchange. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer, May 2005.

CKL06. Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of univer-
sally composable two-party computation without set-up assumptions. Journal of
Cryptology, 19(2):135–167, April 2006.

CKS11. Jan Camenisch, Stephan Krenn, and Victor Shoup. A framework for practical
universally composable zero-knowledge protocols. In Dong Hoon Lee and Xiaoyun
Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 449–467. Springer,
December 2011.

CLLN14. Jan Camenisch, Anja Lehmann, Anna Lysyanskaya, and Gregory Neven. Memento:
How to reconstruct your secrets from a single password in a hostile environment.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume
8617 of LNCS, pages 256–275. Springer, August 2014.

CLN12. Jan Camenisch, Anna Lysyanskaya, and Gregory Neven. Practical yet universally
composable two-server password-authenticated secret sharing. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 525–536. ACM Press,
October 2012.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In 34th ACM STOC,
pages 494–503. ACM Press, May 2002.

CR03. Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, August
2003.

CS97. J. Camenisch and M. Stadler. Proof Systems for General Statements about Discrete
Logarithms. Institute for Theoretical Computer Science, ETH Zürich, Tech. Rep.,
260, 1997.

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 13–25. Springer, August 1998.

CS99. Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA
assumption. In ACM CCS 99, pages 46–51. ACM Press, November 1999.

CS03. Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 126–144. Springer, August 2003.

180 References

CW79. Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput.
Syst. Sci., 18(2):143–154, 1979.

DCFIJ99. Giovanni Di Crescenzo, Niels Ferguson, Russell Impagliazzo, and Markus Jakobsson.
How to forget a secret. In STACS 99, pages 500–509. Springer, 1999.

DFK+06. Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.
Unconditionally secure constant-rounds multi-party computation for equality, com-
parison, bits and exponentiation. In Shai Halevi and Tal Rabin, editors, TCC 2006,
volume 3876 of LNCS, pages 285–304. Springer, March 2006.

DG03. Mario Di Raimondo and Rosario Gennaro. Provably secure threshold password-
authenticated key exchange. In Eli Biham, editor, EUROCRYPT 2003, volume
2656 of LNCS, pages 507–523. Springer, May 2003.

DJ03. Ivan Damg̊ard and Mads Jurik. A length-flexible threshold cryptosystem with
applications. In Reihaneh Safavi-Naini and Jennifer Seberry, editors, ACISP 03,
volume 2727 of LNCS, pages 350–364. Springer, July 2003.

DK10. Ivan Damg̊ard and Marcel Keller. Secure multiparty AES. In Radu Sion, editor,
FC 2010, volume 6052 of LNCS, pages 367–374. Springer, January 2010.

DKL+12. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P.
Smart. Implementing AES via an actively/covertly secure dishonest-majority MPC
protocol. In Ivan Visconti and Roberto De Prisco, editors, SCN 12, volume 7485 of
LNCS, pages 241–263. Springer, September 2012.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. Practical covertly secure MPC for dishonest majority - or: Breaking
the SPDZ limits. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors,
ESORICS 2013, volume 8134 of LNCS, pages 1–18. Springer, September 2013.

DN03. Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient multiparty
computation from threshold homomorphic encryption. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 247–264. Springer, August 2003.

DO10a. Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishonest majority:
From passive to active security at low cost. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 558–576. Springer, August 2010.

DO10b. Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishonest majority:
from passive to active security at low cost. Cryptology ePrint Archive, Report
2010/318, 2010. http://eprint.iacr.org/2010/318.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662.
Springer, August 2012.

DY05. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with
short proofs and keys. In Serge Vaudenay, editor, PKC 2005, volume 3386 of LNCS,
pages 416–431. Springer, January 2005.

EMC. EMC Corporation. RSA distributed credential protection. http://www.emc.com/

security/rsa-distributed-credential-protection.htm.
FK00. Warwick Ford and Burton S. Kaliski Jr. Server-assisted generation of a strong secret

from a password. In 9th IEEE International Workshops on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WETICE 2000), pages 176–180,
Gaithersburg, MD, USA, June 4–16, 2000. IEEE Computer Society.

FY92. Matthew K. Franklin and Moti Yung. Communication complexity of secure com-
putation (extended abstract). In 24th ACM STOC, pages 699–710. ACM Press,
May 1992.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

http://eprint.iacr.org/2010/318
http://www.emc.com/security/rsa-distributed-credential-protection.htm
http://www.emc.com/security/rsa-distributed-credential-protection.htm

References 181

GMT. Peter Gaži, Ueli Maurer, and Björn Tackmann. Manuscript.
GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game

or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

Gol01. Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge University
Press, 2001. Cambridge Books Online.

Gos12. Jeremi M. Gosney. Password cracking HPC. Passwordsˆ12 Conference, 2012.
Gut96. Peter Gutmann. Secure deletion of data from magnetic and solid-state memory. In

Proceedings of the Sixth USENIX Security Symposium, San Jose, CA, volume 14,
1996.

HJKY95. Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive
secret sharing or: How to cope with perpetual leakage. In Don Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 339–352. Springer, August 1995.

HLP15. Carmit Hazay, Yehuda Lindell, and Arpita Patra. Adaptively secure computation
with partial erasures. Cryptology ePrint Archive, Report 2015/450, 2015. http:

//eprint.iacr.org/2015/450.
Hof11. Dennis Hofheinz. Possibility and impossibility results for selective decommitments.

