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Introduction

Cryptography is pervasive in digital communication:

Cryptography is concerned with the design of systems that 
need to resist malicious attempts to abuse them. [Goldreich]

Other uses: e-auctions, e-voting, digital cash, distributed computation.

Before provable security, schemes were regularly broken.

Even today, security often secondary to UX and costs.

→ Need for protocols that are both secure and practical.

E-banking Online shopping E-mail Social media Search engine Encyclopedia
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Provable Security

Proving large protocols secure is challenging.

Practical schemes often proven in isolation.
–Security not guaranteed if run concurrently with itself/others.

Better guarantees with composition frameworks.
–Secure in arbitrary environments.
–Modular proofs thanks to composition.
–Typically slower than protocols proven in isolation.
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Goal: Practical Protocols with Strong Security

Realistic assumptions.
No random oracles. Allow CRS.

Provably secure in arbitrary contexts.
Designed in a composition framework.

Secure against adaptive adversaries.
Real computers can be compromised at any time.

Efficient beyond PPT.
Avoid cut-and-choose, avoid generic reductions
to NP-hard problems, preserve algebraic
structure, minimize expensive operations.
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Contributions
New protocols:

–Two-party protocol for arithmetic circuits over ℤn

[CES13]. Best student paper at ESORICS 2013.
• Parties compute f(inputA, inputB). Useful sub-protocol.

–Two-server password-authenticated
secret sharing [CEN15]. Published: PKC 2015.

• Store & retrieve key with weak password. No brute-
force attack against password if 1 server corrupt.

 Improve frameworks & modelling of protocols:
–Conventions for complete and unambiguous

protocol specifications [CEKKR16].
• Framework to specify protocols concisely but precisely.

–Memory erasability amplification [CEM16].
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Memory Erasability Amplification
Erasable memory crucial for most practical adaptively secure 

protocols.

Not always available in reality:
–Computers designed to preserve data, not erase it.
–File systems don't erase deleted files; keep traces in journal.
–SSD's don't flash blocks containing overwritten data right away.

 Important to model imperfectly erasable memory.
–Attempt by [CEGL08, Lim08], but needed to change framework.

Re-use existing protocols by constructing perfect memory 
from imperfect one.

[CEGL08]: Canetti, Eiger, Goldwasser, Lim.
How to Protect Yourself without Perfect Shredding. ICALP 2008.
[Lim08]: Lim. The Paradigm of Partial Erasures. PhD thesis, MIT, 2008.
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Modeling Erasable Memory

Memory Erasability Amplification

Data ← μ
Ldat
Log:

Store μ∈Φk

Erase

Retrieve
μ

Memory can be written once.
–If multiple writes: use multiple resources.
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Modeling Erasable Memory

Memory Erasability Amplification

Data = μ
Ldat
Log:

Store μ∈Φk

Erase

Retrieve
μ
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Modeling Erasable Memory

Memory Erasability Amplification

Data = μ
Ldat
Log: e

Store μ∈Φk

Erase

Retrieve
μ

Entire memory is erased.
–For more granularity: use multiple resources.

Erasure event is logged.
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Modeling Erasable Memory

Memory Erasability Amplification

Data = μ
Ldat
Log: e, X

Event X

Environment can influence resource through events.
– Malware, adversary gets physical access, or even environmental conditions.
– Events not triggered by the adversary: otherwise no checks & balances.

Security guarantees of resource depends on those events.

Events are logged.
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Modeling Erasable Memory

Memory Erasability Amplification

Data = μ
Ldat
Log: e, X

Adversarial access: none, total (Read), or partial (Leak).

Total access if predicate ρ on event log is true.
–Typically: “critical” event before/without erasure.

Read

μ

If ρ(Log)
  = true:

Leak, ξ

ξ(Ldat)

If κ(Log, ξ)
  = true:
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Modeling Erasable Memory

Memory Erasability Amplification

Data = μ
Ldat ← ψ(μ)
Log: e, X, ξ

$

Adversary might influence result: deterministic function ξ.

Potential leakage Ldat dependent on random function ψ.

Gets ξ(Ldat)=ξ(ψ(μ)) if predicate κ on event log & ξ is true.
–Typically: “critical” event

after erasure and
ξ is OK.

Adaptive queries.

Read

μ

If ρ(Log)
  = true:

Leak, ξ

ξ(Ldat)

If κ(Log, ξ)
  = true:
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Types of Erasable Memory
Typical types of memory are just specializations:

–Perfectly erasable memory.
• ρ is true if memory was attacked before/without erase.
• κ returns false.

–Imperfectly erasable memory:
♦ Memory leaking a constant number of bits.

• ρ idem.
• ψ(μ)=μ.
• κ is true if Log=(e, X) and ξ reads d bits of Ldat (and thus of μ).

♦ Memory leaking a noisy version of the data.
–Non-erasable memory.

Memory Erasability Amplification

Store μ∈Φk Data ← μ
Ldat
Log:

Data = μ
Ldat
Log: e, X

Read μ
If ρ(Log) = true

Data = μ
Ldat ← ψ(μ)
Log: e, X, ξ

Leak, ξ ξ(Ldat)
If κ(Log, ξ) = true

$
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Building Protocols using our Memory

Goal: protocols that work with imperfectly erasable memory.

Protocols must not circumvent the memory resource:
–Maintain no internal state between computation phases.
–But can use temporary storage (registers) during phase

(to avoid strong dependency on actual implementation).

Memory Erasability Amplification

MemoryProtocol
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Constructing Perfectly Erasable Memory

Memory Erasability Amplification

Memory
leaking
d bits

Protocol
Perfectly 
erasable 
memory≈

Φk Φn Φk

σ
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Constructing Perfectly Erasable Memory

Memory Erasability Amplification

Memory
leaking
d bits

Protocol
Perfectly 
erasable 
memory≈

Φk Φn Φk

Store μ∈Φk

μ'=aontenc(μ) Store μ'∈Φn

Erase Erase

Retrieve

μ

Retrieve

μ'μ=aontdec(μ')

Protocol

The protocol uses an AoNT [CDH+00].

[CDH+00]: Canetti, Dodis, Halevi, Kushilevitz, Sahai. Exposure-Resilient 
Functions and All-or-Nothing Transforms. Eurocrypt 2000.

σ
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All-or-Nothing Transform [CDH+00]

Memory Erasability Amplification

Completeness:
–∀μ∈Φk: μ = aontdec(aontenc(μ)).

Privacy:
–For all sets L of size d, μ0∈Φk, μ1∈Φk:
(μ0, μ1, [aontenc(μ0)]L) ≈ (μ0, μ1, [aontenc(μ1)]L).

aontenc

aontdec

No information

[CDH+00]: Canetti, Dodis, Halevi, Kushilevitz, Sahai. Exposure-Resilient 
Functions and All-or-Nothing Transforms. Eurocrypt 2000.
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Examples of AoNT
 (Ramp) secret sharing scheme:

–Based on Shamir secret sharing (only for large Φ). [BM84]
–For Φ={0, 1}, construction using linear block code. [CDH+00]

Generator matrix G of minimum distance d.

Memory Erasability Amplification

[BM84]: Blakley, Meadows. Security of Ramp Schemes. Crypto 1984.

G

0I

I
* =

μ

r
y
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Conclusion

Realistic
assumptions

Efficient
beyond PPT

Provably secure in
arbitrary contexts

Secure against
adaptive adversaries

2-party protocol
for arithmetic

circuits

2-server 
password-

authenticated
secret sharing

Memory 
erasability 

amplification

Conventions for 
complete and 

unambiguous protocol 
specifications

New protocols: Improving modelling:


