
© 2015 IBM Corporation

Two-Server
Password-Authenticated Secret Sharing
UC-Secure Against Transient Corruptions

PKC 2015 – March 31st

Jan Camenisch, Robert R. Enderlein, Gregory Neven
IBM Research – Zurich & ETH Zurich

Version 3.0

© 2015 IBM Corporation2 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Our Goal: Protect Your Data

Protect user data = provide access to authenticated users.

How to authenticate users? Usually: with passwords.

Most users choose easy-to-remember, insecure passwords.
–Low entropy: 16 character passwords have
only approx. 30 bits of entropy [NIST].

–Password databases compromised
= attacker can recover passwords
(even if hashed and salted).

• A rig of 25 GPUs can test
350 billion passwords/second.

• 60% of LinkedIn passwords
cracked within 24 hours (2012).

[NIST]: NIST Special Publication 800-63-1 (2011).

Ideally:

password=
Z+3sZa+'4Jy
do"MuZ+3sZ

password=
hunter2

In reality:

© 2015 IBM Corporation3 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Our Goal: Protect Your Data

Protect user data = provide access to authenticated users.

How to authenticate users? Usually: with passwords.

Most users choose easy-to-remember, insecure passwords.
–Low entropy: 16 character passwords have
only approx. 30 bits of entropy [NIST].

–Password databases compromised
= attacker can recover passwords
(even if hashed and salted).

• A rig of 25 GPUs can test
350 billion passwords/second.

• 60% of LinkedIn passwords
cracked within 24 hours (2012).

[NIST]: NIST Special Publication 800-63-1 (2011).

Ideally:

password=
Z+3sZa+'4Jy
do"MuZ+3sZ

password=
hunter2

In reality:

© 2015 IBM Corporation4 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Our Goal: Protect Your Data

Protect user data = provide access to authenticated users.

How to authenticate users? Usually: with passwords.

Most users choose easy-to-remember, insecure passwords.
–Low entropy: 16 character passwords have
only approx. 30 bits of entropy [NIST].

–Password databases compromised
= attacker can recover passwords
(even if hashed and salted).

• A rig of 25 GPUs can test
350 billion passwords/second.

• 60% of LinkedIn passwords
cracked within 24 hours (2012).

[NIST]: NIST Special Publication 800-63-1 (2011).

Ideally:

password=
Z+3sZa+'4Jy
do"MuZ+3sZ

password=
hunter2

In reality:

© 2015 IBM Corporation5 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Table of contents

Motivation

Design Goals of our Solution

Related Work

Our Construction of 2-PASS in the Standard Model

Conclusion

Our Goal: Protect Your Data

© 2015 IBM Corporation6 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Are Passwords Inherently Insecure?

No! We are using them incorrectly.

Single-server solutions inherently vulnerable to offline-
guessing attack if compromised.

 Instead use two server solution where
no single server can test passwords alone.

password=
hunter2 Password correct?

© 2015 IBM Corporation7 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Are Passwords Inherently Insecure?

No! We are using them incorrectly.

Single-server solutions inherently vulnerable to offline-
guessing attack if compromised.

 Instead use two server solution where
no single server can test passwords alone.

password=
hunter2 Password correct?

© 2015 IBM Corporation8 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Two-Server Password-Authenticated Protocols
Threshold Password-Authenticated Key Exchange (T-PAKE):

–If password attempt is correct, share a random session key.

Password-Authenticated Secret Sharing (PASS):

–User also submits a strong secret K at setup.
–If password correct, retrieves that K.
–After the protocol user has a strong cryptographic key,
which can be used to protect the rest of his data.

Setup, p
Retrieve, a

SK

Setup, p, K
Retrieve, a

K

SK

SK

© 2015 IBM Corporation9 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Two-Server Password-Authenticated Protocols
Threshold Password-Authenticated Key Exchange (T-PAKE):

–If password attempt is correct, share a random session key.

Password-Authenticated Secret Sharing (PASS):

–User also submits a strong secret K at setup.
–If password correct, retrieves that K.
–After the protocol user has a strong cryptographic key,
which can be used to protect the rest of his data.

