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Our Goal: Protect Your Data

Protect user data = provide access to authenticated users.

How to authenticate users? Usually: with passwords.

Most users choose easy-to-remember, insecure passwords.
–Low entropy: 16 character passwords have
only approx. 30 bits of entropy [NIST].

–Password databases compromised
= attacker can recover passwords
(even if hashed and salted).

• A rig of 25 GPUs can test
350 billion passwords/second.

• 60% of LinkedIn passwords
cracked within 24 hours (2012).

[NIST]: NIST Special Publication 800-63-1 (2011).

Ideally:

password=
Z+3sZa+'4Jy
do"MuZ+3sZ

password=
hunter2

In reality:
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Are Passwords Inherently Insecure?

No! We are using them incorrectly.

Single-server solutions inherently vulnerable to offline-
guessing attack if compromised.

 Instead use two server solution where
no single server can test passwords alone.

password=
hunter2 Password correct?
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Two-Server Password-Authenticated Protocols
Threshold Password-Authenticated Key Exchange (T-PAKE):

–If password attempt is correct, share a random session key.

Password-Authenticated Secret Sharing (PASS):

–User also submits a strong secret K at setup.
–If password correct, retrieves that K.
–After the protocol user has a strong cryptographic key,
which can be used to protect the rest of his data. 

Setup, p
Retrieve, a

SK

Setup, p, K
Retrieve, a

K

SK

SK
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Design Goals
for 2-Server Password-Authenticated Secret Sharing

User remembers weak password, user name, server names.

User deposits and later reconstruct a strong secret K.
(K can then be used to encrypt further data.)

One server compromised:
–Cannot perform an offline attack on the password.
(Can only do individual on-line attempts with other server.)

Servers can recover from being compromised.

password=
hunter2

+ =
Secret key=
Z+3sZa+'4Jy
do"MuZ+3sZ
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Related Work

UC-Secure PASS, static corruptions, (ROM):
–Camenisch et al. (2012), Camenisch et al. (2014).

Other non-UC secure PASS protocols:
–Bagherzandi et al. (2011), Jarecki et al. (2014).

Non-UC secure 2-server T-PAKE: Katz et al. (2005 & 2012).

Non-UC secure 1-server PAKE protocols:
–Ford-Kaliski (2000), Jablon (2001), Brainard et al. (2003), 
MacKenzie et al. (2002), Di Raimondo-Gennaro (2003),
Szydlo-Kaliski (2005).

Our paper: UC-Secure, transient corruptions, standard model.
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What to do when a server is hacked?

Previous solutions secure only against malicious servers
(i.e., against static corruptions).

–Technically, no security guarantees in case of
adaptive hacking:
Static security + guessing who will get corrupted
is not good enough.

Our solution is secure also if servers are hacked
(UC-secure against dynamic corruptions).

–Servers can also recover from corruption
(i.e., security against transient corruptions).
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Why UC?

UC Definition for 2-PASS:
–Passwords can be chosen 

according to arbitrary 
distributions.

–The adversary sees all 
authentications (also ones 
with typos), not just correct 
ones.

–The non-negligible success 
probability of adversary 
guessing the password is 
handled correctly.

–Our protocol composes nicely 
with itself and other protocols.

Property-based definition:
–Passwords must be chosen 

independently according to 
uniform distribution.

–The adversary sees only 
successful authentications.

–Sucess probability =
negl() + Pr[guess_password]

–Does not compose.
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Overview of our Protocol

Setup, p, K

ReadySetup

ReadySetup

password=
p



© 2015 IBM Corporation23 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Overview of our Protocol

Setup, p, K

ReadySetup

ReadySetup

p=p1+p2
K=k1+k2

p1,k1

p2,k2

password=
p



© 2015 IBM Corporation24 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Overview of our Protocol

Setup, p, K

Done

Done

Done

ReadySetup

ReadySetup

p=p1+p2
K=k1+k2

p1,k1

p2,k2

p1,k1

p2,k2

password=
p



© 2015 IBM Corporation25 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

p1,k1

p2,k2

Setup, p, K

Done

Done

Done

ReadySetup

ReadySetup

Retrieve, a
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p1,k1

p2,k2

K1 or ┴

Setup, p, K

Done

Done

Done

ReadySetup

ReadySetup

Retrieve, a

ReadyRetrieve

ReadyRetrieve

p=p1+p2
K=k1+k2

p1,k1

p2,k2

password=
p

password=
a ?

p1,k1

p2,k2

p1+p2-a
= 0 ?