Journal of Cryptology, 24(3):470–516, July 2011.
HS11. Dennis Hofheinz and Victor Shoup. GNUC: A new universal composability frame-

work. Cryptology ePrint Archive, Report 2011/303, 2011. http://eprint.iacr.

org/2011/303.
HS15. Dennis Hofheinz and Victor Shoup. GNUC: A new universal composability frame-

work. Journal of Cryptology, 28(3):423–508, July 2015.
IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation

with no honest majority. Cryptology ePrint Archive, Report 2008/465, 2008.
http://eprint.iacr.org/2008/465.

IPS09. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation
with no honest majority. In Omer Reingold, editor, TCC 2009, volume 5444 of
LNCS, pages 294–314. Springer, March 2009.

Jab01. David P. Jablon. Password authentication using multiple servers. In David Naccache,
editor, CT-RSA 2001, volume 2020 of LNCS, pages 344–360. Springer, April 2001.

JKK14. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-
protected secret sharing and T-PAKE in the password-only model. In Palash Sarkar
and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
233–253. Springer, December 2014.

JL00. Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptog-
raphy: Introducing concurrency, removing erasures. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 221–242. Springer, May 2000.

JL09. Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function
with applications to adaptive OT and secure computation of set intersection. In
Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 577–594. Springer,
March 2009.

JS07. Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation
on committed inputs. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of
LNCS, pages 97–114. Springer, May 2007.

Kah96. David Kahn. The Codebreakers: The comprehensive history of secret communication
from ancient times to the internet. Simon and Schuster, 1996.

KL15. Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC
Press, 2015.

KMTG05. Jonathan Katz, Philip D. MacKenzie, Gelareh Taban, and Virgil D. Gligor. Two-
server password-only authenticated key exchange. In John Ioannidis, Angelos

http://eprint.iacr.org/2015/450
http://eprint.iacr.org/2015/450
http://eprint.iacr.org/2011/303
http://eprint.iacr.org/2011/303
http://eprint.iacr.org/2008/465

182 References

Keromytis, and Moti Yung, editors, ACNS 05, volume 3531 of LNCS, pages 1–16.
Springer, June 2005.

Kre12. S. Krenn. Bringing Zero-Knowledge Proofs of Knowledge to Practice. PhD thesis,
Université de Fribourg, 2012.

KshS12. Benjamin Kreuter, abhi shelat, and Chih hao Shen. Billion-gate secure computation
with malicious adversaries. Cryptology ePrint Archive, Report 2012/179, 2012.
http://eprint.iacr.org/2012/179.

KT08. Ralf Kuesters and Max Tuengerthal. Joint state theorems for public-key encryption
and digital signature functionalities with local computation. Cryptology ePrint
Archive, Report 2008/006, 2008. http://eprint.iacr.org/2008/006.

KT09. Ralf Küsters and Max Tuengerthal. Computational soundness for key exchange
protocols with symmetric encryption. In Ehab Al-Shaer, Somesh Jha, and Angelos D.
Keromytis, editors, ACM CCS 09, pages 91–100. ACM Press, November 2009.

KT13. Ralf Kuesters and Max Tuengerthal. The IITM model: a simple and expressive
model for universal composability. Cryptology ePrint Archive, Report 2013/025,
2013. http://eprint.iacr.org/2013/025.

Kue06. Ralf Kuesters. Simulation-based security with inexhaustible interactive turing
machines. Cryptology ePrint Archive, Report 2006/151, 2006. http://eprint.

iacr.org/2006/151.
Lim08. Dah-Yoh Lim. The paradigm of partial erasures. PhD thesis, Massachusetts Institute

of Technology, 2008.
LP07. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party

computation in the presence of malicious adversaries. In Moni Naor, editor,
EUROCRYPT 2007, volume 4515 of LNCS, pages 52–78. Springer, May 2007.

LPS08. Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. Implementing two-party
computation efficiently with security against malicious adversaries. In Rafail
Ostrovsky, Roberto De Prisco, and Ivan Visconti, editors, SCN 08, volume 5229 of
LNCS, pages 2–20. Springer, September 2008.

Mau02. Ueli M. Maurer. Indistinguishability of random systems. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 110–132. Springer, April / May
2002.

Mau10. Ueli Maurer. Constructive cryptography - a primer (invited paper). In Radu Sion,
editor, FC 2010, volume 6052 of LNCS, page 1. Springer, January 2010.

Mau11a. Ueli Maurer. Constructive cryptography – a new paradigm for security definitions
and proofs. In Theory of Security and Applications (TOSCA 2011), volume 6993
of Lecture Notes in Computer Science, pages 33–56. Springer-Verlag, April 2011.

Mau11b. Ueli Maurer. Constructive Cryptography - A New Paradigm for Security Definitions
and Proofs. In Sebastian Mödersheim and Catuscia Palamidessi, editors, TOSCA
2011, volume 6993 of LNCS, pages 33–56. Springer, 2011.

MR11. Ueli Maurer and Renato Renner. Abstract cryptography. In Bernard Chazelle,
editor, ICS 2011, pages 1–21. Tsinghua University Press, January 2011.

MSJ02. Philip D. MacKenzie, Thomas Shrimpton, and Markus Jakobsson. Threshold
password-authenticated key exchange. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 385–400. Springer, August 2002.

Nie03. J. B. Nielsen. On Protocol Security in the Cryptographic Model. PhD thesis, BRICS,
Computer Science Department, University of Aarhus, 2003.

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 681–700. Springer, August 2012.

http://eprint.iacr.org/2012/179
http://eprint.iacr.org/2008/006
http://eprint.iacr.org/2013/025
http://eprint.iacr.org/2006/151
http://eprint.iacr.org/2006/151

References 183

NO09. Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.
In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 368–386.
Springer, March 2009.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages
223–238. Springer, May 1999.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS,
pages 129–140. Springer, August 1992.