Setup, p
Retrieve, a

SK

Setup, p, K
Retrieve, a

K

SK

SK

© 2015 IBM Corporation10 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Design Goals
for 2-Server Password-Authenticated Secret Sharing

User remembers weak password, user name, server names.

User deposits and later reconstruct a strong secret K.
(K can then be used to encrypt further data.)

One server compromised:
–Cannot perform an offline attack on the password.
(Can only do individual on-line attempts with other server.)

Servers can recover from being compromised.

password=
hunter2

+ =
Secret key=
Z+3sZa+'4Jy
do"MuZ+3sZ

© 2015 IBM Corporation11 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Design Goals
for 2-Server Password-Authenticated Secret Sharing

User remembers weak password, user name, server names.

User deposits and later reconstruct a strong secret K.
(K can then be used to encrypt further data.)

One server compromised:
–Cannot perform an offline attack on the password.
(Can only do individual on-line attempts with other server.)

Servers can recover from being compromised.

password=
hunter2

+ =
Secret key=
Z+3sZa+'4Jy
do"MuZ+3sZ

© 2015 IBM Corporation12 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Table of contents

Motivation

Design Goals of our Solution

Related Work

Our Construction of 2-PASS in the Standard Model

Conclusion

Our Goal: Protect Your Data

© 2015 IBM Corporation13 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Related Work

UC-Secure PASS, static corruptions, (ROM):
–Camenisch et al. (2012), Camenisch et al. (2014).

Other non-UC secure PASS protocols:
–Bagherzandi et al. (2011), Jarecki et al. (2014).

Non-UC secure 2-server T-PAKE: Katz et al. (2005 & 2012).

Non-UC secure 1-server PAKE protocols:
–Ford-Kaliski (2000), Jablon (2001), Brainard et al. (2003),
MacKenzie et al. (2002), Di Raimondo-Gennaro (2003),
Szydlo-Kaliski (2005).

Our paper: UC-Secure, transient corruptions, standard model.

© 2015 IBM Corporation14 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Related Work

UC-Secure PASS, static corruptions, (ROM):
–Camenisch et al. (2012), Camenisch et al. (2014).

Other non-UC secure PASS protocols:
–Bagherzandi et al. (2011), Jarecki et al. (2014).

Non-UC secure 2-server T-PAKE: Katz et al. (2005 & 2012).

Non-UC secure 1-server PAKE protocols:
–Ford-Kaliski (2000), Jablon (2001), Brainard et al. (2003),
MacKenzie et al. (2002), Di Raimondo-Gennaro (2003),
Szydlo-Kaliski (2005).

Our paper: UC-Secure, transient corruptions, standard model.

© 2015 IBM Corporation15 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

What to do when a server is hacked?

Previous solutions secure only against malicious servers
(i.e., against static corruptions).

–Technically, no security guarantees in case of
adaptive hacking:
Static security + guessing who will get corrupted
is not good enough.

Our solution is secure also if servers are hacked
(UC-secure against dynamic corruptions).

–Servers can also recover from corruption
(i.e., security against transient corruptions).

© 2015 IBM Corporation16 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

What to do when a server is hacked?

Previous solutions secure only against malicious servers
(i.e., against static corruptions).

–Technically, no security guarantees in case of
adaptive hacking:
Static security + guessing who will get corrupted
is not good enough.

Our solution is secure also if servers are hacked
(UC-secure against dynamic corruptions).

–Servers can also recover from corruption
(i.e., security against transient corruptions).

© 2015 IBM Corporation17 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Why UC?

UC Definition for 2-PASS:
–Passwords can be chosen

according to arbitrary
distributions.

–The adversary sees all
authentications (also ones
with typos), not just correct
ones.

–The non-negligible success
probability of adversary
guessing the password is
handled correctly.

–Our protocol composes nicely
with itself and other protocols.

Property-based definition:
–Passwords must be chosen

independently according to
uniform distribution.

–The adversary sees only
successful authentications.

–Sucess probability =
negl() + Pr[guess_password]

–Does not compose.

© 2015 IBM Corporation18 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Why UC?