Overview of our Protocol



© 2015 IBM Corporation27 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

p1,k1

p2,k2

p1+p2-a
= 0 ?
k1 or ┴

Setup, p, K

Done

Done

Done

ReadySetup

ReadySetup

a ?= p

a ?= p

p=p1+p2
K=k1+k2

p1,k1

p2,k2

password=
p

p1,k1

p2,k2

k2 or ┴

ReadyRetrieve

ReadyRetrieve

password=
a ?

Retrieve, a

password=
a ?

Overview of our Protocol



© 2015 IBM Corporation28 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

p1,k1

p2,k2

p1+p2-a
= 0 ?
k1 or ┴

Setup, p, K

Done

Done

Done

ReadySetup

ReadySetup

K or ┴ 

a ?= p

a ?= p

p=p1+p2
K=k1+k2

p1,k1

p2,k2

password=
p

p1,k1

p2,k2

K=k1+k2

k2 or ┴

ReadyRetrieve

ReadyRetrieve

password=
a ?

password=
a ?

Overview of our Protocol



© 2015 IBM Corporation29 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

Difficulties with Security Against
Dynamic Corruptions

Selective decommitment problem:
parties must never be committed to their input.

–A party cannot send a ciphertext containing their input to 
another party: unsimulatable when recipient is then corrupted.

We must work around this limitation,
e.g., by using non-committing encryption based on
one-time pads and secure erasures [BH91].

Further modifications so that ZK proofs are still possible.

[BH91]: Beaver, Haber. Cryptographic Protocols Provably Secure Against
Dynamic Adversaries. EUROCRYPT 1991.
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Building Blocks of Protocol

Functionalities:
–One-sided authenticated channels (user ↔ servers),
where only the servers are authenticated.

–Authenticated channels (server 1 ↔ server 2).
–(Local) common reference strings (CRS).

Cryptographic schemes:
–Zero-knowledge proofs.
–Perfectly-hiding commitments (of special form).
–Non-committing encryption based on OTP and erasures.
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High-level Idea of Protocol: Setup
User splits (p, K) into additive shares.

Commits to shares. Sends all commitments to servers.

Sends encrypted shares and openings to respective server.

Servers prove to each other they
know their shares.

(p, K)

(p1+p2, k1+k2)

cp1 = Com(p1, op1)
cp2 = Com(p2, op2)
ck1 = Com(k1, ok1)
ck2 = Com(k2, ok2)

cp1, cp2, ck1, ck2, 

[p1, k1, op1, ok1]

cp1, cp2, ck1, ck2, 
[p2, k2, op2, ok2]

I know my shares
& openings
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High-level Idea of Protocol: Retrieve
Servers send commitments to user & prove they know shares.

Servers jointly compute gδ*random with help of user. δ=p1+p2-a.

 If result=g0: server send their shares of K & openings to user.

cp1, cp2, proof I know (p1,op1)

cp1, cp2, proof I know (p2,op2)

Password
attempt

a
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Conclusion
First efficient 2-PASS that is

UC-secure against dynamic corruptions.
–Password protected from offline attack when
≥ 1 server honest.

–Secret K protected when ≥ 1 server honest.

Servers can recover from corruption.

Efficient construction in standard model (w/ erasures).
(A few hundred exponentiations ; ≤ 0.2 seconds total.)

Our Goal: Protect Your Data

password=
hunter2

+ =
Secret key=
Z+3sZa+'4Jy
do"MuZ+3sZ
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Backup slides: Protocol Detail
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First Idea: Compute gδ*random=g(p1+p2-a)*random

Basic idea: use homomorphic properties of ElGamal.

Let Elg[plaintext, rand, shkey]=(hrand,gplaintexthrand*shkey).
where  logg(h)*shkey is the El-Gamal secret key.

Parties additionally use zero-knowledge proofs throughout.

From a, cp1, cp2 extract Elg[δ, -1, -op1-op2].

Exponentiate by random r0: → Elg[δ*r0, -r0, (-op1-op2)*r0].

Remove op1 & exp by r1: → Elg[δ*r0*r1, -r0*r1, -op2*r0*r1].