Plo60. Morris Plotkin. Binary codes with specified minimum distance. Information Theory,
IRE Transactions on, 6(4):445–450, 1960.

PM99. Niels Provos and David Mazières. A future-adaptable password scheme. In USENIX
Annual Technical Conference, FREENIX Track, pages 81–91. USENIX, 1999.

PSSW09. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure
two-party computation is practical. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 250–267. Springer, December 2009.

PW00. Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation
of secure reactive systems. In S. Jajodia and P. Samarati, editors, ACM CCS 00,
pages 245–254. ACM Press, November 2000.

PW01. Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In 2001 IEEE Symposium on
Security and Privacy, pages 184–200. IEEE Computer Society Press, May 2001.

RBC13. Joel Reardon, David A. Basin, and Srdjan Capkun. SoK: Secure data deletion. In
2013 IEEE Symposium on Security and Privacy, pages 301–315. IEEE Computer
Society Press, May 2013.

RCB12. Joel Reardon, Srdjan Capkun, and David Basin. Data node encrypted file system:
Efficient secure deletion for flash memory. In Proceedings of the 21st USENIX
conference on Security symposium, pages 17–17. USENIX Association, 2012.

RRBC13. Joel Reardon, Hubert Ritzdorf, David A. Basin, and Srdjan Capkun. Secure data
deletion from persistent media. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 13, pages 271–284. ACM Press, November 2013.

Sho01. Victor Shoup. A proposal for an ISO standard for public key encryption. Cryptology
ePrint Archive, Report 2001/112, 2001. http://eprint.iacr.org/2001/112.

Sho04. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/

2004/332.
Sin11. Simon Singh. The code book: the science of secrecy from ancient Egypt to quantum

cryptography. Anchor, 2011.
SK05. Michael Szydlo and Burton S. Kaliski Jr. Proofs for two-server password authen-

tication. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages
227–244. Springer, February 2005.

Wik04. Douglas Wikström. A universally composable mix-net. In Moni Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 317–335. Springer, February 2004.

WJ79. S. S. Wagstaff Jr. Greatest of the Least Primes in Arithmetic Progressions Having
a Given Modulus. Mathematics of Computation, 33(147):pp. 1073–1080, 1979.

Yee94. Bennet Yee. Using secure coprocessors. PhD thesis, CMU, 1994.
YT95. Bennet Yee and J Doug Tygar. Secure coprocessors in electronic commerce appli-

cations. In Proceedings of The First USENIX Workshop on Electronic Commerce,
New York, New York, 1995.

http://eprint.iacr.org/2001/112
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

184 References

Appendix

A

Formal Definition of Ideal Functionalities

In this appendix, we recall the definition of the ideal functionalities we use as subroutines
in our realizations, namely: the common reference string ideal functionality (FDcrs), the
ideal functionalities for authenticated channels (Fac) and for one-sided–authenticated
channels (Fosac), and the special ideal functionality for zero-knowledge proofs of existence
for one verifier (Fgzk) and two verifiers (F2v

gzk). We adapted some of the functionalities
to suit the needs of our protocols.

A.1 Common Reference Strings FD
crs

Here we describe the ideal functionality for common reference strings FDcrs for a distribu-

tion D. Recall that we make use of two distributions in this thesis: FG3

crs outputs a CRS
uniformly distributed over G3 and Fgzk

crs outputs a CRS according to the distribution
required by Camenisch et al.’s protocol π for zero-knowledge proofs of existance [CKS11].
The structure of FDcrs is the same as what is defined in Canetti’s UC paper [Can00].

Interfaces. FDcrs is a two-interface system:

• The network interface, connected to the ideal adversary/simulator.
• The U-interface, connected to the ideal peers of all the parties. This interface is

multiplexed; we assume that headers are added to all messages to enable proper
routing.

State. The ideal functionality is stateful and maintains the following data structures:

• Seen: a subset of {0, 1}∗. Keeps track of which messages were accepted.
• x : the stored CRS, initially x = ⊥.

We model the single-session variant of FDcrs, the session ID sid = sid is thus fixed.

Reacting to messages. FDcrs reacts to messages as follows.

1. Receive 〈GetCRS:pid , sid〉 on U (from a party pid),
such that {“GetCRS:pid”} ∩ Seen = ∅:

188 Appendix A. Formal Definition of Ideal Functionalities

Insert “GetCRS:pid” into Seen.
If x = ⊥, then randomly choose x according to distribution D.
Send 〈GetCRS:pid , sid , x 〉 on network.

2. Receive 〈Deliver:pid , sid〉 on network,
such that {“Deliver:pid”} ∩ Seen = ∅
and {“GetCRS:pid”} ⊂ Seen:

Insert “Deliver:pid” into Seen.
Send 〈Deliver:pid , sid , x 〉 on U (to party pid).

A.2 Authenticated Channels Fac

Here we describe the ideal functionality for single-use authenticated channels Fac. The
structure is the same as the one defined in Hofheinz and Shoup’s GNUC paper [HS11].

Interfaces. Fac is a three-interface system:

• The network interface, connected to the ideal adversary/simulator.
• The P-interface, connected to the ideal peer of the sender.
• The Q-interface, connected to the ideal peer of the receiver.

State. The ideal functionality is stateful and maintains the following data structures:

• Seen: a subset of {0, 1}∗. Keeps track of which messages were accepted.
• x : the message that is to be sent, where x ∈ {0, 1}∗.

We model the single-session variant of Fac, the session ID sid = sid is thus fixed.