UC Definition for 2-PASS:
–Passwords can be chosen

according to arbitrary
distributions.

–The adversary sees all
authentications (also ones
with typos), not just correct
ones.

–The non-negligible success
probability of adversary
guessing the password is
handled correctly.

–Our protocol composes nicely
with itself and other protocols.

Property-based definition:
–Passwords must be chosen

independently according to
uniform distribution.

–The adversary sees only
successful authentications.

–Sucess probability =
negl() + Pr[guess_password]

–Does not compose.

© 2015 IBM Corporation19 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Why UC?

UC Definition for 2-PASS:
–Passwords can be chosen

according to arbitrary
distributions.

–The adversary sees all
authentications (also ones
with typos), not just correct
ones.

–The non-negligible success
probability of adversary
guessing the password is
handled correctly.

–Our protocol composes nicely
with itself and other protocols.

Property-based definition:
–Passwords must be chosen

independently according to
uniform distribution.

–The adversary sees only
successful authentications.

–Sucess probability =
negl() + Pr[guess_password]

–Does not compose.

© 2015 IBM Corporation20 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Why UC?

UC Definition for 2-PASS:
–Passwords can be chosen

according to arbitrary
distributions.

–The adversary sees all
authentications (also ones
with typos), not just correct
ones.

–The non-negligible success
probability of adversary
guessing the password is
handled correctly.

–Our protocol composes nicely
with itself and other protocols.

Property-based definition:
–Passwords must be chosen

independently according to
uniform distribution.

–The adversary sees only
successful authentications.

–Sucess probability =
negl() + Pr[guess_password]

–Does not compose.

© 2015 IBM Corporation21 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Table of contents

Motivation

Design Goals of our Solution

Related Work

Our Construction of 2-PASS in the Standard Model

Conclusion

Our Goal: Protect Your Data

© 2015 IBM Corporation22 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Overview of our Protocol

Setup, p, K

ReadySetup

ReadySetup

password=
p

© 2015 IBM Corporation23 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Overview of our Protocol

Setup, p, K

ReadySetup

ReadySetup

p=p1+p2
K=k1+k2

p1,k1

p2,k2

password=
p

© 2015 IBM Corporation24 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Overview of our Protocol

Setup, p, K

Done

Done

Done

ReadySetup

ReadySetup

p=p1+p2
K=k1+k2

p1,k1

p2,k2

p1,k1

p2,k2

password=
p

© 2015 IBM Corporation25 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

p1,k1

p2,k2

Setup, p, K

Done

Done

Done

ReadySetup

ReadySetup

Retrieve, a

ReadyRetrieve

ReadyRetrieve

p=p1+p2
K=k1+k2

p1,k1

p2,k2

password=
p

password=
a ?

p1,k1

p2,k2

Overview of our Protocol

© 2015 IBM Corporation26 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

p1,k1

p2,k2

K1 or ┴

Setup, p, K

Done

Done

Done

ReadySetup

ReadySetup

Retrieve, a

ReadyRetrieve

ReadyRetrieve

p=p1+p2
K=k1+k2

p1,k1

p2,k2

password=
p

password=
a ?

p1,k1

p2,k2

p1+p2-a
= 0 ?

Overview of our Protocol

© 2015 IBM Corporation27 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

p1,k1

p2,k2

p1+p2-a
= 0 ?
k1 or ┴

Setup, p, K

Done

Done

Done

ReadySetup

ReadySetup

a ?= p

a ?= p

p=p1+p2
K=k1+k2

p1,k1

p2,k2

password=
p

p1,k1

p2,k2

k2 or ┴

ReadyRetrieve

ReadyRetrieve

password=
a ?

Retrieve, a

password=
a ?

Overview of our Protocol

© 2015 IBM Corporation28 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

p1,k1

p2,k2

p1+p2-a
= 0 ?
k1 or ┴

Setup, p, K

Done

Done

Done

ReadySetup

ReadySetup

K or ┴

a ?= p

a ?= p

p=p1+p2
K=k1+k2

p1,k1

p2,k2

password=
p

p1,k1

p2,k2

K=k1+k2

k2 or ┴

ReadyRetrieve

ReadyRetrieve

password=
a ?

password=
a ?