Remove op2 & exp by r2: → Elg[δ*r0*r1*r2, -r0*r1*r2, 0] =

(h-r0*r1*r2, g-δ*r0*r1*r2).
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Final Idea: Compute gδ*random=g(p1+p2-a)*random

 Doesn't work: we need non-committing ciphertexts for dynamic corruption.

 Idea: add shared keys s01, s02, s12 (& send in a non-committing way). 

 Parties additionally use zero-knowledge proofs throughout, and
use perfect-hiding commitments to keep track of s01, s02, s12.

From a, cp1, cp2 extract Elg[δ, -1, -op1-op2].

Add s01, s02 & exponentiate by r0:

→ Elg[δ*r0, -r0, (-op1-op2+s01+s02)*r0].

Add s12 & remove op1, s01 & exponentiate by r1:

 → Elg[δ*r0*r1, -r0*r1, (-op2+s02+s12)*r0*r1].

Remove op2, s02, s12 & exponentiate by r2:

→ Elg[δ*r0*r1*r2, -r0*r1*r2, 0] =(..., g-δ*r0*r1*r2
).

[s01]

[s02]

[s12]
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Backup slides: Ideal Functionality
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Ideal Functionality F2-PASS: Setup

Setup, p, K
ReadySetup

ReadySetupSetup

User

Adversary

Server 1

Server 2

F2-PASS

User is not authenticated,
adversary can impersonate a user.
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User is not authenticated,
adversary can impersonate a user.

Ideal Functionality F2-PASS: Setup

Setup, p, K
ReadySetup

ReadySetupSetup

User

Adversary

Server 1

Server 2

Done

Done Done

Done

(user, s
erver1, server2)

F2-PASS

(p, K)
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Ideal Functionality F2-PASS: Retrieve

Retrieve, a ReadyRetrieve

ReadyRetrieve
Retrie

ve

User

Adversary

Server 1

Server 2
Servers may refuse to participate
(e.g., too many failed attempts).

F2-PASS

(p, K)

User is not authenticated,
adversary can impersonate a user.
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User is not authenticated,
adversary can impersonate a user.

Ideal Functionality F2-PASS: Retrieve

Retrieve, a ReadyRetrieve

ReadyRetrieve
Retrie

ve

User

Adversary

Server 1

Server 2

Continue

a ?= p

Servers may refuse to participate
(e.g., too many failed attempts).

F2-PASS

(p, K)
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Servers may refuse to participate
(e.g., too many failed attempts).

User is not authenticated,
adversary can impersonate a user.

Ideal Functionality F2-PASS: Retrieve

Retrieve, a ReadyRetrieve

ReadyRetrieve
Retrie

ve

User

Adversary

Server 1

Server 2

Continue

a ?= p

Deliver

(user, server1, server2)

K (if a=p) or ┴ (if a≠p)
a ?= p

a ?= p

F2-PASS

(p, K)



© 2015 IBM Corporation51 2-PASS UC-Secure Against Transient Corruptions ; J. Camenisch, R. Enderlein, G.NevenMarch 31st, 2015

F2-PASS: Modelling corruption

Modelling corruption is necessary to be realistic.

Corruption of user (per query):
–Adversary controls input & output.
–Adversary sees previous inputs for that query.

Corruption of one server:
–Adversary controls input & output.

Corruption of both servers:
–Adversary also learns (p, K) from F2-PASS.
–Adversary can set (p, K) in F2-PASS for every query or 
permanently.  
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F2-PASS: Recovery from Corruption

Models that server detects it was hacked and takes remedial 
action (e.g., recovers from backup).

Adversary may leave a corrupted server.
–Both servers then run a Refresh protocol.

• This aborts all currently running queries.
–Afterwards, server is then not corrupted anymore 
(adversary doesn't control input & output).
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2-PASS Ideal Functionality.

Servers can refuse to service Retrieve queries
(to defend against on-line brute force attacks).

Servers and adversary learn if p = a (password attempt).

 If only one server compromised:
–Adversary doesn't learn anything about the p, K, & a.
–Cannot cause user to get wrong K.

Two servers compromised: adversary gets (p, K), but not 
password attempts. (Also if user contacts wrong servers.)

Setup, p, K
Retrieve, a

K
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