Reacting to messages. Fac reacts to messages as follows.

1. Receive 〈Send, sid , x〉 on P ,
such that {“Send”} ∩ Seen = ∅:

Insert “Send” into Seen.
Store the message: x ← x.
Send 〈Send, sid , x 〉 on network.

2. Receive 〈Ready, sid〉 on Q ,
such that {“Ready”} ∩ Seen = ∅:

Insert “Ready” into Seen.
Send 〈Ready, sid〉 on network.

3. Receive 〈Done, sid〉 on network,
such that {“Done”} ∩ Seen = ∅
and {“Send”, “Ready”} ⊂ Seen:

Insert “Done” into Seen.
Send 〈Done, sid〉 on P.

A.3. One-Sided–Authenticated Channels Fosac 189

4. Receive 〈Deliver, sid〉 on network,
such that {“Deliver”} ∩ Seen = ∅
and {“Send”, “Ready”} ⊂ Seen:

Insert “Deliver” into Seen.
Send 〈Deliver, sid , x 〉 on Q.

5. Receive 〈Corrupt:R, sid〉 on network,
where R ∈ {P,Q} ,
such that {“Corrupt:R”} ∩ Seen = ∅:

Insert “Corrupt:R” into Seen.
Send 〈Corrupt:R, sid〉 on R.

6. Receive 〈Reset, sid , x〉 on network,
such that {“Reset”} ∩ Seen = ∅
and {“Corrupt:P”} ⊂ Seen:

Insert “Reset” into Seen.
Store a new message: x ← x.
Send 〈Reset, sid〉 on network.

A.3 One-Sided–Authenticated Channels Fosac

Here we describe our ideal functionality for multi-use one-sided–authenticated channels
Fosac. The structure is similar to the regular Fac with the obvious extensions for
multi-use, but we added an additional Hijack instruction to model the fact that the first
message from the user is not authenticated.

Interfaces. Fosac is a three-interface system:

• The network interface, connected to the ideal adversary/simulator.
• The U-interface, connected to the ideal peers of the users. This interface is

multiplexed; we assume that headers are added to all messages to enable proper
routing.

• The Q-interface, connected to the ideal peer of the initial receiver.

State. The ideal functionality is stateful and maintains the following data structures:

• Seen: a subset of {0, 1}∗. Keeps track of which messages were accepted.
• xc: an associative array between an integer and the message that is to be sent to

the server.
• xs: an associative array between an integer and the message that is to be sent to

the user.
• U : a user in the system. Keeps track of which user initiated a query. If U = A,
Fosac sends/receives messages on the network interface instead of the U -interface
as written.

We model the single-session variant of Fosac, the session ID sid = sid is thus fixed.

190 Appendix A. Formal Definition of Ideal Functionalities

Reacting to messages. Fosac reacts to messages as follows.

Message from user to server. For messages that the user sends to the server, Fosac

proceeds similarily to a multi-session Fac, except that the first message might be hijacked
by A.

1. Receive 〈Send:c:0, sid , x〉 on U (from a user pidU),
such that {“Send:c:0”} ∩ Seen = ∅:

Insert “Send:c:0” into Seen.
Store the message: xc[0]← x. Record the user: U ← pidU .
Send 〈Send:c:0, sid , x〉 on network.

2. Receive 〈Send:c:qid , sid , x〉 on U (from the user U),
where qid ∈ N∗,
such that {“Send:c:qid”} ∩ Seen = ∅,
and {“Done:c:(qid − 1)”} ⊂ Seen:

Insert “Send:c:qid” into Seen.
Store the message: xc[qid]← x.
Send 〈Send:c:qid , sid , x〉 on network.

3. Receive 〈Ready:c:0, sid〉 on Q ,
such that {“Ready:c:0”} ∩ Seen = ∅:

Insert “Ready:c:0” into Seen.
Send 〈Ready:c:0, sid〉 on network.

4. Receive 〈Ready:c:qid , sid〉 on Q ,
where qid ∈ N∗,
such that {“Ready:c:qid”} ∩ Seen = ∅,
and {“Deliver:c:(qid − 1)”} ⊂ Seen:

Insert “Ready:c:qid” into Seen.
Send 〈Ready:c:qid , sid〉 on network.

5. Receive 〈Done:c:qid , sid〉 on network,
such that {“Done:c:qid”} ∩ Seen = ∅
and {“Send:c:qid”, “Ready:c:qid”} ⊂ Seen:

Insert “Done:c:qid” into Seen.
Send 〈Done:c:qid , sid〉 on U (to the user U).

6. Receive 〈Deliver:c:qid , sid〉 on network,
such that {“Deliver:c:qid”} ∩ Seen = ∅
and {“Send”, “Ready”} ⊂ Seen:

Insert “Deliver:c:qid” into Seen.
Send 〈Deliver:c:qid , sid , xc[qid]〉 on Q.

A.3. One-Sided–Authenticated Channels Fosac 191

Message from server to user. For messages that the server sends to the user, Fosac

proceeds similarly as for a multi-session Fac, i.e., there is no hijack. The server can start
sending messages to the user only after it received the first message from the user.

7. Receive 〈Send:s:0, sid , x〉 on Q ,
such that {“Send:s:0”} ∩ Seen = ∅
and {“Deliver:c:0”} ⊂ Seen:

Insert “Send:s:0” into Seen.
Store the message: xs[0]← x.
Send 〈Send:s:0, sid , x〉 on network.