Overview of our Protocol

© 2015 IBM Corporation29 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Difficulties with Security Against
Dynamic Corruptions

Selective decommitment problem:
parties must never be committed to their input.

–A party cannot send a ciphertext containing their input to
another party: unsimulatable when recipient is then corrupted.

We must work around this limitation,
e.g., by using non-committing encryption based on
one-time pads and secure erasures [BH91].

Further modifications so that ZK proofs are still possible.

[BH91]: Beaver, Haber. Cryptographic Protocols Provably Secure Against
Dynamic Adversaries. EUROCRYPT 1991.

© 2015 IBM Corporation30 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Difficulties with Security Against
Dynamic Corruptions

Selective decommitment problem:
parties must never be committed to their input.

–A party cannot send a ciphertext containing their input to
another party: unsimulatable when recipient is then corrupted.

We must work around this limitation,
e.g., by using non-committing encryption based on
one-time pads and secure erasures [BH91].

Further modifications so that ZK proofs are still possible.

[BH91]: Beaver, Haber. Cryptographic Protocols Provably Secure Against
Dynamic Adversaries. EUROCRYPT 1991.

© 2015 IBM Corporation31 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Building Blocks of Protocol

Functionalities:
–One-sided authenticated channels (user ↔ servers),
where only the servers are authenticated.

–Authenticated channels (server 1 ↔ server 2).
–(Local) common reference strings (CRS).

Cryptographic schemes:
–Zero-knowledge proofs.
–Perfectly-hiding commitments (of special form).
–Non-committing encryption based on OTP and erasures.

© 2015 IBM Corporation32 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

High-level Idea of Protocol: Setup
User splits (p, K) into additive shares.

Commits to shares. Sends all commitments to servers.

Sends encrypted shares and openings to respective server.

Servers prove to each other they
know their shares.

(p, K)

(p1+p2, k1+k2)

cp1 = Com(p1, op1)
cp2 = Com(p2, op2)
ck1 = Com(k1, ok1)
ck2 = Com(k2, ok2)

cp1, cp2, ck1, ck2,

[p1, k1, op1, ok1]

cp1, cp2, ck1, ck2,
[p2, k2, op2, ok2]

I know my shares
& openings

© 2015 IBM Corporation33 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

High-level Idea of Protocol: Setup
User splits (p, K) into additive shares.

Commits to shares. Sends all commitments to servers.

Sends encrypted shares and openings to respective server.

Servers prove to each other they
know their shares.

(p, K)

(p1+p2, k1+k2)

cp1 = Com(p1, op1)
cp2 = Com(p2, op2)
ck1 = Com(k1, ok1)
ck2 = Com(k2, ok2)

cp1, cp2, ck1, ck2,

[p1, k1, op1, ok1]

cp1, cp2, ck1, ck2,
[p2, k2, op2, ok2]

I know my shares
& openings

© 2015 IBM Corporation34 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

High-level Idea of Protocol: Setup
User splits (p, K) into additive shares.

Commits to shares. Sends all commitments to servers.

Sends encrypted shares and openings to respective server.

Servers prove to each other they
know their shares.

(p, K)

(p1+p2, k1+k2)

cp1 = Com(p1, op1)
cp2 = Com(p2, op2)
ck1 = Com(k1, ok1)
ck2 = Com(k2, ok2)

cp1, cp2, ck1, ck2,

[p1, k1, op1, ok1]

cp1, cp2, ck1, ck2, [p2, k2, op2, ok2]

I know my shares
& openings

© 2015 IBM Corporation35 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

High-level Idea of Protocol: Setup
User splits (p, K) into additive shares.

Commits to shares. Sends all commitments to servers.

Sends encrypted shares and openings to respective server.

Servers prove to each other they
know their shares.

(p, K)

(p1+p2, k1+k2)

cp1 = Com(p1, op1)
cp2 = Com(p2, op2)
ck1 = Com(k1, ok1)
ck2 = Com(k2, ok2)

cp1, cp2, ck1, ck2,

[p1, k1, op1, ok1]

cp1, cp2, ck1, ck2, [p2, k2, op2, ok2]

I know my shares
& openings

© 2015 IBM Corporation36 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

High-level Idea of Protocol: Setup
User splits (p, K) into additive shares.