8. Receive 〈Send:s:qid , sid , x〉 on Q ,
where qid ∈ N∗,
such that {“Send:s:qid”} ∩ Seen = ∅,
and {“Done:s:(qid − 1)”} ⊂ Seen:

Insert “Send:s:qid” into Seen.
Store the message: xs[qid]← x.
Send 〈Send:s:qid , sid , x〉 on network.

9. Receive 〈Ready:s:0, sid〉 on U (from the user U),
such that {“Ready:s:0”} ∩ Seen = ∅
and {“Done:c:0”} ⊂ Seen:

Insert “Ready:s:0” into Seen.
Send 〈Ready:s:0, sid〉 on network.

10. Receive 〈Ready:s:qid , sid〉 on U (from the user U),
where qid ∈ N∗,
such that {“Ready:s:qid”} ∩ Seen = ∅,
and {“Deliver:s:(qid − 1)”} ⊂ Seen:

Insert “Ready:s:qid” into Seen.
Send 〈Ready:s:qid , sid〉 on network.

11. Receive 〈Done:s:qid , sid〉 on network,
such that {“Done:s:qid”} ∩ Seen = ∅
and {“Send:s:qid”, “Ready:s:qid”} ⊂ Seen:

Insert “Done:s:qid” into Seen.
Send 〈Done:s:qid , sid〉 on Q.

12. Receive 〈Deliver:s:qid , sid〉 on network,
such that {“Deliver:s:qid”} ∩ Seen = ∅
and {“Send”, “Ready”} ⊂ Seen:

Insert “Deliver:s:qid” into Seen.
Send 〈Deliver:s:qid , sid , xs[qid]〉 on U (to user U).

192 Appendix A. Formal Definition of Ideal Functionalities

Corruption. Fosac reacts to corruption, reset, and hijack messages as follows.

13. Receive 〈Corrupt:Q, sid〉 on network,
such that {“Corrupt:Q”} ∩ Seen = ∅:

Insert “Corrupt:Q” into Seen.
Send 〈Corrupt:Q, sid〉 on Q.

14. Receive 〈Corrupt:U , sid〉 on network,
such that {“Corrupt:U”} ∩ Seen = ∅
and {“Send:c:0”} ⊂ Seen:

Insert “Corrupt:U” into Seen.
Send 〈Corrupt:U , sid〉 on U (to the user U).

15. Receive 〈Reset:c:qid , sid , x〉 on network,
where qid ∈ N ,
such that {“Reset:c:qid”} ∩ Seen = ∅,
and {“Corrupt:U”} ⊂ Seen:

Insert “Reset:c:qid” into Seen.
Store a new message: xc[qid]← x.
Send 〈Reset:c:qid , sid〉 on network.

16. Receive 〈Reset:s:qid , sid , x〉 on network,
where qid ∈ N ,
such that {“Reset:s:qid”} ∩ Seen = ∅,
and {“Corrupt:Q”} ⊂ Seen:

Insert “Reset:s:qid” into Seen.
Store a new message: xs[qid]← x.
Send 〈Reset:s:qid , sid〉 on network.

17. Receive 〈Hijack, sid , x〉 on network,
such that {“Hijack”, “Done:c:0”, “Deliver:c:0”} ∩ Seen = ∅
and {“Send:c:0”} ⊂ Seen:

Insert “Hijack” into Seen.
Change U [qid]← A. Store a new message: xc[qid]← x.
Send 〈Hijack, sid , x〉 on network.

Runtime estimate of realization. While we do not provide a realization of this
functionality, for the purposes of estimating the efficiency, we assume that the client
does one encryption using a CCA-2 cryptosystem during initialization, and the server
one decryption. Thereafter, they use symmetric cryptography.

A.4. Zero-Knowledge Proofs of Existence for One Verifier Fgzk 193

A.4 Zero-Knowledge Proofs of Existence for One Verifier Fgzk

The functionality Fgzk is a tool which allows one to simplify the security proof of
protocols which use zero-knowledge proofs of existence. This functionality was proposed
by Camenisch, Krenn, and Shoup [CKS11]. The two major differences between Fgzk and
the traditional functionality for zero-knowledge proofs of knowledge (e.g., the one defined
by Hofheinz and Shoup [HS11] in the GNUC model) is that the former 1) does not check
its inputs and 2) does not allow the adversary to extract the witnesses quantified by ∃.

One must be careful with this functionality, since it is not intended to be used like a
regular ideal functionality. Indeed the functionality is quite useless by itself. However,
by using the special composition theorem by Camenisch, Krenn, and Shoup, one can
prove that if the Fgzk-hybrid protocol is secure against a weak class of environments
called nice environments, and the protocol is such that honest provers never try to prove
incorrect statements, then the modified protocol in which all instances of Fgzk have been
replaced by the zero-knowledge protocol π described by Camenisch, Krenn, and Shoup
is secure in the UC-sense.

In the definition here, unlike the definition of Camenisch et al., the adversary learns
the statement that was proven, i.e., authenticated (or one-sided–authenticated) channels
are sufficient in the realization of π.
Fgzk is designed to be used in a setting where adaptive corruption with erasures are

allowed; and Fgzk is parameterized by a binary predicate R :
(
x, (w ,w∃)

)
7→ {0, 1}, and

a leakage function ω : (x,w) 7→ {0, 1}∗.

Interfaces. Fgzk is a three-interface system:

• The network interface, connected to the ideal adversary/simulator.
• The P-interface, connected to the ideal peer of the prover.
• The Q-interface, connected to the ideal peer of the verifier.

State. The ideal functionality is stateful and maintains the following data structures:

• Seen: a subset of {0, 1}∗. Keeps track of which messages were accepted.
• x : the statement that is to be proven. This can be used as the first argument to

the binary predicate R.
• w : the witnesses whose knowledge is proven. This and the witnesses whose

existence is proven can be used as the second argument to the binary predicate R.

We model the single-session variant of Fgzk, the session ID sid = sid is thus fixed.

Reacting to messages. Fgzk reacts to messages as follows.

1. Receive 〈Send, sid , x, w ,w∃〉 on P ,
such that {“Send”} ∩ Seen = ∅:

Insert “Send” into Seen.
Store the instance and all witnesses quantified by : x ← x and w ← w .
Send 〈Send, sid , ω(x,w)〉 on network.

194 Appendix A. Formal Definition of Ideal Functionalities

The ideal functionality Fgzk, being gullible, does not check if the predicate holds,
i.e., if R

(
x, (w ,w∃)

)
= 1. Usually in an Fgzk-hybrid protocol, the environment

is restricted to being nice, and the honest parties never prove false statements,
so Fgzk should never see false statements.

2. Receive 〈Ready, sid〉 on Q ,
such that {“Ready”} ∩ Seen = ∅:

Insert “Ready” into Seen.
Send 〈Ready, sid〉 on network.

3. Receive 〈Lock, sid〉 on network,
such that {“Lock”} ∩ Seen = ∅
and {“Send”, “Ready”} ⊂ Seen:

Insert “Lock” into Seen.
Send 〈Lock, sid , x 〉 on network.

4. Receive 〈Done, sid〉 on network,
such that {“Done”} ∩ Seen = ∅
and {“Lock”} ⊂ Seen:

Insert “Done” into Seen.
Send 〈Done, sid〉 on P.

5. Receive 〈Deliver, sid〉 on network,
such that {“Deliver”} ∩ Seen = ∅
and {“Lock”} ⊂ Seen:

Insert “Deliver” into Seen.
Send 〈Deliver, sid , x 〉 on Q.

6. Receive 〈Corrupt:R, sid〉 on network,
where R ∈ {P,Q} ,
such that {“Corrupt:R”} ∩ Seen = ∅:

Insert “Corrupt:R” into Seen.
Send 〈Corrupt:R, sid〉 on R.

7. Receive 〈Reset, sid , x, w ,w∃〉 on network,
such that {“Reset”, “Lock”} ∩ Seen = ∅
and {“Corrupt:P”} ⊂ Seen:

Insert “Reset” into Seen.
Store the instance and all witnesses quantified by : x ← x and w ← w .
Send 〈Reset, sid〉 on network.

A.5. Zero-Knowledge Proofs of Existence for Two Verifiers F2v
gzk 195

8. Receive 〈Expose, sid〉 on network,
such that {“Expose”, “Lock”} ∩ Seen = ∅
and {“Send”, “Corrupt:P”} ⊂ Seen:

Insert “Expose” into Seen.
Send 〈Expose, sid , x ,w 〉 on network.

A.4.1 GNUC Formalism

For completeness, we provide here the formal definition of Fgzk in the GNUC formalism.
It is easy to see that the special composition theorem of Camenisch et al. still holds
despite the translation to the GNUC framework.
Fgzk is parametrized by a binary predicate x and a leakage function ω.

– send : Accept 〈send, x, wk, we〉 from U . Store the instance and all witnesses quanti-
fied by : x̄ ← x and w̄k ← wk. The ideal functionality Fgzk, being gullible, does
not check if the predicate holds. Send 〈send, ω(x,wk)〉 to A.

– ready : Accept 〈ready〉 from P. Send 〈ready〉 to A.
– lock [send ∧ ready] : Accept 〈lock〉 from A. Send 〈〉 to A.
– done [lock] : Accept 〈done〉 from A. Send 〈done〉 to U .
– deliver [lock] : Accept 〈deliver, L〉 from A, where L = ω(x̄, w̄k) ∨ [corrupt:Q].

Send 〈deliver, x̄〉 to P.
– corrupt:P : Accept a special 〈corrupt〉 message from U . Send 〈corrupt:P〉 to A

together with an invitation for the message 〈expose〉.
– corrupt:Q : Accept a special 〈corrupt〉 message from P. Send 〈corrupt:Q〉 to A.
– reset [¬lock ∧ corrupt:P] : Accept 〈reset, x, wk, we〉 from A. The ideal function-

ality Fgzk, being gullible, does not check if the predicate holds. Store the instance
and all witnesses quantified by : x̄← x and w̄k ← wk. Send 〈〉 to A.

– expose [send ∧ ¬lock ∧ corrupt:P] : Accept 〈expose〉 from A. Send 〈expose, x̄,
w̄k〉 to A.

A.5 Zero-Knowledge Proofs of Existence for Two Verifiers F2v
gzk

Our functionality F2v
gzk is very similar to Fgzk. It is intended to be used when the prover

needs to simultaneously prove the same statement to two different verifiers (and erase
the same values in both proofs). An honest execution of F2v

gzk is similar to running two
sessions of Fgzk in parallel with the same statement and with two different verifiers,
except that both sessions share a single Lock message. Of course, if the prover is
corrupted, he can prove different statements to the two verifiers.

Interfaces. F2v
gzk is a four-interface system:

• The network interface, connected to the ideal adversary/simulator.
• The U-interface, connected to the ideal peer of the prover.
• The P-interface, connected to the ideal peer of the first verifier.
• The Q-interface, connected to the ideal peer of the second verifier.