Commits to shares. Sends all commitments to servers.

Sends encrypted shares and openings to respective server.

Servers prove to each other they
know their shares.

(p, K)

(p1+p2, k1+k2)

cp1 = Com(p1, op1)
cp2 = Com(p2, op2)
ck1 = Com(k1, ok1)
ck2 = Com(k2, ok2)

cp1, cp2, ck1, ck2,

[p1, k1, op1, ok1]

cp1, cp2, ck1, ck2, [p2, k2, op2, ok2]

I know my shares
& openings

© 2015 IBM Corporation37 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

High-level Idea of Protocol: Retrieve
Servers send commitments to user & prove they know shares.

Servers jointly compute gδ*random with help of user. δ=p1+p2-a.

 If result=g0: server send their shares of K & openings to user.

cp1, cp2, proof I know (p1,op1)

cp1, cp2, proof I know (p2,op2)

Password
attempt

a

© 2015 IBM Corporation38 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

High-level Idea of Protocol: Retrieve
Servers send commitments to user & prove they know shares.

Servers jointly compute gδ*random with help of user. δ=p1+p2-a.

 If result=g0: server send their shares of K & openings to user.

cp1, cp2, proof I know (p1,op1)

cp1, cp2, proof I know (p2,op2)

Jointly compute

g(p1+p2-a)*random

result

result

Password
attempt

a

© 2015 IBM Corporation39 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

High-level Idea of Protocol: Retrieve
Servers send commitments to user & prove they know shares.

Servers jointly compute gδ*random with help of user. δ=p1+p2-a.

 If result=g0: server send their shares of K & openings to user.

cp1, cp2, proof I know (p1,op1)

cp1, cp2, proof I know (p2,op2)

Jointly compute

g(p1+p2-a)*random

result

result

ck1, ck2, [k1, ok1]

ck1, ck2, [k2, ok2]ck1 ?= Com(k1, ok1)
ck2 ?= Com(k2, ok2)

K=k1+k2

result ?= g0.

result ?= g0.

Password
attempt

a

© 2015 IBM Corporation40 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Table of contents

Motivation

Design Goals of our Solution

Related Work

Our Construction of 2-PASS in the Standard Model

Conclusion

Our Goal: Protect Your Data

© 2015 IBM Corporation41 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Conclusion
First efficient 2-PASS that is

UC-secure against dynamic corruptions.
–Password protected from offline attack when
≥ 1 server honest.

–Secret K protected when ≥ 1 server honest.

Servers can recover from corruption.

Efficient construction in standard model (w/ erasures).
(A few hundred exponentiations ; ≤ 0.2 seconds total.)

Our Goal: Protect Your Data

password=
hunter2

+ =
Secret key=
Z+3sZa+'4Jy
do"MuZ+3sZ

© 2015 IBM Corporation42 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Backup slides: Protocol Detail

© 2015 IBM Corporation43 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

First Idea: Compute gδ*random=g(p1+p2-a)*random

Basic idea: use homomorphic properties of ElGamal.

Let Elg[plaintext, rand, shkey]=(hrand,gplaintexthrand*shkey).
where logg(h)*shkey is the El-Gamal secret key.

Parties additionally use zero-knowledge proofs throughout.

From a, cp1, cp2 extract Elg[δ, -1, -op1-op2].

Exponentiate by random r0: → Elg[δ*r0, -r0, (-op1-op2)*r0].

Remove op1 & exp by r1: → Elg[δ*r0*r1, -r0*r1, -op2*r0*r1].

Remove op2 & exp by r2: → Elg[δ*r0*r1*r2, -r0*r1*r2, 0] =

(h-r0*r1*r2, g-δ*r0*r1*r2).

© 2015 IBM Corporation44 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Final Idea: Compute gδ*random=g(p1+p2-a)*random

 Doesn't work: we need non-committing ciphertexts for dynamic corruption.