196 Appendix A. Formal Definition of Ideal Functionalities

State. The ideal functionality is stateful and maintains the following data structures:

• Seen: a subset of {0, 1}∗. Keeps track of which messages were accepted.
• xP , xQ: the statement that is to be proven. This can be used as the first argument

to the binary predicate R.
• wP ,wQ: the witnesses whose knowledge is proven. This and the witnesses whose

existence is proven can be used as the second argument to the binary predicate R.

We model the single-session variant of F2v
gzk, the session ID sid = sid is thus fixed.

Reacting to messages. F2v
gzk reacts to messages as follows.

1. Receive 〈Send:R, sid , x, w ,w∃〉 on U ,
where R ∈ {P,Q},
such that {“Send:R”} ∩ Seen = ∅:

Insert “Send:R” into Seen.
Store the instance and all witnesses quantified by : xR ← x and wR ← w .
Send 〈Send:R, sid , ω(x,w)〉 on network.

The ideal functionality F2v
gzk, being gullible, does not check if the predicate holds,

i.e., if R
(
x, (w ,w∃)

)
= 1. Usually in an F2v

gzk-hybrid protocol, the environment
is restricted to being nice, and the honest parties never prove false statements,
so F2v

gzk should never see false statements.

2. Receive 〈Ready:R, sid〉 on R ,
where R ∈ {P,Q},
such that {“Ready:R”} ∩ Seen = ∅:

Insert “Ready:R” into Seen.
Send 〈Ready:R, sid〉 on network.

3. Receive 〈Lock:R, sid〉 on network,
whereR ∈ {P,Q}∧

(
({“Send:P”, “Send:Q”, “Ready:P”, “Ready:Q”} ⊂ Seen∧xP =

xQ) ∨ (“Corrupt:U” ∈ Seen)
)
,

such that {“Lock:R”} ∩ Seen = ∅,
and {“Send:R”, “Ready:R”} ⊂ Seen:

Insert “Lock:R” into Seen.
Send 〈Lock:R, sid , xR〉 on network.

When the user is honest, we make sure here that the two protocols are synchro-
nized. This way, in the realization, the user can erase data in both protocols
simultaneously.

4. Receive 〈Done:R, sid〉 on network,
where R ∈ {P,Q} ∧

(
({“Lock:P”, “Lock:Q”} ⊂ Seen) ∨ (“Corrupt:U” ∈ Seen)

)
,

such that {“Done:R”} ∩ Seen = ∅,
and {“Lock:R”} ⊂ Seen:

A.5. Zero-Knowledge Proofs of Existence for Two Verifiers F2v
gzk 197

Insert “Done:R” into Seen.
Send 〈Done:R, sid〉 on U .

5. Receive 〈Deliver:R, sid , xR, L〉 on network,
where R ∈ {P,Q} ∧ L = ω(xR,wR) ∨ “Corrupt:R” ∈ Seen ∧(

({“Lock:P”, “Lock:Q”} ⊂ Seen) ∨ (“Corrupt:U” ∈ Seen)
)
,

such that {“Deliver:R”} ∩ Seen = ∅,
and {“Lock:R”} ⊂ Seen:

Insert “Deliver:R” into Seen.
Send 〈Deliver:R, sid , xR〉 on R.

6. Receive 〈Corrupt:T , sid〉 on network,
where T ∈ {U ,P,Q} ,
such that {“Corrupt:T ”} ∩ Seen = ∅:

Insert “Corrupt:T ” into Seen.
Send 〈Corrupt:T , sid〉 on T .

7. Receive 〈Reset:R, sid , x, w ,w∃〉 on network,
where R ∈ {P,Q} ,
such that {“Reset:R”, “Lock”} ∩ Seen = ∅,
and {“Corrupt:U”} ⊂ Seen:

Insert “Reset:R” into Seen.
Store the instance and all witnesses quantified by : xR ← x and wR ← w .
Send 〈Reset:R, sid〉 on network.

8. Receive 〈Expose:R, sid〉 on network,
where R ∈ {P,Q} ,
such that {“Expose:R”, “Lock”} ∩ Seen = ∅,
and {“Send”, “Corrupt:U”} ⊂ Seen:

Insert “Expose:R” into Seen.
Send 〈Expose:R, sid , xR,wR〉 on network.

Realization. F2v
gzk is realized by running two independent instances of the π protocol

by Camenisch, Krenn, and Shoup [CKS11]—one instance with each verifier. However,
the prover waits until he got a reply from both verifiers before erasing the witnesses and
sending out the last message in each proof instance.

Curriculum Vitae

Robert Richard Enderlein
Born on 2 July 1987 in .
Nationality: Swiss and German.

Education

–2016 Eidgenössische Technische Hochschule Zürich (ETH Zurich).
Ph.D. candidate in the Computer Science Department.

École Polytechnique Fédérale de Lausanne (EPFL).
Master of Science in Communication Systems.

Work experience

2016–

–2016 IBM Research GmbH in Zurich.
Pre-doctoral researcher in the Computer Science Department.

200 Curriculum Vitae

Refereed Publications

• J. Camenisch, R. R. Enderlein, G. Neven.
Two-Server Password-Authenticated Secret Sharing UC-Secure Against Transient
Corruptions.
PKC 2015 : 283–307.

• J. Camenisch, M. Dubovitskaya, R. R. Enderlein, A. Lehmann, G. Neven,
C. Paquin, F.-S. Preiss.
Concepts and languages for privacy-preserving attribute-based authentication.
J. Information Security and Applications 19(1): 25–44 (2014).

• J. Camenisch, R. R. Enderlein, V. Shoup.
Practical and Employable Protocols for UC-Secure Circuit Evaluation over Zn.
ESORICS 2013 : 19–37. Best student paper.

• J. Camenisch, M. Dubovitskaya, R. R. Enderlein, G. Neven.
Oblivious Transfer with Hidden Access Control from Attribute-Based Encryption.
SCN 2012 : 559–579.

• S. Obermeier, R. Schierholz, H. Hadeli, R. Enderlein, A. Hristova, T. Locher.
Secure Management of Certificates for Industrial Control Systems.
Security and Management (SAM) 2012.

Manuscripts in Submission

• J. Camenisch, R. R. Enderlein, U. Maurer.
Memory Erasability Amplification.

• J. Camenisch, R. R. Enderlein, S. Krenn, R. Küsters, D. Rausch, O. Ciobotaru.
Universal Composability—Conventions for Complete and Unambiguous Protocol
Specifications.

• J. Camenisch, R. R. Enderlein, S. Krenn, R. Küsters, D. Rausch.
Universal Composition with Responsive Environments.
Cryptology ePrint Archive 2016/034.

Book Chapters

• P. Bichsel, J. Camenisch, M. Dubovitskaya, R. R. Enderlein, S. Krenn, I. Krontiris,
A. Lehmann, G. Neven, C. Paquin, F.-S. Preiss, K. Rannenberg, A. Sabouri.
An Architecture for Privacy-ABCs.
Attribute-based Credentials for Trust : 11–78.

• P. Bichsel, J. Camenisch, M. Dubovitskaya, R. R. Enderlein, S. Krenn, A. Leh-
mann, G. Neven, F.-S. Preiss.
Cryptographic Protocols Underlying Privacy-ABCs.
Attribute-based Credentials for Trust : 79–108.

	Abstract
	Résumé
	Contents
	Acknowledgements
	Introduction
	Preliminaries
	Notation
	Indistinguishable Distributions and Ensembles
	The Decisional Diffie-Hellman (DDH) Assumption
	Cryptographic Building Blocks
	Public-Key Encryption Scheme
	Signature Scheme
	Commitment Scheme
	Pseudo-Random Generator (PRG)
	Linear Block Code (LBC)
	Ramp Secret Sharing Scheme (SSS)
	Exposure Resilient Function (ERF)
	Universal Hash Function
	All-or-Nothing Transform (AoNT)

	Composability Frameworks
	The UC Framework
	The GNUC framework
	The IITM Model with Responsive Environments
	The Constructive Cryptography (CC) Model

	Some Basic Ideal Functionalities
	Authenticated Channels
	One-sided–authenticated Channels
	Zero-knowledge Proofs of Knowledge and Existence
	Ideal Functionalities For the CRS and Random Oracle Models

	Practical Two-Party Computation of Arithmetic Circuits
	Homomorphic ``Mixed'' Trapdoor (HMT) Commitments
	A Scheme for Messages in Zn
	A Scheme over a Prime Order Group

	Our Ideal Functionality Fabb
	Informal Definition of Fabb
	Formal Definition of Fabb

	Construction
	Realizing abb
	The mul Subroutine for Multiplication of Committed Inputs
	Efficiency Considerations for the Zero-Knowledge Proofs in abb

	Additional Instructions for Fabb
	Instructions as Part of a Higher-Level Protocol
	Modifying Fabb to Add New Instructions

	Security Proof
	Main Ideas
	Security Proof
	Proof of Lemma 3.5

	Related Work and Comparison
	Efficiency Comparison
	Comments about the Efficiency of Related Work

	Example of a Useful Protocol Constructed with Fabb
	Ideal Functionality
	Construction
	Security

	Practical 2-Server Password-Authenticated Secret Sharing
	Corruption in the UC Model
	Our Ideal Functionality F2pass
	Informal Definition of F2pass
	Formal Definition of F2pass

	Our Construction of TPASS Secure Against Transient Corruptions
	High Level Approach of our TPASS Protocol
	Key Ideas of our TPASS Protocol
	Detailed Construction of 2pass
	Computational and Communication Complexity
	Comparison with Related Work

	Security Proof
	Main Ideas
	Security Proof

	Memory Erasability Amplification
	Modelling Imperfectly Erasable Memory
	Specification of the General Imperfectly Erasable Memory Resource
	Instantiations of M"426830A ,,, "526930B

	Constructing Better Memory Resources
	Admissible Converters for Constructions using Erasable Memory
	Memory Erasability Amplification
	Constructing a Large Perfectly Erasable Memory from a Small One

	New Realizations of All-or-Nothing Transforms
	AoNT from a Protocol
	Perfectly Secure AoNT Based on Matrices with Ramp Minimum Distance
	Realizing a Perfectly Secure AoNT over a Small Field by Combining AoNTs
	Computationally Secure AoNT over a Large Field from a PRG

	Conventions for Usable Universal Composability
	Templates for Real Protocols and Ideal Functionalities
	Specifying Real Protocols
	Specifying Ideal Functionalities

	Mapping Templates to ITMs
	Notation for the Formal Specification of ITMs
	Real protocols
	Ideal protocols

	Programming Language for the Templates
	An Example Functionality and its Realization: Digital Signatures
	The Ideal Functionality Fsig
	Realizing Fsig

	Joint State
	Conventions for Joint-State Protocols
	Joint State Realization of Signatures

	Concluding Remarks
	References
	Appendix
	Formal Definition of Ideal Functionalities
	Common Reference Strings
	Authenticated Channels
	One-Sided–Authenticated Channels
	Zero-Knowledge Proofs of Existence for One Verifier
	GNUC Formalism

	Zero-Knowledge Proofs of Existence for Two Verifiers

	Curriculum Vitae