 Idea: add shared keys s01, s02, s12 (& send in a non-committing way).

 Parties additionally use zero-knowledge proofs throughout, and
use perfect-hiding commitments to keep track of s01, s02, s12.

From a, cp1, cp2 extract Elg[δ, -1, -op1-op2].

Add s01, s02 & exponentiate by r0:

→ Elg[δ*r0, -r0, (-op1-op2+s01+s02)*r0].

Add s12 & remove op1, s01 & exponentiate by r1:

 → Elg[δ*r0*r1, -r0*r1, (-op2+s02+s12)*r0*r1].

Remove op2, s02, s12 & exponentiate by r2:

→ Elg[δ*r0*r1*r2, -r0*r1*r2, 0] =(..., g-δ*r0*r1*r2
).

[s01]

[s02]

[s12]

© 2015 IBM Corporation45 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Backup slides: Ideal Functionality

© 2015 IBM Corporation46 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Ideal Functionality F2-PASS: Setup

Setup, p, K
ReadySetup

ReadySetupSetup

User

Adversary

Server 1

Server 2

F2-PASS

User is not authenticated,
adversary can impersonate a user.

© 2015 IBM Corporation47 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

User is not authenticated,
adversary can impersonate a user.

Ideal Functionality F2-PASS: Setup

Setup, p, K
ReadySetup

ReadySetupSetup

User

Adversary

Server 1

Server 2

Done

Done Done

Done

(user, s
erver1, server2)

F2-PASS

(p, K)

© 2015 IBM Corporation48 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Ideal Functionality F2-PASS: Retrieve

Retrieve, a ReadyRetrieve

ReadyRetrieve
Retrie

ve

User

Adversary

Server 1

Server 2
Servers may refuse to participate
(e.g., too many failed attempts).

F2-PASS

(p, K)

User is not authenticated,
adversary can impersonate a user.

© 2015 IBM Corporation49 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

User is not authenticated,
adversary can impersonate a user.

Ideal Functionality F2-PASS: Retrieve

Retrieve, a ReadyRetrieve

ReadyRetrieve
Retrie

ve

User

Adversary

Server 1

Server 2

Continue

a ?= p

Servers may refuse to participate
(e.g., too many failed attempts).

F2-PASS

(p, K)

© 2015 IBM Corporation50 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Servers may refuse to participate
(e.g., too many failed attempts).

User is not authenticated,
adversary can impersonate a user.

Ideal Functionality F2-PASS: Retrieve

Retrieve, a ReadyRetrieve

ReadyRetrieve
Retrie

ve

User

Adversary

Server 1

Server 2

Continue

a ?= p

Deliver

(user, server1, server2)

K (if a=p) or ┴ (if a≠p)
a ?= p

a ?= p

F2-PASS

(p, K)

© 2015 IBM Corporation51 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

F2-PASS: Modelling corruption

Modelling corruption is necessary to be realistic.

Corruption of user (per query):
–Adversary controls input & output.
–Adversary sees previous inputs for that query.

Corruption of one server:
–Adversary controls input & output.

Corruption of both servers:
–Adversary also learns (p, K) from F2-PASS.
–Adversary can set (p, K) in F2-PASS for every query or
permanently.

© 2015 IBM Corporation52 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

F2-PASS: Recovery from Corruption

Models that server detects it was hacked and takes remedial
action (e.g., recovers from backup).

Adversary may leave a corrupted server.
–Both servers then run a Refresh protocol.

• This aborts all currently running queries.
–Afterwards, server is then not corrupted anymore
(adversary doesn't control input & output).

© 2015 IBM Corporation53 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

2-PASS Ideal Functionality.

Servers can refuse to service Retrieve queries
(to defend against on-line brute force attacks).

Servers and adversary learn if p = a (password attempt).

 If only one server compromised:
–Adversary doesn't learn anything about the p, K, & a.
–Cannot cause user to get wrong K.

Two servers compromised: adversary gets (p, K), but not
password attempts. (Also if user contacts wrong servers.)

Setup, p, K
Retrieve, a

K

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Table of contents/Agenda template
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

